
Quartet-Based Learning of Hierarchical Latent Class Models:
Discovery of Shallow Latent Variables

Tao Chen and Nevin L. Zhang
Department of Computer Science

The Hong Kong University of Science & Technology
Hong Kong, China

{csct,lzhang}@cs.ust.hk

Abstract

Hierarchical latent class (HLC) models are
tree-structured Bayesian networks where leaf
nodes are observed while internal nodes are
hidden. The currently most efficient al-
gorithm for learning HLC models can deal
with only a few dozen observed variables.
While this is sufficient for some applications,
more efficient algorithms are needed for do-
mains with, e.g., hundreds of observed vari-
ables. With this demand in mind, we ex-
plore quartet-based methods. The basic idea
comes from phylogenetic tree reconstruction:
One first learn submodels for quartets —
groups of four observed variables— and then
derive an overall model from those quartet
submodels. As the first step in the new di-
rection, this paper assumes that there is a
way to find the “true” submodel for any quar-
tet and investigate how to identify shallow
latent variables efficiently by using the mini-
mum number of quartet submodels. By shal-
low latent variables, we mean latent variables
that are connected to at least one observed
variable.

1 Introduction

Hierarchical latent class (HLC) models (Zhang 2004)
are tree-structured Bayesian networks where variables
at leaf nodes are observed and hence are called man-
ifest variables, while variables at internal nodes are
hidden and hence are called latent variables. In this
paper, we will use the terms “nodes” and “variables”
interchangeably. HLC models were first identified by
Pearl (1988) as a potentially useful class of models
and were first systematically studied by Zhang (2004)
as a framework to alleviate the disadvantages of LC
models for clustering. As a tool for cluster analysis,

HLC Models produce more meaningful clusters than
latent class models and they allow multi-way cluster-
ing at the same time. As a tool for probabilistic mod-
eling, they can model high-order interactions among
observed variables and help one to reveal interesting
latent structures behind data. They also facilitate un-
supervised profiling.

Several algorithms for learning HLC models have been
proposed. Among them, the heuristic single hill-
climbing (HSHC) algorithm developed by Zhang and
Kočka (2004) is by far the most efficient. HSHC
has been used to successfully analyze the CoIL Chal-
lenge 2000 data set (van der Putten and van Someren
2004), which consists of 42 manifest variables and
5,822 records, and a data set about traditional Chi-
nese medicine (TCM), which consists of 35 manifest
variables and 2,600 records.

There are infinitely many possible HLC models for a
given set of manifest variables. Zhang (2004) has ar-
gued that it suffices to consider what are called reg-
ular HLC models. The number of regular models for
a given set of manifest variables is finite. However, it
is super-exponential in the number of manifest vari-
ables. This makes it computationally challenging to
learn HLC models. HSHC took 98 hours to analyze
the aforementioned TCM data set on a top-end PC,
and 121 hours to analyze the CoIL Challenge 2000 data
set. It is clear that HSHC will not be able to analyze
data sets with hundreds of variables. As a matter of
fact, the TCM data set originally consists of some 70
variables. Only 35 were selected for analysis out of the
consideration of computational complexity.

Aimed at developing algorithms more efficient than
currently available, we explore quartet-based methods.
The basic idea is to: (1) construct submodels for some
quartets, and (2) make use of those quartet submodels
when inferring an overall model. The quartet submod-
els contain information about the overall model. For
example, if two manifest variables do not share a com-
mon latent parent in one quartet submodel, then they



should not share a common latent parent in the overall
model.

This paper is the first step in the new direction. A
latent variable in an HLC model is shallow if it is con-
nected to at least one manifest variable. We assume
that there is a way to find the true (with respect to
the generative model) submodel for any quartet and
study the following problem:

How to identify all the shallow latent vari-
ables by using the minimum number of quar-
tet submodels?

We show that the shallow latent variables can be iden-
tified in O(kn2) time using O(kn2) quartet submodels,
where n is the number of manifest variables and k is
the number of shallow latent variables.

HSHC can be used to construct quartet submodels.
There is no guarantee that HSHC can always find true
quartet submodels, especially when the sample size is
small. In future work, we will study the problem of
identifying shallow latent variables without assuming
the ability to always construct true quartet submodels;
and we will study the problem of discovering “deep”
latent variables.

2 Related work

Our work is related to work in two other research ar-
eas. The first is research on the latent variable graphs
(LVGs) (Spirtes et al. 2000). An LVG is a two-layered
Bayesian network where nodes on the upper level are
latent while those on the lower level are observed.
There are arcs among latent nodes, arcs among ob-
served nodes, and arcs from latent nodes to observed
nodes. But there are not any arcs from observed nodes
to latent nodes.

Linear LVGs (LLVGs) are LVGs where all the vari-
ables are continuous, and each observed variable de-
pends linearly on its parents via a regression equation.
Silva et al. (2003) studied the problem of identifying
the latent nodes of LLVGs. A two stage approach
is proposed. In the first stage, they start with the
complete graph over the observed nodes, and delete
edges from it based on Tetrad constraints (Spirtes et
al. 2000). In the second stage, they identify cliques in
the graph, and introduce a latent node for each clique.
The complexity of the first stage is O(n6), where n
is the number of observed variables, while that of the
second stage is exponential in the size of the largest
clique. To validate their approach, Silva et al. (2003)
conducted experiments that involve a few to about one
dozen observed variables.

H0

Y1Y0 Y2 Y4 Y5 Y6

H2

Y3

H1 Y1

Y0

Y2

Y4

Y5

Y6

H2

Y3

H1

H0

Figure 1: An example HLC model and the correspond-
ing unrooted HLC model. The Hi’s are latent variables
and the Yj ’s are manifest variables.

In comparison with work on LLVGs, phylogenetic tree
(PT) reconstruction is more closely related to our
work. The probabilistic models of phylogenetic trees
(Durbin et al. 1998) can be viewed as special HLC
models where (1) each latent node has exactly two
children; (2) all variables have four states, namely A,
C, G, and T; and (3) the conditional probability ta-
ble of each variable has only one parameter, i.e. edge
length.

The most prominent algorithm for PT reconstruction
is neighbor-joining(NJ) (Saitou and Nei 1987). It
stands out in terms of both efficiency and model qual-
ity (St. John et al. 2003). However, it cannot be
generalized to HLC models because it depends on a
concept of distance. The maximum-likelihood method
performs well in terms of model quality, but it does not
scale up well. The SEMPHY method by Friedman et
al. (2002) partially alleviates the problem using the
idea of structural EM. HSHC can be viewed as the
counter-part of SEMPHY for HLC models. Quartet-
based methods are another class of methods proposed
to address the scalability of the maximum-likelihood
method. They assume that all O(n4) quartet submod-
els have been precomputed and aim at finding the over-
all tree that matches the structures of the most number
of submodels.

Quartet-based methods for PT reconstruction cannot
be used for learning HLC models without modification.
There are two reasons. First, when there are hundreds
of variables, it is computationally expensive to learn all
O(n4) submodels. Second, we need to take into con-
sideration the effect of “erroneous” quartet submodels,
i.e., submodels learned while inconsistent with the true
overall model. These are two major research issues in
developing quartet-based methods for HLC models. In
current stage we assume that all submodels learned are
true and then focus on the first issue.

3 HLC Models and Problem
Statement

Figure 1 shows an example HLC model (left diagram).
Zhang (2004) has argued that it is impossible to de-



(a) (b)

X Y W Z

(c) (d)

X Y ZW

X W ZY X Z YW

Figure 2: Four possible regular HLC structures for
the case of four manifest variables. The fork in (a) is
denoted by [XY WZ], the dogbones in (b), (c), and (d)
respectively by [XY |WZ], [XW |Y Z], and [XZ|WY ].

termine, from data, the orientations of edges in an
HLC model. One can learn only unrooted HLC mod-
els, which are HLC models with all directions on the
edges dropped. 1 The picture on the right hand side of
Figure 1 shows an example unrooted HLC model. An
unrooted HLC model represents a class of HLC mod-
els. Members of the class are obtained by rooting the
model at various nodes. Semantically it is a Markov
random field on an undirected tree. The leaf nodes
are observed while the interior nodes are latent. From
now on when we speak of HLC models we always mean
unrooted HLC models unless it is explicitly stated oth-
erwise.

In this paper, we will use the term HLC structure to
refer to the set of nodes in an HLC model and the con-
nections among them. An HLC structure is regular if
it does not contain latent nodes of degree 2. Starting
from an irregular HLC structure, we can obtain a reg-
ular structure by connecting the two neighbors of each
latent node of degree 2 and then remove that node.
This process is known as regularization.

Let Y the set of manifest variables of an
HLC model/structure. Then we say that the
model/structure is a model/structure on Y. There are
four possible regular HLC structures on a set of four
manifest variables {X, Y, W,Z}. The structure shown
in Figure 2.(a) is a fork, which contains only one latent
node. The structures shown in Figure 2.(b),(c) and (d)
are dogbones, which consist of two latent nodes.

Now let S be a general regular HLC structure and let
Q={X, Y,W,Z} be a set of four manifest variables in

1We nonetheless still begin with HLC models because
they are easier to understand for some readers and edge
orientation can sometimes be decided through model in-
terpretation.

S. We will refer to Q as an quartet. The restriction of
S on Q is obtained from S by deleting all the nodes
and edges not in the shortest paths between any pair of
variables in Q. Applying regularization to the result-
ing HLC structure, we obtain the quartet sub-structure
for Q, which will be denoted by S|Q. It is clear that
S|Q is a regular HLC structure on Q. Hence it is either
the fork [XY WZ], or one of the doghones [XY |WZ],
[XW |Y Z], and [XZ|WY ].

Consider the HLC structure in Figure 1 (right). The
quartet sub-structure for {Y0, Y1, Y2, Y3} is the fork
[Y0Y1Y2Y3], while that for {Y0, Y1, Y3, Y4} is the dog-
bone [Y0Y1|Y3Y4], and that for {Y0, Y3, Y4, Y5} is the
dogbone [Y0Y3|Y4Y5].

In an HLC model/structure, a shallow latent node is
one that is adjacent to at least one manifest node. Two
manifest nodes are siblings if they are adjacent to the
same (shallow) latent node. All manifest nodes adja-
cent to a given shallow latent node constitute a sibling
cluster. In the HLC structure shown on the right of
Figure 1, there are 3 shallow latent variables H0, H1,
and H2, and there are 3 sibling clusters, namely {Y3},
{Y0, Y1, Y2}, and {Y4, Y5, Y6}.
Let M be an HLC model with a regular structure S.
Suppose that D is a collection of i.i.d samples drawn
from M. Each record in D contains values for the
manifest variables, but not for the latent variables.
Let QML(D,Q) be a routine that takes data D and a
quartet Q as inputs, and returns an HLC structure on
the quartet Q.2 In this paper, we make the following
assumption that relates QML to S:

Assumption 1 For any quartet Q, QML(D,Q) re-
turns the quartet sub-structure S|Q.

In other words, we assume that QML always finds true
quartet sub-structures.

Under Assumption 1, we investigate how to identify
all the shallow latent nodes in S using QML. A shal-
low latent node is defined by its relationship with its
manifest neighbors. Hence to identify all the shallow
latent nodes means to identify all the sibling clusters
in S. We present an algorithm for identifying the sib-
ling clusters in S that calls the routine QML O(kn2)
times, where k is the number of shallow latent nodes
and n is the number of manifest variables.

4 Technical Preparations

Let S be a regular HLC structure. In this section, we
prove several results on the relationships among sib-

2QML stands for Quartet Model Learner. One would
expect a quartet model learner to return a model. In this
paper, we use only the structure of the model.



ling clusters in S, quartet sub-structures of S, and
topological properties of S itself. First of all, this
lemma follows readily from the definition of quartet
sub-structures.

Lemma 1 Let Q={X, Y, W,Z} be a quartet in a reg-
ular HLC structure S.

1. The quartet sub-structure S|Q is the dogbone
[XY |WZ] if and only if, in S, the shortest path
joining X and Y is disjoint from that joining W
and Z.

2. The quartet sub-structure S|Q is the fork
[XY WZ] if and only if, in S, all the shortest paths
joining pairs of nodes in Q intersect at one com-
mon latent node. ¤

This proposition relates sibling clusters to quartet sub-
structures.

Proposition 1 Let Q={X, Y,W,Z} be a quartet in a
regular HLC structure S. If the quartet sub-structure
S|Q is the dogbone [XY |WZ], then X/Y cannot be
from the same sibling cluster as W/Z.

Proof: We know from Lemma 1 (1) that the shortest
path joining X and Y is disjoint from the path joining
W and Z. This implies that the latent neighbor of
X/Y is different from that of W/Z, and hence they
cannot be in the same sibling cluster. ¤
Let e be an edge in an HLC structure S. To split S
at edge e means to remove the edge. This renders the
structure disconnected and results in two connected
components. So, the structure S is split at e into the
two connected components.

In an HLC structure, an internal edge is one that con-
nects two latent nodes. This lemma follows readily
from the definition of regularity.

Lemma 2 Consider splitting an HLC structure S at
an edge e. If S is regular and e is an internal edge,
then each of the two resultant connected components
contain at least 2 manifest nodes. ¤

This proposition relates quartet sub-structures to
split.

Proposition 2 Suppose we have split a regular HLC
structure S at an internal edge into two connected
component S1 and S2. Let X and Y be two manifest
nodes from S1, while W and Z be two manifest nodes
from S2. Then the quartet sub-structure S|Q for the
quartet Q={X, Y,W,Z} is the dogbone [XY |WZ].

Proof: S1 is a connected tree. Hence there must be
at least one path within S1 that joins X and Y . Let

P1 be the shortest among all such paths. Then P1

must also be the shortest path in S that joins X and
Y . In other words, the shortest path in S that joins
X and Y lies within S1. Similarly, the shortest path
in S that joins W and Z lies within S2. Those two
shortest paths are obviously disjoint from each other.
The proposition therefore follows from Lemma 1 (1).
¤

5 Discovering Shallow Latent
Variables: The Principle

In order to compute the sibling cluster that contains a
given manifest node X, we need to answer this ques-
tion for each of the other manifest nodes Z: Which
quartet sub-structures do we need in order to deter-
mine whether Z is a sibling of X? The following the-
orem provides one answer.

Theorem 1 Suppose X, W , and Z be three different
manifest nodes in a regular HLC structure S. Then
X is not a sibling of W/Z if and only if there exists
another manifest node Y such that

1. The quartet sub-structure S|Q for the quartet
Q={X, Y,W,Z} is a dogbone, and

2. X is not a sibling of W/Z in the dogbone.

Proof: We will prove the theorem only for Z. If it is
true for Z, then it is also true for W by symmetry.

The if-part is true because of Proposition 1.

To prove the only-if part, consider the shortest path
joining X and Z in S. Because X and Z are not sib-
lings, the path must contain at least two latent nodes,
and hence an internal edge. Let e be an internal edge
on the path. Split S at e into two connected compo-
nents S1 and S2. Without losing generality, suppose
X is in S1 and Z is in S2, and suppose W is in S2.
According to Lemma 2, there are at least two mani-
fest nodes S1. Let Y be a manifest node in S1 other
than X. By Proposition 2, we know the quartet sub-
structure S|Q for the quartet Q={X, Y, W,Z} is the
dogbone [XY |WZ]. In this dogbone, X and Z are not
siblings. The theorem is therefore proved. ¤

6 Discovering Shallow Latent
Variables: The Algorithm

Assumption 1 states that we can obtain, from the data
set D, quartet sub-structures of the generative model
M using the routine QML. Theorem 1 tells us which
quartet sub-structures we need in order to find all the
siblings of a manifest node X of M. Putting these two



Procedure FindSC(D):

1. Let Y be the set of variables in D.
2. Let L ← ∅. Pick X ∈ Y.
3. Loop for ever,
4. C ← FindOneSC(X,∪L,Y,D).
5. L ← L ∪ {C}.
6. if Y \ (∪L) 6=∅, pick X ∈ Y \ (∪L).
7. else return L.

Procedure FindOneSC(X,N,Y,D):

1. Pick W ∈ Y\{X}, i ← 1.
2. For each Z ∈ Y\{X,W},
3. if Z ∈ N, continue.
4. For each Y ∈ Y\{X, W,Z},
5. if QML(D, {X, Y,W,Z}) = [XW |Y Z],
6. N ← N ∪ {Y,Z},
7. if (i > 1) break.
8. else if QML(D, {X, Y, W,Z}) = [XY |WZ],
9. N ← N ∪ {W,Z}, break.
10. else if QML(D, {X, Y, W,Z}) = [XZ|WY ],
11. N ← N ∪ {W,Y }. EndFor
12. i ← i + 1. EndFor
13. Return Y \N.

Figure 3: D is an i.i.d data set sampled from an HLC
model M that has a regular structure. Under As-
sumption 1, the Algorithm FindSC finds all the sibling
clusters in M.

together, we get an algorithm, named FindOneSC and
shown in Figure 3, for computing the sibling cluster in
M that contains X.

In addition to the manifest variable X, the algorithm
has three other inputs: D is the data set, Y is the set
of variables in D, or equivalently the set of manifest
variables in M. N is a set of manifest nodes known
not to be siblings of X. It is empty when FindOneSC
is called for the first time (from FindSC).

The algorithm checks many quartets. The variable
X appears in all of them. In other words, X is a
“standing member” of all quartets. At Line 1, another
standing member W is picked. So, all the quartets will
have two standing members, X and W .

There are two for-loops. In the outer for-loop, the
algorithm examines each manifest node Z one by one
and determines whether it is a sibling of X. To do so,
it first checks whether Z is already known not to be a
sibling of X (Line 3). If this is the case, it skips the
rest of the for-loop and moves on to the next manifest
node.

Otherwise, it considers, in the inner for-loop, each
quartet that consists of X, W , Z, and a fourth man-

ifest node Y . It computes the sub-structure for the
quartet using the routine QML. If the quartet sub-
structure is a dogbone and X and Z are not siblings
of the dogbone, then, by Assumption 1 and Theorem
1, Z is not a sibling of X in M and is hence added to
the set N (Lines 6, 9).

If the quartet sub-structure turns out to be the dog-
bone [XW |Y Z], we know not only that Z is not a
sibling of X, but also that Y is not a sibling of X. For
this reason, Y is also added to N at Line 6. For the
same reason, W is added to N at Line 9 and both W
and Y are added to N at Line 11.

There is the question of whether W is a sibling of X.
To determine this, we let the inner for-loop continue,
for the first Z examined, even after we already learn
that Z is not a sibling of X (Line 7). According to
Theorem 1, if W is not a sibling of X, either the con-
dition at Line 8 or that at Line 10 will be eventually
satisfied, and hence W will be eventually added to N.

After the outer for-loop, N contains all non-siblings of
X. Hence Y\N contains X and all its siblings. It is
the sibling cluster that contains X.

Note that FindOneSC uses only dogbones. It does not
uses forks at all.

The procedure FindSC(D) shown at the top of Fig-
ure 3 returns the list of all the sibling clusters of M.
To begin with, it arbitrarily pick a variable X (Line
2), and computes the sibling cluster that contains X
by calling FindOneSC (Line 4). Then it picks another
variable X outside the cluster (Line 6) and repeats
the process, and so on. It terminates when there are
no nodes outside the clusters that have already been
identified (Lines 6, 7).

In the algorithm, L stands for the list of clusters,
and ∪L is the union of all the clusters in L. When
FindOneSC is first called, its second argument ∪L is
the empty set, indicating that we do not yet know any
non-siblings of X. In subsequent calls, however, ∪L
is no longer empty. It consists of all nodes in all the
clusters that have already been identified. Since X
is outside of those clusters, all nodes in ∪L are non-
siblings of X.

Putting all the arguments presented above together,
we have proved the following theorem:

Theorem 2 Let M be an HLC model with a regular
structure. Suppose that D is a collection of i.i.d sam-
ples drawn from M. Let QML(D,Q) be a routine that
takes the data D and a quartet Q as inputs, and re-
turns an HLC structure on the quartet Q. If QML sat-
isfies Assumption 1, then FindSC(D) returns the list
of all sibling clusters in M. ¤



Let n and k be the numbers of manifest nodes and
sibling clusters respectively. It is clear that the number
of calls that FindOneSC makes to QML is no more than
(n−2)(n−3).3 In practice, the number could be much
lower because of Lines 3, 7, and 9. The total number
of calls that FindSC makes to QML is no more than
k(n− 2)(n− 3), which simplifies to O(kn2).

7 An Example

We next illustrate the algorithm FindSC using the
HLC model shown on the right hand side of Figure
1.

Suppose Y0 is first picked to be X at Line 2 of FindSC
and hence FindOneSC is invoked at Line 4 to com-
pute the sibling cluster that contains Y0. Within
FindOneSC, suppose Y1 is picked to be W at Line 1.

• The outer for-loop first determines whether Y2 is
a sibling of Y0. To do so, it computes, using QML,
the quartet substructures for quartets of the form
{Y0, Y1, Y2, Y }, where Y runs from Y3 to Y6. It
turns out that all those quartet substructures are
forks. Hence nothing is added to the set N.

• The outer for-loop then determines whether Y3

is a sibling of Y0. To do so, it computes the
quartet substructures for quartets of the form
{Y0, Y1, Y3, Y }, where Y runs from Y2, Y4, Y5, to
Y6. It turns out that the quartet substructure for
{Y0, Y1, Y3, Y4} is the dogbone [Y0Y1|Y3Y4]. Hence
Y3 is not a sibling of Y0, and is added to the set
N. As a by-product, we also know that Y4 is not
a sibling of Y0, and it is also added to N. Note
that in the case, Y5 and Y6 are not examined in
the inner for-loop.

• The outer for-loop continues to determine
whether Y5 and Y6 are siblings of Y0. It turns
out that those nodes are not siblings of Y0, and
hence are added to the set N.

• Finally, FindOneSC returns the set of nodes not
in N = {Y3, Y4, Y5, Y6}. Hence, what it returns
is {Y0, Y1, Y2}, which is indeed the sibling clusters
that contains Y0.

The control is then passed back to FindSC. Suppose Y3

is picked to be X at Line 6. Then FindOneSC is called
at Line 4 to compute the sibling cluster that contains
Y3. Note that the second argument now is {Y0, Y1, Y2}

3For readability, we have QML at Lines 5, 8, and 10.
This does not mean QML is called three times in each pass
through the inner for-loop. In actual implementation, one
needs to call it only once. There are three cases depends
on the type of the structure that it returns.

instead of the empty set. Within FindOneSC, the ini-
tial value of N is {Y0, Y1, Y2}. Suppose Y4 is picked to
be W at Line 1.

• The outer for-loop first examines Y0, Y1, and Y2.
Since those nodes are in N already, nothing is
done.

• The outer for-loop then determines whether Y5

is a sibling of Y3. To do so, it computes the
quartet substructures for quartets of the form
{Y3, Y4, Y5, Y }, where Y runs from Y0, Y1, Y2, to
Y6.

• The quartet substructure for {Y3, Y4, Y5, Y0} is the
dogbone [Y0Y3|Y4Y5]. Hence Y5 is not a sibling of
Y3, and is added to the set N. As a by-product,
we also know that Y4 is not a sibling of Y3, and it
is also added to N. Note that in the case, Y1, Y2,
and Y6 are not examined in the inner for-loop.

• The outer for-loop continues to determine
whether Y6 are siblings of Y3. It turns out that
this node is not a sibling of Y3, and hence is added
to the set N.

• Finally, FindOneSC returns the set of nodes not
in N = {Y0, Y1, Y2, Y4, Y5, Y6}. Hence, what it
returns is {Y3}, which is indeed the sibling clusters
that contains Y3.

We leave it to the reader to complete the rest of this
example.

8 Conclusions

How to learn HLC models efficiently is an interesting
research problem. We are investigating quartet-based
approaches. This paper reports our first result in this
new direction. We assume that there is a routine that
can correctly learn the structures of the quartet sub-
models of the generative model, and we show how the
shallow latent nodes of the generative model can be
identified by calling the routine O(kn2) times. In the
immediate future, we will relax the assumption, and
will study how to discover “deep” latent nodes.

Acknowledgements

Research on this work was supported by Hong Kong
Grants Council Grant #622105. We thank Haipeng
Guo and Yi Wang for valuable discussions.

References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison,
G. (1998). Biological sequence analysis: proba-



bilistic models of proteins and nucleic acids. Cam-
bridge University Press.

[2] Friedman, N., Ninio, M., Pe’er, I., and Pupko,
T. (2002).A structural EM algorithm for phylo-
genetic inference. Journal of Computational Biol-
ogy, 9:331-353.

[3] Pearl, J.(1988). Probabilistic Reasoning in Intel-
ligent Systems: Netwroks of Plausible Inference.
Morgan Kaufmann Publishers, Palp Alto.

[4] Saitou, N. and Nei, M.(1987). The neighbor-
joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolu-
tion. 4: 406-425.

[5] Silva, R., Scheines, R., Glymour, C. and Spirtes,
P.(2003). Learning measurement models for un-
observed variables. In Proceedings of the 19th An-
nual Conference on Uncertainty in Artificial In-
telligence (UAI-03).

[6] Spirtes, P., Glymour, C. and Scheines, R.(2000).
Causation, Prediction and Search. Cambridge
University Press.

[7] St. John, K., Warnow, T., Moret, B.M.E. and
Vawter, L.(2003) Performance study of phylo-
genetic methods: (unweighted) quartet meth-
ods and neighbor-joining. Journal of Algorithms
48(1): 173-193.

[8] van der Putten, P. and van Someren, M. (2004).
A Bias-Variance Analysis of a Real World Learn-
ing Problem: The CoIL Challenge 2000. Machine
Learning, Kluwer Academic Publishers, 57, 177-
195.

[9] Zhang, N.L.(2004). Hierarchical latent class mod-
els for cluster analysis. Journal of Machine Learn-
ing Research. 5, 697-723.

[10] Zhang, N.L. and Kočka, T. (2004). Efficient learn-
ing of hierarchical latent class models. In Proc. of
the 16th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI-2004).


