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Abstract. This comparative study examines the impact of backbone guided heuristics on the per-
formance of dynamic local search methods. We study alternatives to the backbone membership
estimation problem, discuss how our proposed estimation phase addresses it, and discuss how this
information is integrated in the host methods. Backbone guidance results in significantly faster dy-
namic local search on the large problems tested, but it is of questionable use for small problem
domains where the cost of backbone estimation alone represents a significant part of the total search
cost.

1 Introduction

The propositional satisfiability (SAT) problem is of significant interest to the artificial intelligence com-
munity because many interesting AI application domains can be formulated in this way. A SAT problem
consists of finding an assignment for the Boolean variables in a propositional formula that makes the
formula true.

Stochastic local search methods [1] are amongst the most successful approaches to solving SAT prob-
lems. Since the introduction of GSAT [2], the development of efficient local search methods for SAT has
been an active area of research. However, GSAT’s major drawback was its inability to escape from local
minima, and the introduction of clause weighting methods started to address this problem. In its purest
form [3], clause weighting mechanisms work by assigning weights to every clause in the SAT problem and
by incrementing the weights of false clauses every time the search reaches a local minimum. Different
implementations vary in the way clause weights are incremented. Some methods use integer arithmetic,
whereas others use floating point arithmetic, and hence are commonly termed additive and multiplicative
clause weighting local search methods, respectively [4].

More importantly, these methods need to effect clause weight decrements (or rescaling) in order to
keep the clause weight profile relevant to the current search context. This problem can be seen as trying
to maintain an optimal balance between long- and short-term clause weight memory [5]. It is now widely
accepted that the degree of a method’s ability to handle this problem is positively correlated with its ability
to efficiently solve hard SAT problems. The body of work pertaining to clause weighting local search is
termed dynamic local search (DLS), and its methods are amongst the best for solving hard SAT from
a range of domains [1, 6–9]. The DLS method of particular relevance to this study is the pure additive
weighting scheme (PAWS) [4], as well as three of its most successful variants [10–12]. Figure 1 shows
PAWS’s pseudo-code.

PAWS has two parameters: Pflat (line 13) and WDP (line 17). The former controls the probability
of taking an equal-cost flip that leaves the weighted cost of the solution unchanged, while the latter
determines the number of weight increases (line 16) allowed before a weight decrease takes place (lines
17-18). In practice only WDP has its value set on a problem-per-problem basis, whereas a Pflat setting
of 0.15 works well for most domains [4].

The backbone of a SAT problem consists of those variables for which logical values cannot vary from
solution to solution [13]. Hence, if the backbone is known, its variables can have their values fixed, leading
to a reduction in the search space. Unfortunately, computing the backbone involves solution enumeration,
making it impractical for all but the smallest problem instances. An alternative is to estimate backbone
membership by sampling variable assignments in near-optimal solutions. Recently, positive results and



Fig. 1. PAWS.

further insights have been obtained from using local search with backbone estimation heuristics for the
maximum satisfiability (MAX-SAT)1 and travelling salesperson problem (TSP) domains [14, 15].

To our knowledge, no studies have yet investigated backbone guidance in the context of DLS for SAT,
despite recent positive results indicating the usefulness of backbone guided search [15–18], and despite the
superior performance of DLS methods on large and hard SAT problems. Our work represents a contribution
to addressing this void. In the subsequent sections, we examine related work, discuss the implementation
details pertaining to our approach, analyse and discuss the results from our empirical evaluation, and
present our conclusive remarks.

2 Related Work

Zhang et al. [14] introduced a backbone guided implementation of Walksat [19]. BGWalksat splits K

tries into two phases: (a) an estimation phase of length K1 tries (each starting from a distinct randomly
generated initial assignment) used to collect local minima and to estimate the backbone, and (b) an actual
search phase of length K − K1 tries that uses the collected backbone information to guide the otherwise
random Walksat choices.

Walksat makes five random choices. The first is the randomly generated initial assignment of values
to literals. BGWalksat considers replacing this with a heuristic backbone sampling (HBS): the higher a
literal’s pseudo-backbone frequency, the higher its probability of being selected into the initial assignment.
Our approach uses HBS.

Walksat’s second random choice is the selection of a false clause. BGWalksat considers collecting and
using pseudo-backbone clause frequencies (PBCF) to replace this random decision. PBCF measure the
frequencies that clauses are satisfied in all local minima. If this feature is used, then a false clause with
higher frequency is selected with a higher probability. We note that because typical local minima have
a small number of false clauses and a relatively much greater number of true clauses, it would be more
efficient for PBCF to measure the frequencies that clauses are unsatisfied and then reverse the decision
process. Our approach does not use PBCF, and so we do not discuss this feature further.

1 When not all clause are satisfiable, SAT becomes MAX-SAT, an optimisation problem where the goal is to
maximise the number of satisfied clauses.



The final three possible random decisions relate to the selection of a variable from the false clause
previously picked. Walksat can perform a freebie, a greedy or a noise pick, as seen in Figure 2.

Fig. 2. The main loop of the Walksat procedure [20].

Rather than randomly picking a variable, BGWalksat introduces a bias based on the variables’ pseudo-
backbone frequency estimation (PBFE). It works as follows: consider Walksat selected a false clause C

with literals a, ¬b, and c with PBFEs 0.2, 0.3, and 0.5, respectively. The backbone bias is introduced by
selecting a, ¬b, and c with probabilities p(a) = 0.8/(0.8 + 0.7 + 0.5), p(¬b) = 0.7/2.0, and p(c) = 0.5/2.0.
This is because literal ¬a has a higher frequency (0.8) than either b (0.7) or ¬c (0.5). In other words, it
estimates that ¬a appears more often in the backbone than either b or ¬c, and so it biases the decision
towards flipping a.

Run-time efficiency depends on obtaining accurate PBFEs, and on deciding when to use the backbone
bias instead of Walksat’s random choices. Whilst both of these factors are of relevance to BGWalksat,
a discussion of the former is of greater relevance to our work, whereas the latter is only relevant to
BGWalksat, and space limitations preclude us from discussing it further. Obtaining accurate PBFEs is
also crucial to the performance of other backbone guided methods [15, 16].

BGWalksat’s authors considered two PBFE schemes, namely average counting (AC), and cost reciprocal
average counting (CRAC). AC considers samples from all local minima S, and takes the frequency of
a variable-value pair l = (xi, vi) that appears in S as its pseudo-backbone frequency, i.e., pbfe(l) =∑

∀si∈S,l∈si
1/ |S|. All local minima sampled are considered to be of the same quality. CRAC also samples

from all local minima S encountered, but discounts the contribution of a local minima si based on its
cost ci, i.e., the pseudo-backbone frequency of a variable-value pair l = (xi, vi) is computed as pbfe(l) =
(
∑

∀si∈S,l∈si
1/ci)/(

∑
∀si∈S 1/ci). Our approach uses CRAC.

For BGWalksat, the best PBFE scheme is relative to the target problem domain. PBFE efficiency also
relies on: (a) the choice of local minima to sample and how to account for minima of different costs, and
(b) the number of sampling tries. We explore these two issues in our implementations of backbone guided
dynamic local search discussed next.

3 Backbone Guided Dynamic Local Search

Our approach runs in two phases. The estimation phase runs the host DLS method to collect PBFE data.
The execution phase runs the host method using the collected PBFEs for breaking ties amongst equally
ranked candidate flips.

For the estimation phase, we empirically tested a number of PBFE schemes, including BGWalksat’s
AC and CRAC (the best performing scheme in our experiments), as well as a CRAC variant that considers
a local minimum’s contribution to the PBFE to be directly proportional to its cost. This variant was only
marginally worse than CRAC. We have therefore elected to use CRAC, i.e., the pseudo-backbone frequency
of a variable-value pair l = (xi, vi) is computed as pbfe(l) = (

∑
∀si∈S,l∈si

1/ci)/(
∑

∀si∈S 1/ci). The cost ci

is the number of false clauses in si. We considered 1, 10 and 100 learning tries (lt), each starting from a



unique randomly generated initial assignment. The purpose of multiple learning tries is to reduce the bias
in the estimation procedure. Learning tries never find a solution due to the introduction of a learning depth
threshold (ldt): the try is halted when the number of false clauses reaches the ldt. We have experimented
with settings of 4, 8, 16, and 32, and set a learning try’s cutoff to 1 million flips.

For the execution phase, we applied our approach to PAWS’s most recent and successful extensions:
resPAWS [10], and mvPAWS [11], calling the resulting methods BGresPAWS, and BGmvPAWS, respec-
tively. Backbone guidance was achieved using insights gained from our recent positive results on the
usefulness of tie breaking in additive DLS methods [12], and so BGresPAWS and BGmvPAWS use PBFE
information to break ties amongst equally ranked candidate flips. Both BGresPAWS and BGmvPAWS use
PAWS’s standard flip selection strategy (see Figure 1). If more than one candidate flip is available, i.e.,
|L| > 1, the tie is broken using BGWalksat’s formula (see Section 2), with the members of L in PAWS
corresponding to the literals in the false clause selected by BGWalksat. We do not update PBFEs during
execution time. All of our experiments were performed on a Sun cluster with 8 Sun Fire V880 servers, each
with 8 UltraSPARC-III 900 MHz CPU and 8 GB memory per node. The cutoff for the execution phase was
set to 50 million flips (250 million for the bqwh problems). As a key motivation for developing incomplete
local search methods is to solve problems beyond the reach of complete solvers, we include results for
three prominent complete solvers: Satz215.22, zChaff 2004.11.153, and MiniSat-C v1.144. Cut-off time for
complete solvers in all experiments was set to 4 hours.

The resPAWS method [10] adds Satz’s resolution procedure (adding resolvent clauses of length ≤ 3)
[21] as a preprocessing step to PAWS, Walksat [19], AdaptNovelty+ [22], and RSAPS [9]. However, it is
well documented [23] that neither Walksat nor RSAPS can match PAWS’s performance on large instances,
and AdaptNovelty+ is not DLS, and so we chose not to include these methods in our empirical study.
The most notable improvements observed for resPAWS were on a set of ten quasigroup existence (qge)
problems [24]. For these problems (qg1-07, qg1-08, qg2-07, qg2-08, qg3-08, qg4-09, qg5-11, qg6-09, qg7-09,
qg7-13), the addition of resolvent clauses allowed for the truth values of up to half of the variables to
be determined, and for up to approximately 90% of the original clauses to be deleted from the formula,
resulting in significant run-time performance gains for resPAWS even when considering the additional
preprocessing time. Results for the performance of complete solvers on these qge problems were not given
in [10].

However, the level of gain obtained by resPAWS on the qge problems did not map to real-world domains
such as parity learning, blocks world and logistics (available from www.satlib.org), possibly due to the fact
that resolution fails to achieve the same reductions in instance size observed for the qge instances [10].
Additionally, the results from our experiments, shown in Table 1, indicate that all three complete solvers
find solutions in less than 4 seconds on average with 100% success while resPAWS takes more than 50
seconds on average and performs sub-optimally w.r.t. success ratio, highlighting the absolute superiority
of complete solvers in the qge problem domain.

Time (secs) Success Time (secs) Success Time (secs) Success Time (secs) Success
mean median % mean median % mean median % mean median %

lt 1 lt 10 lt 100
ldt 4 44.44 0.23 96.40 106.04 1.36 93.33 210.18 9.03 80.00 resPAWS 51.92 0.10 94.8
ldt 8 44.26 0.16 96.80 70.86 0.78 96.80 143.18 6.12 92.00 Satz 3.29 0.23 100.0

ldt 16 36.01 0.15 97.60 60.73 0.42 97.60 87.72 1.21 91.00 zChaff 3.64 0.04 100.0
ldt 32 41.16 0.13 97.20 67.22 0.28 96.40 98.63 0.80 91.00 MiniSat 3.78 0.06 100.0

Table 1. Run-time data obtained from 250 runs (25 per problem) showing the effect of different lt and ldt settings on
BGresPAWS’s performance on ten quasigroup existence problems. The results for BGresPAWS include estimation
phase times. PAWS’s clause weight decrement parameter was set to 4. These results also illustrate the superior
performance of complete solvers in the qge problem domain.

2 http://www.laria.u-picardie.fr/ cli/englishpage.html
3 http://www.princeton.edu/ chaff/zchaff.html
4 http://www.cs.chalmers.se/cs/research/formalmethods/minisat/minisat.html



We compared the performance of resPAWS and BGresPAWS on these problems and found that BGres-
PAWS’s best performance is obtained when using one learning try (lt 1) and a ldt setting of 16. With these
settings, BGresPAWS has better mean run-time performance, but compares negatively against resPAWS
when we consider the median run-times. The explanation for this relates to the disparate problem hardness
in this set: eight out of ten problems are solved by resPAWS with 100% success under five seconds, with
the remaining two problems, qg2-08, and qg7-13, being significantly more challenging. Put simply, the
additional computational time resulting from BGresPAWS’s estimation phase is not justifiable for trivial
problems that can be solved within fractions of a second, as is the case with most problems in this set.
Conversely, backbone guidance results in significant performance gains as problems become harder. To
illustrate this point, a comparison between resPAWS and BGresPAWS on the two hardest problems is
shown in Table 2, indicating the superiority of the backbone guided method both in terms of run-time and
success probability.

Time (secs) Success Time (secs) Success
mean median % mean median %

qg2-08 qg7-13
resPAWS 188.54 29.80 68.00 323.44 218.47 80.00

BGresPAWS 135.57 25.02 84.00 213.98 124.60 92.00

Table 2. Run-time data for the hard qge problems obtained from 25 runs. The results for BGresPAWS (lt 1 and
ldt 16) include estimation phase times.

Although both resolution and PBFE are preprocessing techniques, backbone guidance provides the
advantage of being more generally applicable. For some problems, resolution can actually increase problem
size without bringing any simplification [10]. In other cases, resolution results in no changes to the formula
under consideration, as was the case with the balanced quasigroup with holes problems used in our next
experiment. In summary, we see these first results as promising given that BGresPAWS outperforms
resPAWS on the harder problems, although we also highlight the need for carefully considering the trade
off between performance gains and additional run-time resulting from the backbone estimation phase.

Our second experiment applied backbone guidance to another recent PAWS variant. The mvPAWS
method uses a feature extraction mechanism that recovers and exploits variable and constraint structure
hidden in the SAT encoded formulation of certain problems. In doing so, the method allows for significant
improvements in solution times on a series of well-known benchmarks [11]. The balanced quasigroup with
holes (bqwh) problems are amongst the best benchmarks for testing incomplete and complete solvers. We
generated three sets of orders 30, 33, and 36 from the suggested (number of holes/N 1.55 = 1.7) hardness
region, and encoded these into SAT using the 3-D encoding method [25]5.

Time Success Time Success Time Success Time Success
(secs) % (secs) % (secs) % (secs) %

order 30

lt 1 lt 10 lt 100
ldt 4 2.70 98.4 10.09 100.0 93.12 100.0 mvPAWS 4.05 100.0
ldt 8 2.16 99.2 4.49 100.0 29.44 100.0 Satz 41.87 100.0

ldt 16 3.00 100.0 2.89 100.0 9.81 100.0 zChaff 36.21 100.0
ldt 32 4.34 100.0 2.52 100.0 5.17 100.0 MiniSat 86.70 100.0

order 33

lt 1 lt 10 lt 100
ldt 4 14.51 98.4 48.95 99.2 424.00 100.0 mvPAWS 35.69 100.0
ldt 8 10.23 98.8 17.75 100.0 112.14 99.6 Satz 79.85 100.0

ldt 16 17.13 99.6 12.18 100.0 27.97 99.6 zChaff 8,423.06 50.0
ldt 32 44.55 98.4 17.61 100.0 17.76 99.6 MiniSat 238.07 100.0

order 36

lt 1 lt 10 lt 100
ldt 4 484.10 58.8 168.75 82.8 995.42 98.8 mvPAWS 90.88 98.8
ldt 8 276.01 68.8 58.08 95.6 234.72 98.8 Satz 1,708.87 100.0

ldt 16 357.95 70.4 49.66 95.6 78.83 96.0 zChaff 14,400.00 10.0
ldt 32 388.80 69.6 57.07 92.8 58.71 97.6 MiniSat 10,975.60 50.0

Table 3. Median run-time and completion success data for the balanced quasigroup with holes problems.

5 The author would like to thank Duc Nghia Pham for generating these instances.
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Fig. 3. mvPAWS vs. BGmvPAWS on the balanced quasigroup with holes order 30 (left), 33 (centre), and 36. Each
data point is the median run-time from 250 runs (25 per problem). BGmvPAWS results include estimation phase
times. PAWS’s clause weight decrement parameter was set to 4, 4, and 3, for orders 30, 33, and 36, respectively.

We ran mvPAWS and BGmvPAWS on these bqwh problems, again investigating a series of lt and ldt
settings. Our results, shown in Figure 3 and Table 3, indicate that BGmvPAWS benefits from the backbone
guidance on these large instances, particularly when using 10 learning tries and a ldt setting of 16. With
these settings, BGmvPAWS improves on mvPAWS’s run-time by approximately 29%, 66% and 45% for
the orders 30, 33, and 36, respectively.

Intuitively, by sampling from local minima with a lower number of false clauses (i.e., 4 or 8), the PBFE
scheme can more accurately approximate the actual backbone. However, lower ldt settings result in longer
estimation phase run-times, and our results reveal that the setting of 10 learning tries and a maximum
depth of 16 is sufficient to obtain useful PBFEs while still maintaining BGmvPAWS’s superior run-time
performance. For the complete solvers, Satz proves to be the best alternative in this domain, with the
performance of MiniSat and zChaff deteriorating significantly with problem size. Moreover, these results
demonstrate the superior performance of DLS methods over complete methods in the bqwh domain.

4 Discussion and Conclusions

Our work has investigated the usefulness of backbone guidance to the performance of DLS methods for
SAT. We have studied and implemented efficient ways to obtain and integrate pseudo-backbone frequency
estimations to bias the decision process that is crucial to the performance of DLS methods: flip selection.

The problem of obtaining accurate pseudo-backbone frequency estimations has been highlighted, and
we demonstrated how our estimation phase successfully addresses it. We have shown, for the first time,
empirical evidence indicating the positive impact of backbone guidance on the run-time of state-of-the-art
DLS. However, we have also identified the need for carefully considering the trade off between performance
gains and additional run-time resulting from the estimation phase. Specifically, our results show that for
small problems, the additional overheads brought about by the backbone estimation phase are likely to
degrade run-time performance because in these quick searches the cost of backbone estimation corresponds
to a relatively large part of the total search cost.

Recent work [18] has investigated the feasibility of computing and approximating the backbone of the
TSP. Despite some negative theoretical results, it has been suggested that much of the backbone appears to
be present in close to optimal solutions, and that approximation methods based on good heuristics should
be successful in obtaining and using such information to guide the search. Our work serves as additional
empirical evidence supporting this view.

For future work, it would be interesting to investigate computationally cheaper alternatives to the
PBFE scheme presented here, given the relevance of accurate PBFEs to the performance of backbone
guided dynamic local search. Also, we chose to use PBFEs to bias the tie breaking of candidate flips because
of our recent success in using tie breaking heuristics for additive DLS methods. However, multiplicative
DLS methods rarely encounter tie breaking situations due to the finer granularity of their clause weight
profiles. Therefore, it would be interesting to extend the work presented here by integrating PBFE directly
into the DLS method’s evaluation function, thus making our approach useful for multiplicative methods as



well. In conclusion, we believe this work further illustrates the usefulness of backbone heuristics to improve
local search performance in general, and now, DLS performance in particular.

References
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