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Abstract. This paper provides an algorithm to compute the sub-
game perfect equilibrium strategies in perfect information finite-
horizon alternating-offers bargaining in-bundle over multiple issues.
We show that the agreement is achieved immediately and is Pareto
efficient. We make a novel use of backward induction for multiple
issues and we prove that, for linear multi-attribute utility functions,
the problem of computing the equilibrium is tractable and the related
complexity is polynomial with the number of issues and linear with
the deadline of bargaining.

1 Introduction

Negotiation is the process whereby individuals try to solve disputes
and reach mutually beneficial agreements communicating and com-
promising [12]. The interest of artificial intelligence research in ne-
gotiation lies in the possible exploitation of negotiation models and
techniques to solve coordination and cooperation problems among
rational agents [8]. Negotiation techniques are thus employed to ad-
dress a number of classic problems, such as data allocation in infor-
mation servers, resource allocation, and task distribution.

The theory of negotiation is also employed in artificial intelligence
to address the challenge of automatizing some typically human nego-
tiations, such as commercial negotiations. In this domain intelligent
self-interested software agents negotiate with other intelligent agents
on behalf of users for buying and selling services and goods. As un-
derlined by Sandholm in [15], this automation, apart from saving
labor time of human negotiators, can lead to more effective negotia-
tions because software agents can enumerate and evaluate potential
outcomes faster than humans and are more prone than humans to
follow game-theoretic prescriptions.

Among the negotiation settings for commercial transactions, a
very common one isbargaining [10, 11]: a buyer and a seller try
to agree on the choice of the values of some parameters of the trans-
action they are carrying out together; if the parameter is only one
(typically the price of the good to be sold) we have aone-issuebar-
gaining; if there is more than one parameter (e.g., the price of more
than one good or the price and the quality level of a service) we have
amulti-issuebargaining.

The formalized study of negotiation (and therefore of bargaining)
is commonly carried out with game-theoretic tools. In this approach
one distinguishes the negotiationprotocoland the negotiationstrate-
gies: a protocol is a set of rules that defines the possible ways the
negotiation process can be led, specifying which actions are allowed
and when [13]; a strategy is a set of actions, allowed by the protocol,
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that defines an agent’s possible specific behavior in the negotiation.
Given a protocol, the game-theoretic approach prescribes that ratio-
nal agents would or should employ strategies which are somehow in
equilibrium. The exact notion of equilibrium depends on the partic-
ular settings of the problem and is not always clear, but commonly
Nash equilibriumand its refinements are used (see for example [3]).

The best known and perhaps the most elegant protocol for bilateral
bargaining is thealternating-offersprotocol, which comes in many
variations. Basically, a player starts by offering a value for the pa-
rameter of the bargaining (say, a price) to her opponent. The oppo-
nent can accept the offer or exit the negotiation or make a counterof-
fer. If a counteroffer is made, the process is repeated until one of
the players accepts or exits the negotiation. The study of bargain-
ing over a single issue in an alternating fashion has been pioneered
by St̊ahl [16]. St̊ahl analyzes bargaining games with finitely many
possible agreements and a finite time horizon (i.e., a known negoti-
ation deadline) assuming that players do not increase their demand
during the game (good-faithassumption). He usesbackward induc-
tion to identify optimal strategies for rational players: starting at the
last stage of the game and then inductively working backwards to
the beginning of the game. Rubinstein in [14] proposes a variation of
St̊ahl’s alternating-offers protocol in which there are infinitely many
possible agreements (the value of a parameter in[0, 1]), the time hori-
zon is infinite, and the time preferences are stationary (i.e., the prefer-
ence of gettingx at timet over gettingy at timet+1 does not depend
on t). In his model Rubinstein identifies an uniquesubgame perfect
equilibrium (see [4] for the definition of subgame perfect equilib-
rium) and the equilibrium is such that an agreement is immediately
achieved.

Although much economics and computer science literature study
the alternating-offers protocol (see [8]), several issues are still to be
addressed before it can be usefully employed in automated negotia-
tion. The two main open problems concernincomplete information
andmulti-issuebargaining in presence of rational agents. Easy and
general solutions are available only when every pertinent information
is common knowledge between the two players and the bargaining is
only on one issue. Both assumptions are unrealistic or restrictive;
e.g., it is very unlikely that one knows the other player’s reservation
price or her possible timeout; and it is very likely that one negotiates
not only on the price of a good or service but also on its quantity or
quality. The problem of incomplete knowledge in alternating-offers
bargaining (see [1]) is a hard one and the relevant literature faces
only very narrow problems or makes unrealistic assumptions.

Also alternating-offers bargaining on multiple issues is considered
a hard problem to address (a literature review can be found in [9]).
This is mainly due to difficulties in finding computationally tractable
negotiation mechanisms that produce Pareto efficient agreements.



Several procedures exist, the main ones being:in-bundle(i.e., all the
issues are negotiated together) andissue-by-issue(i.e., the issues are
negotiated one by one). In-bundle procedure is more efficient than
issue-by-issue [6, 9] (i.e., issue-by-issue procedure does not assure
the achievement of Pareto efficient agreement). However, as under-
lined in [12] by Raiffa, the in-bundle procedure requires complex
computations to be carried out and it has not been deeply analyzed
up to now. Some authors (e.g., Laiet al. in [9]) also say that finding
a rigorous solution to the in-bundle procedure is an intractable prob-
lem. Conversely, issue-by-issue procedure has found a satisfactory
discussion in literature and the main current open problem refers to
the determination of the optimalagenda(i.e., the sequence of issues
over which the bargaining is carried on); interesting works concern-
ing issue-by-issue procedure can be found in [2, 9].

In this paper we describe the first step towards the development of
an algorithm based on backward induction to determine the equi-
librium strategies for fully rational agents in incomplete informa-
tion, finite-horizon, multi-issue in-bundle alternating-offers bargain-
ing. The incomplete information problem will be the subject of sub-
sequent work. The step here developed concerns, instead, the multi-
issue problem. The algorithm we propose makes a novel use of back-
ward induction together with tools of mathematical optimization.
And we prove that the problem of computing the equilibrium for
multi-issue in-bundle is tractable when the (commonly employed)
additive multi-attribute utility functions are used.

The paper is structured as follows. In the next section the bargain-
ing protocol is formally described, some basic notations, concepts
and techniques are described, and the one-issue solution is revised.
In Sections 3 and 4 the equilibrium strategies for the multiple issue
case are discussed. Section 5 concludes the paper. In Appendix A the
proofs of the main propositions are given.

2 One-Issue Finite-Horizon Alternating-Offer
Protocol

We consider the Rubinstein-Ståhl alternating-offers bargaining
model [14, 16] enriched with reservation prices (i.e., the maximum
price at which the buyer would buy the item and the minimum price
at which the seller would sell it) and deadlines (i.e., time points after
which the buyer or the seller have no more interest in bargaining).
Two agents – a buyer agentb and a seller agents – have strictly op-
posite interests on one attributex of an item, which is a real num-
ber (typically the price), and bargain to reach an agreement. The
agents alternatively act making or accepting offers and counterof-
fers or stopping negotiation without agreement. Each agenti has
an utility functionUi(x, t) that tells how much she gains from an
agreement on the valuex reached at timet. The utility of the seller
increases linearly withx, while the utility of the buyer decreases lin-
early. Both utilities decrease exponentially as time passes by. The
rules of the bargaining and the utilities of the agents are common
knowledge (complete information hypothesis). In the next subsec-
tions we provide the exact model and revise its equilibrium analysis.

2.1 Bargaining Model

Two players exist, the buyerb and the sellers. They can act at integer
timest = 0, 1, 2, . . .. We denote byι(t) the agent that acts at timet;
function ι : N → {b, s} is calledplayer function, and must be such
thatι(t) 6= ι(t+1).2 We denote byσt

i the action performed by agent

2 The value ofι(0), i.e., the agent that starts bargaining, must be specified in
an instantiation of the protocol.

i ∈ {b, s} at timet if i = ι(t). The possible values ofσ0
ι(0) are:

• offer(x), wherex ∈ R;
• exit .

If t 6= 0, the possible values ofσt
ι(t) are:

• offer(x), wherex ∈ R;
• accept ;
• exit .

If σt
ι(t) = offer(x), then the bargaining goes on to the next time

point. If σt
ι(t) = accept , then the bargaining stops and itsoutcome

is (x, t), wherex is the number such thatσt−1
ι(t−1) = offer(x).

If σt
ι(t) = exit , then the bargaining stops and its outcome is

NoAgreement .
The utility of playeri, which is a function of the bargaining out-

come, Ui : (R × N) ∪ {NoAgreement} → R, depends on three
parameters:

• thereservation priceRPi ∈ R+;
• thetemporal discount factorδi ∈ (0, 1];
• thedeadlineTi ∈ N, Ti > 0.

Exactly, if the outcome of the bargaining is an agreement(x, t),
then the utility functions are, for the buyerb:

Ub(x, t) =



(RPb − x)δt
b if t ≤ Tb

−1 otherwise

and for the sellers:

Us(x, t) =



(x − RPs)δ
t
s if t ≤ Ts

−1 otherwise

If the outcome isNoAgreement the utilities are given by:

Ub(NoAgreement) = Us(NoAgreement) = 0

Notice that the assignment of the value0 to the utility given by
NoAgreement and of the value−1 to the utility given by any agree-
ment beyond the deadline allows to effectively model the rational
behaviour of the agents in presence of deadlines: once the deadline
of an agent has expired, the agent prefers to makeexit , being0 the
utility of NoAgreement , than reaching any agreement, being−1 the
utility of any agreement beyond the deadline. Furthermore, we make
the following four standard assumptions:

complete information: the protocol of the bargaining and the utility
functions of the two agents (including the values ofRPi, δi and
Ti) are common knowledge between the two agents;

feasibility: RPb ≥ RPs;
rationality: it is common knowledge that each agent will act in or-

der to maximize her utility;
benevolence: it is common knowledge that when an agent can

choose between two outcomes which are indifferent for her but
not for her opponent, she will choose the one that is better for her
opponent.

The complete information assumption will be at least partially
removed in subsequent work. The feasibility assumption is used to
avoid a trivial situation. The rationality assumption is a standard one
and will bea posteriorijustified by the tractability of the problem of
finding the equilibrium strategies (such that there is no need to take
into account bounded rationality issues). Also the benevolence as-
sumption is standard and, apart from being reasonable, is necessary
to break ties and avoid multiple equilibria.



2.2 Equilibrium Analysis

Finding the game-theoretic solution of the above model is an easy
exercise, but we will explain it in some detail to introduce ideas and
state notations useful for the subsequent less trivial situation of Sec-
tions 3 and 4.

An appropriate notion of solution for a complete information ex-
tensive form game like the one we are dealing with issubgame per-
fect equilibrium[4]: informally, a strategy ofb and a strategy ofs are
a subgame perfect equilibrium if they are a Nash equilibrium in ev-
ery possible subgame; i.e., also if the agents deviated for some time
from the equilibrium, in following times it is still rational to follow
the equilibrium.

In finite games it is possible to find subgame perfect equilibria
by backward induction: one computes optimal actions for the last
stage of the game, when it is known what the outcomes of the actions
are; therefore one knows the outcomes for the actions at the stage
before the last and can compute optimal ones; this process goes on
recursively until all the stages of the game have been explored.

We remark that the protocol above described is not, rigorously
speaking, a finite game; the deadlines are not in the protocol but in
the agent’s utility functions and the agents are allowed to offer and
counteroffer also after the deadlines are expired. Nevertheless, it is
essentially finite: a rational agent will give up bargaining after her
deadline. It is therefore possible to use backward induction to solve
it.

Informally, the agent that acts at the deadline of the bargainingT

– let’s says – would accept any offer which has non-negative utility
for her. Her opponentb knows that, and at timeT − 1 she can safely
offer RPs (which would be accepted bys) or accept any possible
previous offerx which is not worse for her than offeringRPs (i.e.,
Ub(x, T − 1) ≥ Ub(RPs, T )). Agent s knows that and atT − 2
would offer the maximumx such thatUb(x, T − 1) ≥ Ub(RPs, T ),
which is thex such thatUb(x, T − 1) = Ub(RPs, T ), or accept
any possible previous offer which is not worse than that for her. This
reasoning can be inductively carried on until the beginning of the
game, finding an offer that the first player would do and her opponent
would accept.

In other words, at each time pointt, starting from the time be-
fore the first deadline, it is possible to know which offerxt would be
made by agentι(t) if she would make an offer; but she would accept
and not make an offer if her opponent would have offered some-
thing not worse thanxt for ι(t) at timet − 1. The key feature of the
calculation is, therefore, finding an offerxt−1 at timet − 1 which
is the best for agentι(t − 1) among those that would be accepted
by ι(t) at timet. This offerxt−1 is easily seen being the one such
thatUι(t)(xt−1, t) = Uι(t)(xt, t + 1). On the space(x, t), the value
xt−1 is therefore at the intersection oft = t with the level curve of
Uι(t) that goes through point(xt, t + 1). Because of the stationarity
of the utility functions we employ,xt−1 is also at the intersection
of t = t − 1 with the level curve ofUι(t) that goes through point
(xt, t).

3 We say thatxt−1 is the one-stepbackward propagationof
xt along the level curve ofUι(t).

As backward propagation of prices offered is extensively used in
our work, we introduce a special notation. Given a pricex, we denote
by x←i the backward propagation ofx along the level curves of the
utility of agenti, i.e., the price such thatUi(x, t) = Ui(x←i, t − 1).
If a price x is backward propagatedn times along the level curves
of agenti, we writex←n[i]. If a price is backward propagated along

3 As it is better for visualization purposes, we will usually employ this second
characterization ofxt−1.

the level curves of more than one agent, we list them left to right in
the subscript; for instance,x←i3[j] is pricex backward propagated
along the level curves of agenti and subsequently three times along
the curves of agentj.

We call T = min{Tb, Ts} the deadline of the bargaining. We
denote byx∗(t) the price that backward induction prescribes would
be offered at timet < T by agentι(t) if she would make an offer.
Recursively:

x
∗(t − 1) =



RPι(t) if t = T

(x∗(t))←ι(t) if t < T

The calculation ofx∗(·) can be easily carried out recursively and its
complexity is obviously linear withT .4

We can now state the following result, whose rigorous proof is
very easy but long and is therefore omitted (a sketch is provided in [3,
10]):

Proposition 2.1 The bargaining game of Subsection 2.1 has one and
only one subgame perfect equilibrium. The equilibrium strategies for
t ≤ T are given by:

σ
t
ι(t) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

accept if

8

<

:

t > 0
ι(t) = b

σt−1
ι(t−1) = offer(x) with x ≤ x∗(t − 1)

accept if

8

<

:

t > 0
ι(t) = s

σt−1
ι(t−1) = offer(x) with x ≥ x∗(t − 1)

offer(x∗(t)) otherwise

The agreement is therefore achieved at timet = 1 on the pricex∗(0).

It can be also seen that, forRPs = 0 andRPb = 1, the solution
converges to the Rubinstein solution [14] asT grows to infinity.

In Figure 1 we report on the(x, t) space a bargaining withRPb =
1, RPs = 0, δb = 0.7, δs = 0.7, Tb = 9, Ts = 10, andι(0) = b.
The seller acts at the deadlineT = 9 of the game. At that time she
is willing to accept any non-negative offer, so att = 8 the buyer’s
possible offer would bex∗(8) = 0. At time t = 7 the seller’s pos-
sible offer would bex∗(7) = 0←b and so on. The values ofx∗(t)
are highlighted with circles and denoted as backward propagations
of the last valuex∗(8) = RPs. The agreement is achieved at time
t = 1 on the pricex∗(0) = (RPs)←4[bs].

3 Bargaining over Multiple Issues In-Bundle

We take into account the scenarios in which the agents negotiate over
several issues which can be either different attributes of one good or
different goods. For instance, a buyer and a seller, trading on a single
service, can negotiate over the price of the service, the quality of the
service, the delivery time of the service, the guarantee expiration of
the service, and so on; or the buyer and the seller can negotiate over
the prices of different services.

In multi-issue negotiations the issues can be negotiated according
to several procedures. The main procedures are:in-bundle: the agents
negotiate all the issues together, namely, a bundle;issue by issue: the
agents negotiate each issue separately.

The main problem to address in multi-issue bargaining is the de-
velopment of mechanisms to produce Pareto efficient outcomes. In

4 Also closed form expressions forx∗(t) can be given, but we omit them for
the sake of brevity.
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Figure 1. Backward induction construction forRPb = 1, RPs = 0,
δb = 0.7, δs = 0.7, Tb = 9, Ts = 10, ι(0) = b

single-issue bargaining the Pareto optimality of the outcome is triv-
ial, since, by the opposite preferences of the agents, each agree-
ment is Pareto efficient. In multi-issue bargaining, the achievement
of Pareto efficient agreement is harder.

First of all we provide a formulation for the multi-issue utility
functions of the agents in the case they bargain the issues in-bundle.
We recall that in in-bundle bargaining the agents’ strategies (i.e., of-
fer, reject, and accept) are defined on the entire bundle of offers and
not on just a portion of it (e.g., an agent cannot accept or reject just a
part of the offers of the bundle, but the entire bundle itself). We con-
sider multi-issue utility functionsU given by the sum of single-issue
utility functions. This kind of multi-issue utility functions, calledad-
ditive multi-attribute utility functionsis the most common one (see,
e.g., [12]). The multi-issue utility function of agenti is:

Ui(x
1
, . . . , x

n
, t) =

(

Pn

j=1 U
j
i (xj , t) if ∀ j, U

j
i (xj , t) ≥ 0

−1 otherwise
,

(notice that the−1 has been introduced to capture the case that the
agreement has not been reached on every issue of the bundle) where:

U
j
i (xj

, t) =

(

u
j
i (x

j) · (δj
i )

t if t ≤ T
j
i

−1 otherwise
,

(notice that the−1 has been introduced to capture the case that the
agreement has been reached beyond the deadline) where:

• δ
j
i ∈ (0, 1];

• T
j
i > 0;

• u
j
i are continuous concave functions inR;

• u
j
i are strictly monotonic;

• (non-empty feasible agreement set) ∀ j, ∃ Aj 6= ∅, Aj = {xj ∈
R : u

j

b(x
j) ≥ 0 anduj

s(x
j) ≥ 0}, we callA = ×n

j=1A
j feasible

agreement set; notice that, by continuity and concavity ofu
j
i , Aj

are compact set;

• (opposite preferences) ∀ xj ∈ Aj : ∃ µ < 0 such that
du

j

b

dxj
(xj) =

µ ·
duj

s

dxj
(xj).

Notice that theU
j
i s are a generalization of the single issue util-

ity functions introduced in the previous section. For a complete
parallelism we denote byRP

j
i the (obviously unique)x such that

u
j
i (x) = 0 and we call itreservation valueof agenti over the issue

j.
We give some notes on the above assumptions. Sinceu

j
i are con-

tinuous concave functions, then
Pn

j=1 u
j
i is a continuous concave

function (it can be trivially proved that the Hessian of
Pn

j=1 u
j
i is a

diagonal matrix with negative eigenvalues). Differently from the sin-
gle issue case in which the utility of the buyer (seller) is decreasing
(increasing) inx, in the multi-issue case the utility of a buyer (seller)
can be either increasing or decreasing inxj . For instance, if a buyer
is negotiating on the price and the quality of a service, it desires to
buy the service at the minimum price and at the maximum quality.

We call RP j
max andRP

j
min the respectively highest and lowest

values between the reservation values of the two agents. The feasible
agreement setA can be simply described as:∀ j, RP

j
min ≤ xj ≤

RP j
max.

Note that the agents can have different deadlines for each single
attribute. Actually, there are two common situations: (1) the agents
negotiate on different attributes concerning an unique good, (2) the
agents negotiate on attributes concerning different goods. In the first
situation we expect that the deadlines depend only on the traded good
itself, and not on its attributes; therefore, each attribute has the same
deadline. In the second situation, instead, we expect that each single
good has its own deadline, different from the deadline of the other
issues. We say that an issuej is negotiableat a given timet if t ≤ T j .
The main difference between the two situations discussed above is
that in (1) the agents must agree on all the attributes (all the attributes
are negotiable for all the bargaining length), while in (2) the agents
can find partial agreements on the attributes that are negotiable at
a certain time. Obviously, if the agreement is reached immediately,
the agents agree on the values of all the issues; if the agreement is
reached beyond some deadlines the agents agree on just a portion of
the issues that were negotiable at the beginning of the bargaining.
We call T

j
the deadline of bargaining related to the issuej, i.e.,

T
j

= min {T j

b , T j
s }. We call T the deadline of bargaining, i.e.,

T = max {T
1
, . . . , T

m
}.

In the next section we study how an offer can be backward propa-
gated and we give the subgame perfect equilibrium strategies in pres-
ence of multiple issues.

4 Backward Propagation with Multiple Issues

We modify our backward induction construction to address multi-
issue negotiations in-bundle. As we will describe in what follows, the
basic ideas behind the backward induction construction holds unal-
tered, the differences being: the construction will be built in a multi-
dimensional space whose dimensions are exactly the issues, and the
backward propagation of the offers withn issues will in general map
an-dimensional offer from the subspace at timet to an-dimensional
offer in the subspace at timet − 1.

For simplicity, we initially consider the case in which the issues
related to each single agent have the same deadline. Then we extend
our solution to the more general case.



4.1 Issues with the Same Deadline

In the following, given an agenti we denote by−i her opponent
agent. Starting from an offerx =

˙

x1, . . . , xn
¸

at time t + 1 we
want to computex←−i at timet given thati = ι(t). The backward
propagation of an offerx = 〈x1, . . . , xn〉 to timet with i = ι(t) is
tackled in two stages.

1. Determination of the setX←−i of the offersz that give to agent
−i at timet the utility given byx at timet + 1:

X←−i =



z = 〈z1
, . . . , z

n〉 ∈ A :

n
X

j=1

h

u
j
−i(z

j) · (δj
−i)

t
i

=

=
n

X

j=1

h

u
j
−i(x

j) · (δj
−i)

t+1
i

ff

, (1)

in generalX←−i is a geometric place ofn−1 dimensions. Notice
that all the offers belonging toX←−i are indifferent for the agent
−i andX←−i is a compact set sinceA is compact.

2. Determination of the set{x←−i} of the offers belonging toX←−i

that maximize the utility of agenti at timet:

{x←−i} = arg max
z∈X

←−i

n
X

j=1

h

u
j
i (z

j) · (δj
i )

t
i

,

this is due to the fact that among all the offers that−i would accept
at timet+1 (i.e.,X←−i) the agenti makes at timet the offer that
is the best for herself. In general{x←−i} can be a set of offers.

We provide a mathematical analysis of the multi-issue offer back-
ward propagation. We prove that, given a multi-issue offer at time
t + 1, its backward propagation at timet is always made up of at
least one offer and we prove that the offer prescribed by backward
propagation is Pareto efficient in the subspace at timet.

Proposition 4.1 For all x ∈ A, for all t ≤ T , and for all i, X←−i

is always a non-empty set.

We report the proof in Appendix A.

Proposition 4.2 For all x ∈ A, for all t ≤ T , and for alli, {x←−i}
is always a non-empty set.

Proof.SinceUi is continuous and concave inA andX←−i is a com-
pact set, there exists at least one global minimum by Weierstrass.2

Proposition 4.3 For all x ∈ A and for all i, the agreement
(x←−i, t) are Pareto efficient in subspace at timet.

We report the proof in Appendix A.

Proposition 4.4 The agreement(x∗(0), 1) prescribed by multi-
issue backward induction is Pareto optimal.

Proof.It trivially follows from Proposition 4.3 and from the discount-
ing of the utility in time.2

As discussed in the proofs of the Proposition 4.3 the backward
propagation of a multi-issue offer is the result a linear/convex pro-
gramming problem. We recall that the linear programming complex-
ity is polynomial [7]. This means that the complexity of the algorithm
that produce the above multi-issue backward induction construction
when the utility functions of the two agents are linear is linear with
the deadline and polynomial with the number of issues. We report in
Figure 2 an example of backward propagation with two issues. We
report in Algorithm 1 the algorithm of backward propagation with
multiple issues when the deadline over the issues is unique.

Algorithm 1 MULTI ISSUE BACKWARD PROPAGATION(x, t)
1: determine the feasible agreement setA

2: determineX←−ι(t)

3: determine{x←−ι(t)}
4: return an element of{x←−ι(t)}

4.2 Issues with Different Deadlines

We explore the situation of different deadlines related to each single
issue to negotiate. The backward propagation construction is altered
as follows:

• we consider the set of the issues negotiable at the deadline of the
bargainingT ;

• at T the agentι(T ) would accept a bundle of offers such that it
concerns exclusively the issues negotiable atT and the offer on
each singular issue gives to her non-negative utility, i.e., the value
of the offer for each negotiable issue is just the reservation price
RP

j

ι(T )
;

• at T − 1 the agentι(T − 1) would offer a bundle of offers com-
posed ofRP

j

ι(T )
for eachj such that the issuej is negotiable at

T ;
• we backward propagate this bundle of offers according to the con-

struction presented in the previous section until the deadline of
bargaining of other issues is reached;

• as the deadline of bargaining of an issue (or several issues) is
reached, the issue becomes negotiable. Suppose that in backward

propagation we reach the deadlineT
k

of just the issuek: at T
k

the set of negotiable issues is enriched by the issuek. The agent

ι(T
k
) would accept at timeT

k
the bundle composed of(a) the

bundle of offers that she would make atT
k

backward propagated

to the timeT
k
− 1 (notice that a such bundle does not comprise

any offer on the issuek) and(b) the offerRP k

ι(T
k
)

on the issuek.

The situation in which more than one issue becomes negotiable at

T
k

is tackled similarly;

• from T
k
− 1 the backward propagation will be accomplished on

the entire set of the issues negotiable atT
k
;

• the above procedure is repeated for each issue or set of issues that
has deadlines betweenT and0.

Summarily, the backward propagation construction has origin at
T − 1 with the set of all negotiable issues at timeT , then during the

construction every timeT
k

an issuek becomes negotiable the offer

prescribed by backward induction for a such issue at timeT
k
− 1

is the reservation priceRP k

ι(T
k
)
, the offer prescribed for the other

issues is given by the backward propagation along the issues that

are negotiable atT
k

+ 1 . Then the backward propagation continues

from T
k
− 1 considering all the issues negotiable at timeT

k
. Notice

that the backward induction construction in the case the issues have
different deadlines is a subconstruction of the construction accom-
plished in the case the issues have the same deadlines. As a result, the
two properties of the backward induction construction accomplished
with the same deadline for all the issues hold also in this case: (i) the
agreement is Pareto efficient, (ii) the computational complexity of
the construction is linear with the deadline of bargaining and poly-
nomial with the number of issues. We report in Figure 3 an example
of backward propagation in which the deadlines on the two issues
are different. We report in Algorithm 2 the algorithm of backward
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propagation with multiple issues when the deadlines over the issues
are different.

Algorithm 2 MULTI ISSUE BACKWARD PROPAGATION(x, t)

1: determine the feasible agreement setA(t) on the issues nego-
tiable at timet

2: for all j such thatt = T
j
− 1 setxj = RP

j

ι(t+1)

3: for all j such thatt < T
j
− 1 determineX←−ι(t) for only the

issues negotiable at timet + 2
4: determine{x←−ι(t)} for only the issues negotiable at timet+2
5: return an offer composed of an element of{x←−ι(t)} and the

values assigned to thexjs in the step 2 of the algorithm

4.3 Equilibrium Strategies with Multiple Issues

We denote byx∗(t) the offer prescribed by the backward induction
constructions given above. In general,x

∗(t) ∈ Rm, however, as dis-
cussed above, in the case the issues have different deadlines the offer
x
∗(t) is defined on just a subset ofRm, i.e., the set of the negotiable

issues. We can now state the following result as extension of the re-
sult given for the one-issue bargaining:

Proposition 4.5 The bargaining game of Subsection 2.1 in which
the utility functions are defined on multiple attributes has one and
only one subgame perfect equilibrium. The equilibrium strategies for
t ≤ T are given by:

σ
t
ι(t) =

8

>

>

>

<

>

>

>

:

accept if

8

>

<

>

:

t > 0

σt−1
ι(t−1) = offer(x) with Uι(t)(x, t − 1) ≥

Uι(t)(x
∗(t − 1), t − 1)

offer(x∗(t)) otherwise

wherex is an offer defined on exclusively the issues negotiable at
time t. The agreement is therefore achieved at timet = 1 on the
pricex

∗(0).

Notice that a bundle comprising any non-negotiable issue is rejected
independently from the values of the offers on the other issues.

5 Conclusions

Automated negotiations have been suggested as a way to facilitate
increasingly efficient electronic trading. The computational speed of
autonomous agent can significantly enhance negotiation, especially
in presence of a combinatorial number of possible deals. In this pa-
per we analyze the alternating-offers negotiation protocol. One of
the main problems related to this protocol concerns its computa-
tional tractability. Economics and computer science literature lacks
of studies on what is tractable and what is not in alternating-offers.
In this paper we have provided an analysis of perfect information
alternating-offers bargaining with finite-horizon on multiple issues
in-bundle and we have shown that the determination of the equilib-
rium strategies – considered intractable in literature – is computa-
tionally tractable both when all the issues related to a single agent
have the same deadline and when each single issue has its own dead-
line. In detail, when the utility functions are linear, the complexity is
linear with the bargaining time and polynomial with the number of
issues. Our proposal can be also employed when the utility functions
are generically concave; in this case the computational complexity

is still linear with the bargaining time, but it is not polynomial with
the number of issues being the complexity of convex programming
techniques.

Finally, the backward induction construction presented in this pa-
per is a prominent technique to study efficient multi-issue negotia-
tion. In particular, we will employ it in future to determine the the
equilibrium strategies of the agents in the presence of incomplete in-
formation.

References

[1] P. C. Cramton, L. M. Ausubel, and R. J. Deneckere,Handbook of Game
Theory, volume 3, chapter Bargaining with Incomplete Information,
1897–1945, Elsevier Science, 2002.

[2] S. S. Fatima, M. Wooldridge, and N. R. Jennings, ‘An agenda-based
framework for multi-issue negotiation’,Artificial Intelligence, 152, 1–
45, (2004).

[3] D. Fudenberg and J. Tirole,Game Theory, The MIT Press, Cambridge,
MA, USA, 1991.

[4] J. C. Harsanyi and R. Selten, ‘A generalized nash solution for two-
person bargaining games with incomplete information’,Management
Science, 18, 80–106, (1972).

[5] J.-B. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Mini-
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A Proofs

A.1 Proof of the Proposition 4.1

We prove that X←−i consists of at least one element. We
consider x ∈ A,x = 〈x1, . . . , xn〉. We call X∗

←−i =
n

z ∈ Rn :
Pn

j=1

ˆ

u
j
−i(z

j) · (δj
−i)

t
˜

=
Pn

j=1

ˆ

u
j
−i(x

j) · (δj
−i)

t+1
˜

o

,

then X←−i = X∗

←−i

T

A. X∗

←−i is a non-empty set
since

Pn

j=1

ˆ

u
j
−i(x

j) · (δj
−i)

t+1
˜

is finite and U−i is con-
tinuous, concave, and strictly monotonic. In addition, since
Pn

j=1

ˆ

u
j
−i(x

j) · (δj
−i)

t+1
˜

≥ 0 andδ
j
−is are non-negative, there

exists at leastz ∈ X∗

←−i such that for allj we haveuj
−i(z

k) ≥ 0
(i.e.,z ∈ X∗

←−i ∩A−i). We need to prove that a suchz satisfies, for
all j, u

j
i (z

k) ≥ 0 (i.e.,z ∈ X∗

←−i ∩A−i ∩Ai). Starting fromx it is
possible to build a path that connectsx to z just along the directions

such that
du

j
−i

dxj
< 0 and u

j
−i ≥ 0. Given x = 〈x1, . . . , xn〉,



we consider a movement on just the componentx1 such that
y1 = 〈y1, x2, . . . , xn〉. By backward propagation:

n
X

j=2

h

u
j
−i(x

j) · (δj
−i)

t
i

+ u
1
−i(y

1) · (δ1
−i)

t =

=
n

X

j=2

h

u
j
−i(x

j) · (δj
−i)

t+1
i

+ u
1
−i(x

1) · (δ1
−i)

t
,

we derive:

u
1
−i(y

1) − u
1
−i(x

1) =
n

X

j=2

h

u
j
−i(x

j) · (δj
−i − 1)

i

,

since
Pn

j=2

ˆ

u
j
−i(x

j) · (δj
−i − 1)

˜

< 0, we have thatu1
−i(y

1) <

u1
−i(x

1). We can move alongx1 direction until (1) is satisfied or
u1(y1) = 0. If (1) is not satisfied, we can move alongx2, and so
on. By continuity, concavity, and strictly monotonicity ofUi and by
the positivity of

Pn

j=1

ˆ

u
j
−i(x

j) · (δj
−i)

t+1
˜

, there exists at least az

such that∀ j, u
j
−i(z

j) ≤ u
j
−i(x

j) and (1) is satisfied. Then, by op-
posite preferences hypothesis, along each singular componentsxj on
which the path is built the corresponding utilityuj

i increases. Since,
by hypothesis onx, we have∀j, u

j
i (x

j) ≥ 0, then∀j, u
j
i (z

j) ≥
u

j
i (x

j) ≥ 0. Follows that∀j, u
j
i (z

j) ≥ 0, u
j
−i(z

j) ≥ 0. 2

A.2 Proof of the Proposition 4.3

We recall the definition of Pareto efficiency,(x←−i, t) is Pareto effi-
cient int if:

@x :



Ui (x, t) ≥ Ui (x←−i, t)

U−i (x, t) ≥ U−i (x←−i, t)

We call Si(U, t) and S−i(U, t) the sub-level sets ofUi and U−i

at t defined as follows:Si(U, t) = {x ∈ A : Ui(x) ≥ U} and
S−i(U, t) = {x ∈ A : U−i(x) ≥ U}. We identify the frontier of
Si andS−i with Si andS−i, respectively. The frontierS is a level
set (i.e.,S−i(U, t) = {x ∈ A : U−i(x) = U}). We note that, given
a x ∈ A, for all z ∈ Si(Ui(x), t) ∩ S−i(U−i(x), t) we have that
(z, t) Pareto dominates or is Pareto indifferent to(x, t). Moreover,
given ax ∈ A, for all z ∈ Si(Ui(x), t) ∩ S−i(U−i(x), t) we have
that(z, t) is Pareto indifferent to(x, t).

By hypothesisx←−i = max
x∈X

←−i

U−i(x, t), what we want to

prove is thatx←−i is Pareto efficient in the subspace at timet. We
consider a generic optimization problem of the form:

8

<

:

min f(z)

s.t.g(z) ≤ 0

s.t.h(z) = 0

(2)

By Karush-Kuhn-Tucker theorem [5],z is a local minimum of the
problem (2) if and only iff andg are convex andh linear and there
existλ0 ∈ R andλ ∈ Rm, µ ∈ Rp such thatλ0 > 0, λ ≥ 0, µ 6= 0
and:



λ0∇f(z) + λ∇g(z) + µ∇h(z) = 0

g(z)λ = 0
(3)

If h is not linear, Karush-Khun-Tucker expresses just a necessary
condition [5]. In our case (2) can be written as:

8

<

:

min −Ui(z, t)

s.t.g(z) ≤ 0

s.t.U−i(z, t) − U−i(x, t + 1) = 0

(4)

wherex andt are fixed, andg(z) < 0 are of the formzj−RP j
max ≤

0 andRP
j
min − zj ≤ 0.

We analyze two cases: (a) the minimumx←−i is inner toA (i.e.,
g(x←−i) 6= 0), (b) the minimumx←−i is on the frontier ofA (i.e.,
g(x←−i) = 0).

Case (a). We initially consider linearUi andU−i. Sincex←−i is
a minimum of (4), then, by Karush-Khun-Tucker, there existλ0 ∈ R
andµ ∈ Rp such that such thatλ0 > 0, µ 6= 0 and:

∇Ui(x←−i, t) =
µ

λ0
∇U−i(x←−i, t). (5)

By opposite preferences and (5),∇Ui(x←−i, t) and
∇U−i(x←−i, t) are opposite. By linearity ofUi and U−i we
have thatSi andS−i are hyper-planes and, in particular,Si ≡ S−i.
By the fact that∇Ui(x←−i, t) and∇U−i(x←−i, t) are opposite we
have that the intersection betweenSi andS−i is justSi ≡ S−i [5].
This means that in the subspace at timet: (i) all the points belonging
to Si ≡ S−i are Pareto-indifferent to(x←−i, t), (ii) any point outer
Si ≡ S−i are Pareto-dominated by(x←−i, t).

We consider concaveUi andU−i. The gradients ofUi andU−i

in x←−i are opposite by Karush-Khun-Tucker and by hypothesis of
opposite preferences. We consider the two gradients∇Ui(x←−i, t)
and∇U−i(x←−i, t) and the hyper-plane orthogonal to the gradients
that passes inx←−i. A such hyper-plane corresponds to the level sets
of linear utility functions with the gradients in the same directions of
∇Ui(x←−i, t) and∇U−i(x←−i, t). SinceUi andU−i are concave
the sub-level setsSi andS−i are subsets of the the sub-level sets of
linear functions with the gradients directed in the same way, then the
intersection betweenSi andS−i is justSi ≡ S−i. This means that
in the subspace at timet: (i) all the points belonging toSi ∩ S−i

are Pareto-indifferent to(x←−i, t), (ii) any point outerSi ∩S−i are
Pareto-dominated by(x←−i, t). Note that ifUi andU−i are strictly
concave, then their level sets are strictly convex andSi ∩ S−i ≡
x←−i.

Case (b). We initially consider linearUi andU−i are linear. Since
x←−i is a minimum of (4), then, by Karush-Khun-Tucker, then there
existsλ0

i ∈ R andλi ∈ Rm, µi ∈ Rp such that
`

λ0
i , λi

´

> 0 and
`

λ0
i , λi, µi

´

6= 0 and:



−λ0
i∇Ui (x←−i, t) + λi∇g (x←−i) + µi∇U−i (x←−i, t) = 0

g (x←−i) λi = 0

We consider the case in which just a single constraintgl(x←−i) = 0
is active, it is the case in which the minimumx←−i is placed on just
one border. In the cases in which the minimumx←−i is placed on
more than one border, (3) singularly holds for each border. We prove
that also in this case(Si ∩ S−i) ≡ (Si ∩ S−i). From:

λ
0
i∇Ui (x←−i, t) = λi∇g (x←−i) + µi∇Ui (x←−i, t)

sinceλi∇g (x←−i) has at least one component equal to zero andUi

andU−i have opposite preferences on such component, follows that
µi < 0. We consider now the optimization problem:

8

<

:

min −U−i(z, t)

s.t.g(z) < 0

s.t.Ui(z, t) − Ui(x←−i, t + 1) = 0

(6)



wherex andt, andg is the same set of functions of the problem (4).
We want to prove thatx←−i is a minimum for (6). We have to find
(λ0

−i, λ−i) > 0 and(λ0
−i, λ−i, µ−i) 6= 0 such that:



−λ0
−i∇U−i(z, t) + λ−i∇g(x←−i) + µ−i∇Ui(x←−i, t) = 0

g(x←−i)λ−i = 0

We setλ0
−i = −µi, λ−i = λi, andµ−i = λ0

i . Notice thatλ0
−i > 0

andλ−i > 0. Thus, by Karush-Khun-Tucker,x←−i is a minimum
for U−i alongUi(z, t) = Ui(x←−i, t). Thus, the sub-level setSi

andS−i have not common intersection inA butSi∩S−i. This means
that x←−i is not Pareto-dominated inA in the subspace at timet.
Similarly to the case (a), if Ui andU−i are concave, their sub-level
sets are sub-sets of the sub-level sets of linear functions with the same
gradients. Thenx←−i is not Pareto-dominated inA in the subspace
at timet. 2


