
A Hybrid Approach to NER by Integrating Manual Rules
into MEMM

Moshe Fresko

Computer Science Department,
Data-Mining Lab.
Bar-Ilan University
Ramat Gan, Israel
+972-3-5317874

Freskom1@cs.biu.ac.il

Binyamin Rozenfeld

Computer Science Department,
Data-Mining Lab.
Bar-Ilan University
Ramat Gan, Israel
+972-3-5317874

grur@clearforest.com

Ronen Feldman

Computer Science Department,
Data-Mining Lab.
Bar-Ilan University
Ramat Gan, Israel
+972-3-5317874

 Feldman@cs.biu.ac.il

ABSTRACT
This paper describes a framework for defining domain specific
Feature Functions in a user friendly form to be used in a
Maximum Entropy Markov Model (MEMM) for the Named
Entity Recognition (NER) task. Our system called MERGE
allows defining general Feature Function Templates, as well as
Linguistic Rules incorporated into the classifier. The simple way
of translating these rules into specific feature functions are shown.
We show that MERGE can perform better from both purely
machine learning based systems and purely-knowledge based
approaches by some small expert interaction of rule-tuning.

Categories and Subject Descriptors
Machine Learning, Named Entity Recognition, Information
Extraction.

General Terms
Machine Learning, Named Entity Recognition, Information
Extraction.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Named-Entity recognition (NER) is one of the core components
in most Information Extraction and Text Mining systems. The
NER task is to find all proper noun phrases (and other easily
recognizable phrases) in a text and to classify them into a small
predefined set of semantic categories, such as names, locations,
dates, organizations, drugs, diseases, books etc. NER is essential
as a preprocessing step before applying other text mining
techniques – for extracting relations, building ontologies and
semantic hierarchies, etc.

There are two traditional approaches to NER: knowledge-based
approach and machine learning approach. Knowledge-based
systems usually achieve better accuracy, but require huge
amounts of skilled labor by linguists and domain experts in order
to prepare and maintain the extraction knowledge. Because of
this, the recent research in NER is concentrated on machine
learning techniques, which only require a manually labeled

training set of documents. The best published ML-based systems
perform on the level of knowledge-based systems for many
categories.

In this paper we present MERGE (Maximum Entropy Rule
Guided Extraction) – a hybrid NER system which combines
machine learning techniques, namely Maximum Entropy and
manually written simple rules. MERGE benefits from both
approaches and can outperform both manually written rules and
standard machine learning systems. The rule language of
MERGE is quite simple and the amount of necessary rule-writing
is relatively small, as most of the work is done by the ML part of
the system.

1.1 Related Work
Knowledge-based systems employ complicated sets of rules
written by teams of linguists, computer scientists and domain
experts. For comparison with our system we use the ACE-2
winner DIAL, a system developed by ClearForest Inc. DIAL is
based upon a general-purpose pattern language, which allows
arbitrary procedural data-processing. The system was top
performing at ACE-2 after two months of manual tuning by a
team of experts.

There have been several attempts to automate the rule writing
process using machine learning methods ([1], [2], [3], [4], [5]).
Recently, probabilistic machine learning systems became state of
the art for NER ([6],[7]) and for field extraction ([8]). Most
prominently, Hidden Markov Models (HMM) have been used for
the information extraction task ([6], [9], [10], [11], [12]). Beside
HMM, there are other systems based on SVM ([13]), Naïve Bayes
([14]), or combinations of the above ([4], [15]). As a Maximum
Entropy Model, MENE ([21]) makes use of diverse knowledge
sources. Recently Maximum Entropy conditional models, like
Maximum Entropy Markov Models ([8]) and Conditional
Random Fields ([16]) were reported to outperform the generative
HMM models on several IE tasks.

Hybrid approaches, such as TEG ([17]) combine the benefits of
precise manual rule writing and the generality of the machine
learning approaches. TEG is based on a short manually-written
set of rules that constitute a semantically oriented probabilistic
context free grammar, with the probabilities learned from the
training set.

Like TEG, MERGE utilizes the hybrid approach, using manual
rules to improve the accuracy of a probabilistic model. However,
the MERGE rules do not form a grammar like TEG rules, but act
as special-purpose features, which are combined with the
automatically-generated features using the Maximum Entropy
principle. MERGE rules are supposed to be written after the
system passed several training-and-test development cycles, in
order to catch the problematic cases on which the purely
probabilistic model failed. This methodology greatly reduces the
amount of manual work, as only necessary rules are ever written.

The remainder of this paper is structured as follows: in section 2
we present our implementation of the Maximum Entropy Markov
Model. In section 3 we describe the details of our system. Our
results are presented in section 4. In section 5 we discuss the
results and conclude.

2. MAXIMUM ENTROPY MODELING
A Maximum Entropy approach models a random process by
making the distribution satisfy a given set of constraints, and
making as few other assumptions as possible. The constraints are
specified as real-valued feature functions over the data points.
The expected value of each feature function under the ME
distribution must equal the empirical expected value of function
as found in the training dataset. In all other respects, the target
distribution should be as uniform as possible, which means it
must have the highest entropy. Those conditions completely
specify the unique distribution and show a way to calculate it.
For our purposes, we use ME to model the conditional probability
distributions, which slightly differ in the way expected values are
calculated ([18]).

 Let X be the set of conditions, usually very big, and Y the set of
possible outcomes. We assume that there is a true joint
distribution P(x, y), but we are interested only in modeling the
conditional P(y | x). For this purpose we can use a training set
{(xk, yk)}k=1..N generated by the true distribution, and a set of
features fi : X × Y → R. Typically, the features are binary and test
for specific conditions. For instance, in NER the set X may be the
(huge) set of all possible mentions of all possible words, the set Y
may be the set of all output categories, and a useful feature may
test the correlation between the capitalization of a word and its
being labeled as a personal name:

1, if the word in is capitalized and Person
(,)

0, otherwise.

x y
f x y

=
=
⎧
⎨
⎩

It can be shown that the unique most uniform distribution that
satisfies all feature constraints has the form:

(*) ()
()

()1
| exp ,i i

i

p y x f x y
Z x

λ= ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

where λi–s are the parameters chosen to maximize the likelihood
of the training data, and Z(x) is a normalization constant, which
ensures that for every x the sum of probabilities of all possible
outcomes is 1. The most common procedure for parameter
estimation is the Generalized Iterative Scaling algorithm ([19]).

2.1 Generalized Iterative Scaling
The comprehensive description of the algorithm can be found in
[20] and [18].

We need a way to calculate the expected values of features
according to the training set and according to a given conditional
distribution. For this purpose we define empirical distribution
p(x,y) of the training dataset {(xk, yk)}k=1..N as:

1 , if (,) (,) for some ,
(,)

0, otherwise.
k kN

x y x y k
p x y

=
=
⎧
⎨
⎩

(We assume that all xk are different, which is natural in modeling
conditional distributions). The expected value of a feature fi
according to the empirical distribution is:

1

,

() (,) (,) (,).i i i k kN
x y k

E f f x y p x y f x y= =∑ ∑

In order to calculate the expected value of a feature according to a
given conditional distribution p(y|x) we need the marginal p(x).
However, we do not model it, and moreover, we do not wish to
sum over the whole X, which is huge and can be ill-defined.
Therefore, we use p̃ (x) instead of p(x), which is a reasonable
approximation:

,

1

() (,) (|) ()

(,) (|).

p i i
x y

i k kN
k y Y

E f f x y p y x p x

f x y p y x
∈

≈ =

=

∑

∑∑

Now we are sufficiently equipped to state the Generalized
Iterative Scaling algorithm:

Input: Feature functions {fi}, training set {(xk, yk)}.

Output: Optimal parameter values λ*i and optimal model pλ*.

1. Start with λ = (λ1, λ2,…)=0

2. Let
()
()()

1
log i

i

ip

E f

M E f
λ∆ =

λ

Update lambdas: λi:= λi+∆λ

3. Repeat step 2 until convergence.

The expectation Ep(λ)(fi) is calculated according to the distribution
(*) with the current set of parameters λ. The constant M is the
sum of all feature functions for any given pair (x,y). Our simple
version of the GIS algorithm works under assumption that this
sum is independent of x and y. The common approach for making
this assumption true is to fix an arbitrary sufficiently large M and
add an auxiliary feature function

() (), ,aux i
i

f x y M f x y= −∑

However, in our system we do not need to use such auxiliary
function, because our feature set is generated in such a way that
the sum of features is always constant and equals to the number of
feature templates, described below.

2.2 Maximum Entropy Markov Models
Generative probabilistic models, such as HMMs and SCFGs
perform sentence labeling tasks in the following way: Sentences
and their labelings are assumed to be jointly distributed, with
some unknown true distribution P(X,Y), where X is the set of all
sentences and Y the set of all labelings. Then, a model p(X,Y) of
the true distribution is estimated using the training data. After
that, the model can be used to label a previously unseen sentence
x by maximizing p(x, y):

: arg max (|) arg max (,),y Y y Yy p y x p x y∈ ∈= =

since the marginal p(x) does not depend on y.

The necessity to model the joint probability places heavy
restrictions upon the form of X. Typically, elements of X are
sequences of tokens, elements of Y are sequences of category
labels, and the probability of a sequence is a product of
probabilities of its constituents. The probabilities of constituents
are allowed to be conditioned upon the immediate neighbors but
not upon anything else. In practice, longer-range dependencies
and dependencies upon some arbitrary features are quite common,
which makes conditional models attractive.

Conditional models, such as MEMMs ([8]) and CRFs ([16]),
model p(y|x) directly, avoiding the necessity of generating x.
Instead, the models use Maximum Entropy to combine arbitrary
contextual features of x into a single conditional distribution. The
MEMM is a straightforward conditional modification of HMM,
introduced in [8]. It is used in our MERGE system. The more
complex CRFs produce improvement in the presence of label bias
problems ([16]), but in our case label biases do not pose a critical
problem, so a simpler model was chosen.

A MEMM consists of |Y| conditional ME models py’(y|x) =
p(y|x,y'), one for each y'. The model py’(y|x) estimates the
probability of appearance of the label y immediately after the
label y' in the context x. The probability of a whole label
sequence y = y1 y2… ym, given the sentence x = x1 x2… xm, is the
product

()
1

1 1 1 1
1

0() ()|
i

m

y i i
i

p p y p xx y
−

+ +
=

= ⋅ ∏y x

Note that the conditioning elements xi are not the words of a
sentence, as in generative models. They are better thought of as
positions in the sentence, and the feature functions can use any of
their properties – current and neighbor tokens, their capitalization
and morphological properties, indentation, etc.

The model p0(y|x) used at the beginning of a sentence is separate.
There are a number of possible ways to implement it, and the
correct one is probably domain and language-dependent: For
instance (i) to build the model from only the first tokens in each
training text, (ii) to use pNone(y|x) instead, or (iii) to build another
model from all the tokens in the training data. The second option
is the one we adopted for our experiments.

The model py’(y|x) estimates can suffer from data sparseness if the
overall number of instances of y' in the training data is very small.
In order to alleviate the problem we train a separate p(y|x) model
that does not depend on the previous tag, and interpolate between

the two models. The exact value of the interpolation coefficient
was experimentally found to be not significant, so λ=½ was used.

3. SYSTEM DETAILS
3.1 Preprocessing
The preprocessing of any text is done according to the external
definitions. First, the text is divided into tokens. A token is
defined by a regular expression in which for an English text
domain it might be in the form:

 Token = "[A-Za-z]+|[0-9]+|\S"

Which can be read as: A token is an adjacent English letter
sequence or adjacent Digit sequence or any single non-white-
space character.

Then, each token is assigned its features according to the feature
templates. A template consists of a context rule – a binary test
upon the positions in the text. It can test the exact character value
of the current token and its neighbors, capitalization information,
membership in an external word list, arbitrary regular
expressions, externally supplied features like pos tags, etc. A
template can also define a generic context rule by specifying a
generic test, such as “token value”. Such a generic context rule is
instantiated during training, according to the token values found
in the training set.

Each template defines a set of features – one feature for every
combination of an instantiated context rule and a category. The
features are always built in such a way that exactly one feature
from a template tests true at any text position. This implies that
the sum of all features is constant, satisfying the requirements of
the GIS algorithm.

For example, one Feature Template may have the following form:

 FeatureTemplate : {
 Check: -1, Word
 Check: 0, Capitalization
 }
This template would generate a feature function for every
combination of the value "Word" feature at the previous token,
the value of "Capitalization" feature at the current token, and the
current tag. One such feature function might be:

 f = { 1 if previous token value is "in"
 and current token is Capitalized
 and current tag is Location
 0 otherwise }

3.2 Tagging
The labels are assigned at the token level – each word in a
sentence is labeled by an entity type label or by label None. For
multi-token entities we label each token by the same category
label, making no distinction between beginning, middle, or ending
tokens of the entity. This practice produces errors in the cases
where two entities of the same category are adjacent. However,
in our datasets there are less than 0.1% of such cases, which is
negligible.

3.3 Integrating Manual Rules
In order to show the benefits of our manual rules, we compare
them with typical knowledge-based system rules. A DIAL
rulebook consists of a set of sequentially checked rules, prepared
for a specific domain by a linguist-programmer-domain expert.
Aside from the sheer amount of the necessary rules, there are
other problems, which make the effort of creating and maintaining
the rules enormous. Consider the following example:

The texts "Smith said …" and "Turner said …" may imply a rule
"Any Capital word followed by said, is a Person" may yield
incorrect result for the text "Microsoft said …". Another rule "If
the word is Microsoft, then it is a Company" can fix that mistake,
but the correcting rule must be located before the erroneous rule.
Also, such rule introduces new mistakes: when there is a new text
in the form "Microsoft Windows …" it is talking about a product
name and not the Company.

Two problems exist in the example above. First, there is no
natural order in the rules, so it is hard for a person to order them
correctly. Second, it is even harder to foresee the possible
undesirable consequences of a new rule in most unlikely places.

The rules of MERGE are free from those problems. Most of the
“regular” patterns get caught by the automatically generated
features, so only rules for problematic cases are necessary. This
keeps the size of the rule-sets small and manageable. The order
of rules is not important, and undesirable consequences of rules
are impossible, since the bad rules are automatically rejected by
the Maximum Entropy learner.

3.4 MERGE Rule Definition
Defining specific rules is done via a simple pattern matching
language, with patterns working at the token level. A pattern
syntax is similar to the regular expressions syntax, but with tokens
instead of characters. Quantifiers *, +, ? are allowed, as well as
the grouping parentheses “(” “)”. The angular brackets “<>”
delimit the target entity. Features are generated for each token in
the delimited entity. The tokens are either specified directly, or
represented by token-classes of the form “[Boolean
expression]”.The expressions are simple token-attribute=value
checks, combined with logical operators & (and) | (or), and !
(not). The currently allowed token-attributes are:

• “cl” – character-contents of the token. Possible values
are Capital, Lower, Number, etc.

• “wc” – checks the appearance of the token in a list of
words. Value specifies the name of the list.

• "adj" – adjacency information with values True, False
and Start-Sentence.

• Token, Word, Stem – the exact character sequence
(token value), the lowercase token value, the stem of the
token.

Here is an example set of rules for catching some tricky
organizations:

Rule: Organization {
 // to catch: France's Org
: [wc=Country&cl=Capital] "'s" < [cl=Capital] >
 // to catch: Person of (the) Organization

: [cl=Capital] "of" "the"? < [cl=Capital]{1,3} >
 // to catch: company/firm/group called Xyz
: [wc=CompanyAlias] "called" < [cl=Capital]+ >
}
WordClass: Country { france turkey israel … }
WordClass: CompanyAlias { company firm group …
}

In our MUC-7 evaluation the list of published Word Classes are
used as feature functions themselves. Besides that, some intuitive
Word Classes are defined within the Rule-Development
framework described in Section 3.5, in order to use them as "wc"
feature for Rule Writing. As an example we had a Word Class
wc=WeekDay, including the words Sunday, Monday, etc. and it
is used in a Rule:

Rule: Date {
 : < ["next"|"last"] > [wc=WeekDay]
}
WordClass: WeekDay { sunday monday tuesday … }

The translation of Rules into a Feature Function is done by
checking the rule pattern at each token position. The above rule
for Date will be translated into feature function:

f = { 1 if current token is "next" or "last",
 and the next token is found in wc WeekDay ,
 and current Tag is Date,
 0 otherwise }

Fig. 1. Methodology for Adding Manual Rules

Training
Collection

2 1 N

i All j, 1≤j≤N
and j≠i

ME

Model

ME

Training

ME

Parameters

ME

Run

Extracted
Entities of
i

Manual
Rules

For keeping the value M constant for each pair (x,y), we defined
also this same feature function for all the other possible tags.
These definitions will not be necessary for a ME system with the
auxiliary feature function as described in section 2.1 or for ME
system that doesn’t use the Iterative Scaling for estimating the
parameters.

3.5 Methodology
The MERGE system can reach high-quality performance
autonomously. We want to further improve this performance by
adding rules for the more difficult cases, which are incorrectly
handled by the automatic processing. Thus, our process of rules
development has the following form:

Input: Manually-tagged document collection.
Step 1. Randomly divide the corpus into N parts.
Step 2. Take one of these parts as the Validation set, and the other
N-1 as the Training set.
Step 3. Train the initial MERGE Model.
Step 4. Run this model on the Validation set.
Step 5. Check the missed and incorrectly tagged entities in the
Validation set, and add intuitive rules for those tokens.
Step 6. Repeat Steps 3-5 until no further improvement is possible.
Step 7. Repeat Steps 2-5 with another part as the Validation set.
Step 8. Train the complete system on the whole Training data.
The most critical step is Step 5. In our experiments we
extensively used Perl scripts for investigating the mis-tagged
examples from the Validation data, in order to find appropriate
rules for fixing them. There are separate scripts for the Current,
Preceding and Succeeding contextual clues of the mis-tagged
entities.

3.6 Real Example of Rule Writing
We will demonstrate the process of the rule writing and an effect
of the rules with a real example.

First, we trained the system autonomously upon a subset of the
MUC-7 training set. The feature templates were allowed to test a
single token in a window of five (two previous tokens, the
current, and two following tokens). The allowed tests were the
exact token value (generic) and the character traits of the token
(capitalized, numerical, punctuation, etc.). After evaluation upon
a validation set we discovered many missing organizations of the
form:

secretary of defense
vice president of Avitas
president of the NFL

We defined a Word Class of "Position" and we added a rule to
deal with such cases:

Rule: Organization {
 : [wc=Position]+ "of" "the"? <>
}
WordClass: Position
{ secretary "vice president" president … }

The rule solved the problems. For comparison we tested several
models with much bigger number of feature templates that were
checking bigrams and trigrams in the preceding tokens. The

bigrams were insufficient, and only trigrams did succeed in
catching some of the errors. And one of the cases appears to
require at least a 4-gram. Yet, the trigrams and 4-grams are
infeasible because of the huge number of features they create,
most of which are just noise.

3.7 Rule to Feature Function Translation
A rule translates into a feature function as follows: Each line in
the rule definition is tested at every token position in the training
and test data. Tokens that matched i-th pattern in the rule
definition have their feature value set to i. Tokens that matched
no expression receive zero for the feature value.

For instance, the rule definition for finding Dates may look as
follows:

Rule: PossibleDate
{
 // Rule_Check_1
: < > [wc=NumberWord|cl=Number]
 ["days"|"weeks""months"|"years"|"decades"|"centuries"]
 ["later"|"before"|"earlier"]
 // Rule_Check_2
: < > ([wc=MonthAbbr&cl=Capital] ["."& adj=True]|
 [wc=MonthName&cl=Capital])
 wc=DayOfMonth "," cl=YearFour
 // Rule_Check_3
: < > wc=MonthNumber [adj=True&"-"]
 [adj=True& wc=DayOfMonth] [adj=True&"-"]
 [adj=True&[cl=YearTwo|cl=YearFour]]
}

The value of the feature PossibleDate will be equal to 1 for
tokens matching Rule_Check_1, such as “19 years later”, to 2 for
tokens matching Rule_Check_2, such as “Sept. 8, 1994”, to 3 for
tokens matching Rule_Check_3, such as “05-22-96”, and to 0 for
tokens that match neither of the expressions.

The value of the PossibleDate feature can subsequently be
incorporated into a Feature Template Definition, for example as
follows:

 FeatureTemplate: {
 Check: -1, Word
 Check: 0 , PossibleDate
 }

4. EXPERIMENTS

4.1 Evaluation on MUC-7
We made an evaluation of our methodology on MUC-7 data set.
The 100 Training documents were used for developing the
MERGE Model and the Test (Dry Run) documents were used for
evaluation of the system. Only the training documents were used
for discovering and writing rules, which was done according to
the iterative process described in section 3.5.

The initial simple model, working in an autonomous mode
(without manual rules) produced 84.9% f-measure, as shown in
Table 1.

Simple MERGE MERGE+Rules
 Rec. Pre. F. Rec. Pre. F.
Org. 79.4 87.8 83.4 83.9 90.9 87.2
Per. 86.7 89.9 88.3 90.6 93.4 92.0
Loc. 85.9 85.3 85.6 91.5 91.8 91.7
All 82.7 87.3 84.9 87.9 91.7 89.8

Table 1. MUC7: After training with 100 documents.

In comparison, the system with rules performed 5% f-measure
better. The rule development process took approximately 10 man-
hours, during which about 300 rules were added.

Besides the simple experiment of above data set we checked the
system performance also on the whole possible training data (350
documents). By adding some approximately 50 more rules the
overall performance reached to 93.5% as shown in Table 2, while
overlapping match results come up to 95.4%. (In overlapping-
match, a entity is considered correct if at least one word of it is
tagged correctly) The lower overall performance is due to the
entities of Date, Time, and Money which had slightly lower
results.

Exact Match OverlappingMatch
 Rec. Pre. F. Rec. Pre. F.
Org. 92.7 96.4 94.5 94.3 98.3 96.3
Per. 95.1 95.4 95.2 95.1 95.4 95.2
Loc. 92.3 98.4 95.2 92.9 99.0 95.9
All 91.2 95.9 93.5 93.0 97.8 95.4

Table 2. MUC7: After training with 350 documents.

We also compared our system to other successful models. We
run an implementation of Nymble ([9]) and the TEG system
([17]) on that same corpus, which produced the results shown on
Table.3. The results are slightly different from the previous ones,
since the Header-Footer parts of the documents are dropped to
make a fair comparison. MERGE can use any external
information like which section we are in, but not the HMM
system.

 HMM TEG Merge+Rules
Org. 87.8 90.9 93.6
Per. 80.5 91.8 93.7
Loc. 90.9 91.9 95.4
Avg. 86.4 91.5 94.2

Table 3. Comparetive Results for MUC-7 (without document
Headers-Footers).

4.2 Evaluation Using a Large Training
Dataset
We also evaluated the performance of MERGE on a large
industrial corpus. The collection consists of 1170 financial news
articles manually tagged with several categories. Altogether it

includes 800K tokens, and around 39000 manually tagged
Locations, Organizations and Persons.
The initial MERGE model included these feature function checks:
the token value checks in a window size of two previous and two
next tokens; character traits feature checks for previous, current
and next tokens; combinations of the token value check for the
current token and character traits checks for the previous and the
next tokens; the global information feature checking whether the
token was ever assigned a certain tag (as described in [7]); and a
set of external word lists, which were also used by the TEG
system and the DIAL rules.
The comparative results between HMM (Nymble), TEG, DIAL,
and our MERGE system are shown below:

 HMM TEG DIAL Merge
Merge
Rules

Loc. 81.8 92.8 93.6 90.4 93.7
Org. 78.9 86.7 84.1 90.1 90.2
Per. 80.7 87.8 94.2 92.6 92.8
Avg
. 80.5 89.1 90.6 91.0 92.2

Table 4. Comparetive Results on a Large Data-Set (F-Measure
with β=1.0)

As can be seen when using a large collection for training, the
MERGE's performance is fine even without any additional rules.
During rule development, another 36 rules were added, which
further improved the performance. Among these problematic
cases were the manual tagging errors in test data, inconsistent
labeling between train and test data, and all the hardly-to-find
cases.

5. DISCUSSION AND CONCLUSION
We presented a hybrid NER system, which by combining the
probabilistic machine learning with a set of manually written rules
developed in relatively very short time period, is able to get the
best of the two worlds. Our MERGE system gives better results
than both purely knowledge-based and purely-ME systems while
requiring only a limited amount of manual rule writing, necessary
to catch the patterns that are too complex for automatic learning.
The feature functions are generated by template definitions, where
the training data fills the necessary feature check slots. The
manually written rules are incorporated into those templates,
letting human heuristic be used together with the automatic
learning system.

6. REFERENCES
[1] Kushmerick, N.: Finite-state approaches to Web information

extraction. 3rd Summer Convention on Information
Extraction, Rome (2002)

[2] Freitag, D.: Using grammatical inference to improve
precision in information extraction. Workshop on
Grammatical Inference, Automata Induction, and Language
Acquisition (ICML'97), Nashville, TN (1997)

[3] Aitken, J. S.: Learning Information Extraction Rules: An
Inductive Logic Programming approach. 15th European
Conference on Artificial Intelligence. IOS Press. (2002)

[4] Freitag, D.: Information Extraction from HTML: Application
of a General Machine Learning Approach. AAAI/IAAI
(1998) 517-523

[5] Grieser G, et al: A Unifying Approach to HTML Wrapper
Representation and Learning. Discovery Science. 3rd
International Conference, Kyoto, Japan, Proceedings.
Springer, Berlin. (2000) 50-64

[6] Bikel, D. M., Schwartz, R., Weischedel, R. M.: An
Algorithm that Learns What's in a Name. Machine Learning.
(34): (1999) 211–231.

[7] Chieu, H. L., Tou Ng, H.: Named Entity Recognition: A
Maximum Entropy Approach Using Global Information.
Proceedings of the 17th International Conference on
Computational Linguistics (2002)

[8] McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy
Markov Models for Information Extraction and
Segmentation. Proceedings of the 17th International
Conference on Machine Learning. (2000)

[9] Bikel, D. M., Miller, S., Schwartz, R., Weischedel, R.:
Nymble: a high-performance learning name-finder.
Proceedings of ANLP-97. (1997) 194-201.

[10] Leek, T. R.: Information extraction using hidden markov
models. M.Sc.Thesis, UC San Diego. (1997)

[11] Freitag, D., McCallum, A.: Information Extraction with
HMM Structures Learned by Stochastic Optimization.
AAAI/IAAI. (2000) 584-589.

[12] Freitag, D., McCallum, A.: Information extraction with
HMMs and shrinkage. Proceedings of the AAAI-99
Workshop on Machine Learning for Information Extraction.
(1999)

[13] Sun, A., et al.: Using Support Vector Machine for Terrorism
Information Extraction. 1st NSF/NIJ Symposium on
Intelligence and Security Informatics. (2003)

[14] De Sitter, A., Daelemans, W.: Information Extraction via
Double Classification. International Workshop on Adaptive
Text Extraction and Mining. Dubrovnik. (2003)

[15] Kushmerick, N., Johnston, E., McGuinness, S.: Information
extraction by text classification. IJCAI-01 Workshop on
Adaptive Text Extraction and Mining. Seattle, WA. (2001)

[16] Lafferty, J., McCallum, A., Pereira, F.: Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data. Proc. 18th International Conf. on Machine
Learning. (2001)

[17] Rosenfeld, B., Feldman, R., Fresko, M., Schler, J., Aumann,
Y.: TEG - A Hybrid Approach to Information Extraction.
Proc. of the 13th ACM. (2004)

[18] Berger, A., della Pietra, S., della Pietra, V.: A maximum
entropy approach to natural language processing.
Computational Linguistics 22(1), (2004) 39-71.

[19] Darroch, J. N., Ratcliff., D.: Generalized iterative scaling for
log-linear models. Annals of Mathematical Statistics. 43(5):
(1972) 1470-1480.

[20] della Pietra, S., della Pietra, V., Lafferty, J.: Inducing
features of random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence (1997) 19(4):380-393

[21] Borthwick, A., Sterling, S., Agichtein, E., Grishman, R.:
Exploiting Diverse Knowledge Sources via Maximum
Entropy in Named Entity Recognition. In the proceedings of
the 6th Workshop on Very Large Corpora. (1998)

