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Abstract. This paper provides an algorithm to compute the sub-that defines an agent’s possible specific behavior in the negotiation.
game perfect equilibrium strategies in perfect information finite-Given a protocol, the game-theoretic approach prescribes that ratio-
horizon alternating-offers bargaining in-bundle over multiple issuesnal agents would or should employ strategies which are somehow in
We show that the agreement is achieved immediately and is Paregzuilibrium The exact notion of equilibrium depends on the partic-
efficient. We make a novel use of backward induction for multiple ular settings of the problem and is not always clear, but commonly
issues and we prove that, for linear multi-attribute utility functions, Nash equilibriumand its refinements are used (see for example [3]).
the problem of computing the equilibrium is tractable and the related The best known and perhaps the most elegant protocol for bilateral
complexity is polynomial with the number of issues and linear with bargaining is thelternating-offersprotocol, which comes in many
the deadline of bargaining. variations. Basically, a player starts by offering a value for the pa-
rameter of the bargaining (say, a price) to her opponent. The oppo-
. nent can accept the offer or exit the negotiation or make a counterof-
1 Introduction fer. If a counteroffer is made, the process is repeated until one of

Negotiation is the process whereby individuals try to solve dispute$n® Players accepts or exits the negotiation. The study of bargain-
and reach mutually beneficial agreements communicating and cont?9 overa single issue in an alternating fashion has been pioneered
promising [12]. The interest of artificial intelligence research in ne-Py Sghl [16]. Skhl analyzes bargaining games with finitely many
gotiation lies in the possible exploitation of negotiation models and?0Ssible agreements and a finite time horizon (i.e., a known negoti-
techniques to solve coordination and cooperation problems amorgion deadline) assuming that players do not increase their demand
rational agents [8]. Negotiation techniques are thus employed to adiuring the gamedood-faithassumption). He usézackward induc-
dress a number of classic problems, such as data allocation in infoflon to identify optimal strategies for rational players: starting at the
mation servers, resource allocation, and task distribution. last stage of the game and then inductively working backwards to
The theory of negotiation is also employed in artificial intelligence t€ beginning of the game. Rubinstein in [14] proposes a variation of
to address the challenge of automatizing some typically human neg@tahl’s alternating-offers protocol in which there are infinitely many
tiations, such as commercial negotiations. In this domain intelligenP0Ssible agreements (the value of a parametex, iff), the time hori-
self-interested software agents negotiate with other intelligent agen&Pn i infinite, and the time preferences are stationary (i.e., the prefer-
on behalf of users for buying and selling services and goods. As unfnce of getting: at timet over gettingy at timet+ 1 does not depend
derlined by Sandholm in [15], this automation, apart from saving®" t). In his model Rubinstein identifies an unigsigbgame perfect
labor time of human negotiators, can lead to more effective negotia€auilibrium (see [4] for the definition of subgame perfect equilib-
tions because software agents can enumerate and evaluate potenid™) and the equilibrium is such that an agreement is immediately

outcomes faster than humans and are more prone than humansaghieved. ) _ _
follow game-theoretic prescriptions. Although much economics and computer science literature study

Among the negotiation settings for commercial transactions, ghe alternating-offers protocol (see [8]), several issues are stikto b
very common one ibargaining[10, 11]: a buyer and a seller try addressed before it can be usefully employed in automated negotia-
to agree on the choice of the values of some parameters of the trani$en- The two main open problems concencomplete information
action they are carrying out together; if the parameter is only on@ndmulti-issuebargaining in presence of rational agents. Easy and
(typically the price of the good to be sold) we havere-issuéar- ~ 9eneral solutions are available only when every pertinent information
gaining; if there is more than one parameter (e.g., the price of moré common knowledge between the two players and the bargaining is
than one good or the price and the quality level of a service) we hav@Nly on one issue. Both assumptions are unrealistic or restrictive;
amulti-issuebargaining. e.g., itis very unlikely that one knows the other player’s reservation

The formalized study of negotiation (and therefore of bargaining)Price or her possible timeout; and it is very likely that one negotiates
is commonly carried out with game-theoretic tools. In this approaci0t only on the price of a good or service but also on its quantity or
one distinguishes the negotiatiprotocoland the negotiatioatrate- ~ guality. The problem of incomplete knowledge in alternating-offers
gies a protocol is a set of rules that defines the possible ways th@argaining (see [1]) is a hard one and the relevant literature faces
negotiation process can be led, specifying which actions are allowe8NlY very narrow problems or makes unrealistic assumptions.
and when [13]; a strategy is a set of actions, allowed by the protocol, AlS0 alternating-offers bargaining on multiple issues is considered
a hard problem to address (a literature review can be found in [9]).
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Several procedures exist, the main ones beémgundle(i.e., allthe 4 ¢ {b, s} at timet if s = 1(¢). The possible values Q,f?(m are:
issues are negotiated together) &@glie-by-issué.e., the issues are
negotiated one by one). In-bundle procedure is more efficient tha® Oﬁer(f): wherez € R;
issue-by-issue [6, 9] (i.e., issue-by-issue procedure doesssate ® €Tit.
the achievement of Pareto efficient agreement). However, as-under ¢,
lined in [12] by Raiffa, the in-bundle procedure requires complex
computations to be carried out and it has not been deeply analyzes offer(T), wherez € R;
up to now. Some authors (e.g., Letial. in [9]) also say that finding e accept;
arigorous solution to the in-bundle procedure is an intractable probe exit.
lem. Conversely, issue-by-issue procedure has found a satigfactor : _ - .
discussion in literature and the main current open problem refers to I_f Tu(r) t: offer(z), then the barga‘”'_”g goes on to th.e next time
the determination of the optimaenda(i.e., the sequence of issues POINt. If o) = accept, then the bargaining stops and @stcome
over which the bargaining is carried on); interesting works concerniS (), where is the number such that);,',) = offer(z).
ing issue-by-issue procedure can be found in [2, 9]. If Uf@) = exit, then the bargaining stops and its outcome is

In this paper we describe the first step towards the development aVoAgreement.
an algorithm based on backward induction to determine the equi- The utility of playeri, which is a function of the bargaining out-
librium strategies for fully rational agents in incomplete informa- come, U; : (R x N) U {NoAgreement} — R, depends on three
tion, finite-horizon, multi-issue in-bundle alternating-offers bargain-parameters:
ing. The incomplete information problem will be the subject of sub- . .
sequent work. The step here developed concerns, instead, the mum_thereservatlor! priceRP; € RY; )
issue problem. The algorithm we propose makes a novel use of back- thetempqral discount factod; & (0, 1];
ward induction together with tools of mathematical optimization. o thedeadiineZ; € N, T; > 0.
And we prove that the problem of computing the equilibrium for  Exactly, if the outcome of the bargaining is an agreenient),
multi-issue in-bundle is tractable when the (commonly employed)hen the utility functions are, for the buykr
additive multi-attribute utility functions are used.

The paper is structured as follows. In the next section the bargain- Us(z,t) = {
ing protocol is formally described, some basic notations, concepts
and techniques are described, and the one-issue solution is reviseghd for the sellek:
In Sections 3 and 4 the equilibrium strategies for the multiple issue
case are discussed. Section 5 concludes the paper. In Appendix A the Us(z,t) = {
proofs of the main propositions are given.

# 0, the possible values off(t) are:

(RPb — :E)(;lt) If t S Tb
-1 otherwise

(x — RP:)3,  ift < T
-1 otherwise

If the outcome isNoAgreement the utilities are given by:

2 OnelssueFinite-Horizon Alternating-Offer Up(NoAgreement) = Us(NoAgreement) = 0

Protocol , . L
Notice that the assignment of the valQeto the utility given by

We consider the Rubinsteingtl alternating-offers bargaining NoAgreement and of the value-1 to the utility given by any agree-
model [14, 16] enriched with reservation prices (i.e., the maximumment beyond the deadline allows to effectively model the rational
price at which the buyer would buy the item and the minimum pricepehaviour of the agents in presence of deadlines: once the deadline
at which the seller would sell it) and deadlines (i.e., time points aftelof an agent has expired, the agent prefers to malke being0 the
which the buyer or the seller have no more interest in bargaining)utility of NoAgreement, than reaching any agreement, beintthe

Two agents — a buyer ageaind a seller agent— have strictly op-  utility of any agreement beyond the deadline. Furthermore, we make
posite interests on one attributeof an item, which is a real num-  the following four standard assumptions:

ber (typically the price), and bargain to reach an agreement. The

agents alternatively act making or accepting offers and counterofcompleteinformation: the protocol of the bargaining and the utility
fers or stopping negotiation without agreement. Each agéres functions of the two agents (including the valuesraP;, é; and

an utility function U; (z, t) that tells how much she gains from an  73) are common knowledge between the two agents;

agreement on the valuereached at time. The utility of the seller ~ feasibility: RP, > RP;

increases linearly witt, while the utility of the buyer decreases lin- rationality: itis common knowledge that each agent will act in or-
early. Both utilities decrease exponentially as time passes by. The der to maximize her utility;

rules of the bargaining and the utilities of the agents are commofRenevolence: it is common knowledge that when an agent can
knowledge (complete information hypothesis). In the next subsec- choose between two outcomes which are indifferent for her but

tions we provide the exact model and revise its equilibrium analysis. not for her opponent, she will choose the one that is better for her
opponent.

2.1 Bargaining Modél The complete information assumption will be at least partially
removed in subsequent work. The feasibility assumption is used to
avoid a trivial situation. The rationality assumption is a standard one
and will bea posteriorijustified by the tractability of the problem of
finding the equilibrium strategies (such that there is no need to take
into account bounded rationality issues). Also the benevolence as-

2 The value ok(0), i.e., the agent that starts bargaining, must be specified insSUmption is standard and, apart from being reasonable, is necessary
an instantiation of the protocol. to break ties and avoid multiple equilibria.

Two players exist, the buyérand the selles. They can act at integer
timest = 0, 1,2, .... We denote by(t) the agent that acts at tintg

function. : N — {b, s} is calledplayer function and must be such
that.(t) # +(t+1).2 We denote by the action performed by agent




2.2 Equilibrium Analysis the level curves of more than one agent, we list them left to right in

the subscript; for instance,_;3[; is pricex backward propagated

Finding the game-theoretic solution of the above model is an easy,nq the level curves of agenaind subsequently three times along
exercise, but we will explain it in some detail to introduce ideas anqhe curves of agent

state notations useful for the subsequent less trivial situation of Sec- We call T = min{Ts, 7.} the deadline of the bargainingWe

tions 3 and 4'_ ) ) ) ) denote byx*(¢) the price that backward induction prescribes would
An appropriate notion of solution for a complete information ex- be offered at time < T by agent.(¢) if she would make an offer.
tensive form game like the one we are dealing witeubsgame per-

o . Recursively:
fect equilibrium[4]: informally, a strategy ob and a strategy of are

a subgame perfect equilibrium if they are a Nash equilibrium in ev- . RP, ift=T

ery possible subgame; i.e., also if the agents deviated for some time a’(t-1) = { (@™ (t) vy i< T

from the equilibrium, in following times it is still rational to follow

the equilibrium. The calculation of:*(-) can be easily carried out recursively and its

In finite games it is possible to find subgame perfect equilibriacomplexity is obviously linear witff".*
by backward inductionone computes optimal actions for the last We can now state the following result, whose rigorous proof is
stage of the game, when it is known what the outcomes of the actioneery easy but long and is therefore omitted (a sketch is provided in [3,
are; therefore one knows the outcomes for the actions at the stadd]):
before the last and can compute optimal ones; this process goes on
recursively until all the stages of the game have been explored. ~ Proposition 2.1 The bargaining game of Subsection 2.1 has one and

We remark that the protocol above described is not, rigorouslynly one supgame perfect equilibrium. The equilibrium strategies for
speaking, a finite game; the deadlines are not in the protocol but ih < 1" are given by:
the agent’s utility functions and the agents are allowed to offer and

counteroffer also after the deadlines are expired. Nevertheless, it is . £>0
essentially finite: a rational agent will give up bargaining after her accept if L(f,)lz b_ ith e < 2
deadline. It is therefore possible to use backward induction to solv%t :L;E)l) = offer(z) with z < (¢ — 1)
it. ut) =

Informally, the agent that acts at the deadline of the bargaifiing accept if 4 ¢ (Q = _ .
— let's says — would accept any offer which has non-negative utility Tu(t—1) = offer(z) with & > z™(t — 1)
for her. Her opponerit knows that, and at tim& — 1 she can safely offer(z*(t)) ~otherwise

offer RP, (which would be accepted by) or accept any possible
previous offerz which is not worse for her than offering P (i.e.,
Up(z, T — 1) > Up(RP5,T)). Agents knows that and af” — 2
would offer the maximune such thaly(z, T’ — 1) > Up(RPs, T), It can be also seen that, f6tP, = 0 andRP, = 1, the solution
which is thex such thatUy(z,T' — 1) = Uy(RPs,T), or accept  converges to the Rubinstein solution [14]Agrows to infinity.
any possible previous offer which is not worse than that for her. This |, Figure 1 we report on ther, t) space a bargaining witR P, =
reasoning can be inductively carried on until the beginning of the; pp "_ 5, — 0.7 5, = 0_7’ T, = 9, T, = 10, and.(0) = b.
game, finding an offer that the first player would do and her opponentye seller acts at the deadlific= 9 of the game. At that time she
would accept. . ~ ) ) is willing to accept any non-negative offer, sotat= 8 the buyer’s

In other words, at each time point starting from the time be- possible offer would be*(8) = 0. At time ¢ = 7 the seller's pos-
fore the first deadline, it is possible to know which offgrwould be  gjpje offer would ber*(7) = 0., and so on. The values af* (t)
made by agen() if she would make an offer; but she would accept grg highlighted with circles and denoted as backward propagations

and not make an offer if her opponent would have offered someys e |ast valuer*(8) = RP,. The agreement is achieved at time
thing not worse than; for .(t) at timet — 1. The key feature of the  ;, _ { gy the pricer*(0) = (RP%) _appa)-

calculation is, therefore, finding an offer_, at timet — 1 which

is the best for agent(f — 1) among those that would be accepted .. .
by «(7) at time?. This offerz;_, is easily seen being the one such 3 Bargaining over Multiple I ssues In-Bundle

thatU, q) (271, 1) = U,q) (25, 1 + 1). On the spacér, t), the value e take into account the scenarios in which the agents negotiate over
7., IS therefore at the intersection b= ¢ with the level curve of  several issues which can be either different attributes of one good or
U, that goes through poirftrz, ¢ + 1). Because of the stationarity itterent goods. For instance, a buyer and a seller, trading on a single
of the utility functions we employz;_, is also at the intersection  seryice, can negotiate over the price of the service, the quality of the
of t = ¢ — 1 with the level curve oU, ;) that goes through point  sepyice, the delivery time of the service, the guarantee expiration of
(7,7).> We say thatr;_, is the one-stejpackward propagatiomf  the service, and so on; or the buyer and the seller can negotiate over
xz along the level curve d/, ;). the prices of different services.

As backward propagation of prices offered is extensively used in |n multi-issue negotiations the issues can be negotiated according
our work, we introduce a special notation. Given a pricee denote  to several procedures. The main proceduresiafietndle the agents
by z.; the backward propagation efalong the level curves of the negotiate all the issues together, namely, a buristiee by issuehe
utility of agents, i.e., the price such théf; (z,t) = U;(z—, t — 1). agents negotiate each issue separately.
If a price x is backward propagated times along the level curves  The main problem to address in multi-issue bargaining is the de-
of agenti, we writez._,,(;). If a price is backward propagated along velopment of mechanisms to produce Pareto efficient outcomes. In

The agreement is therefore achieved at tiree 1 on the pricex™(0).

3 Asitis bet_ter for visualization purposes, we will usualipgloy this second 4 Also closed form expressions far () can be given, but we omit them for
characterization af;_ . the sake of brevity.
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07} \\\ X N RN . Notice that theU/s are a generalization of the single issue util-
A N AN . ity functions introduced in the previous section. For a complete
08 s . v 1 parallelism we denote bR P; the (obviously unique) such that
S o8l e R 2| N > i u? (z) = 0 and we call itreservation valuef agent; over the issue
Q ) - bsb * -] ;
04g¢ % 1 We give some notes on the above assumptions. Sijiege con-
N B . tinuous concave functions, théi”_, ! is a continuous concave
b - // - S b 7 . - P . 7.
7 - el function (it can be trivially proved that the Hessianof,_, u! is a

o2p -~ ] P 1 diagonal matrix with negative eigenvalues). Differently from the sin-

| - - | gle issue case in which the utility of the buyer (seller) is decreasing
S L (increasing) inc, in the multi-issue case the utility of a buyer (seller)

— can be either increasing or decreasing:inFor instance, if a buyer

0
0 (bt 1 I 2 (b 3 Il 4 (bt 5 I 6 (b 7 ! 8 (b 9 Il . . . . . . .
(e plselen 2bwren 3elen 40N iod - e Tlelen BEWE SCAS s negotiating on the price and the quality of a service, it desires to

buy the service at the minimum price and at the maximum quality.
We call RPZ,,, and RP? the respectively highest and lowest
values between the reservation values of the two agents. The feasible
Figurel. Backward induction construction f&#P, = 1, RPs = 0, agreement sett can be simply described ag:j, RP . < af <
8 =0.7,6s =0.7,T, =9,Ts = 10,:(0) = b RPI . men
Note that the agents can have different deadlines for each single
attribute. Actually, there are two common situatiory: the agents

single-issue bargaining the Pareto optimality of the outcome is triv:"€gotiate on different attributes concerning an unique gddhe

ial, since, by the opposite preferences of the agents, each agre@Jents negotiate on attributes concerning different goods. In the first
ment is Pareto efficient. In multi-issue bargaining, the achievemenrgituation we expect that the deadlines depend only on the traded good
of Pareto efficient agreement is harder. itself, and not on its attributes; therefore, each attribute has the same

First of all we provide a formulation for the multi-issue utility deadline. In the second situation, instead, we expect that each single

functions of the agents in the case they bargain the issues in-bundi@20d has its own deadline, different from the deadline of th? other
We recall that in in-bundle bargaining the agents’ strategies (i.e., ofiSSUes. We say that an issiiis negotiableat a given time if ¢ < 77

fer, reject, and accept) are defined on the entire bundle of offers an§h€ Main difference between the two situations discussed above is
not on just a portion of it (€.g., an agent cannot accept or rejeichjus that in 1) the agents must agree on all the attributes (all the attributes
part of the offers of the bundle, but the entire bundle itself). We con-2'€ Negotiable for all the bargaining length), while 2) the agents
sider multi-issue utility function&’ given by the sum of single-issue €@n find partial agreements on the attributes that are negotiable at
utility functions. This kind of multi-issue utility functions, called- & certain time. Obviously, if the agreement is re"f‘(fhed immediately,
ditive multi-attribute utility functionss the most common one (see, the agents agree on the values of all the issues; if the agreement is
e.g., [12]). The multi-issue utility function of agenis: reached beyond some deadlines the agents agree on just a portion of
’ the issues that were negotiable at the beginning of the bargaining.
. nopi (xj t) iV U_j(xj £)>0 We call 77 the deadline of bargaining related to the isgue.e.,
U(x',...,a"t) = ¢ 7= 70 T T’ = min {T7,T7}. We call T the deadline of bargaining, i.e.

—1 otherwise -z mlnjl ’ L}m gaining, 1.€.,
T=max{T,...,T }.
(notice that the—1 has been introduced to capture the case that the [N the next section we study how an offer can be backward propa-

agreement has not been reached on every issue of the bundley whedated and we give the subgame perfect equilibrium strategies in pres-
ence of multiple issues.

ul (@7 - (67)t it <TY

Ug(xf,t)—{ : L . . .
-1 otherwise 4 Backward Propagation with Multiple I ssues

(notice that the-1 has been introduced to capture the case that th&Ve modify our backward induction construction to address multi-

agreement has been reached beyond the deadline) where: issue negotiations in-bundle. As we will describe in what follows, the
_ basic ideas behind the backward induction construction holds unal-

e 0] €(0,1]; tered, the differences being: the construction will be built in a multi-
o T/ >0; dimensional space whose dimensions are exactly the issues, and the
e ] are continuous concave functionsin backward propagation of the offers withissues will in general map
e ] are strictly monotonic; an-dimensional offer from the subspace at titme an-dimensional
e (non-empty feasible agreement)setj, 3 A7 # (), A’ = {a/ €  offer in the subspace at tinte— 1.

R:wuy(z’) > 0andul(z’) > 0}, we callA = xj_, A’ feasible For simplicity, we initially consider the case in which the issues

agreement set; notice that, by continuity and concavity{ofAj related to each single agent have the same deadline. Then we extend
are compact set; our solution to the more general case.



4.1 Issueswith the Same Deadline Algorithm 1 MULTI _ISSUE.BACKWARD _PROPAGATION(x, )
In the following, given an agent we denote by—i her opponent ~ 1: determine the feasible agreement et

agent. Starting from an offet = (z',...,2") attimet + 1 we 2: determineX._ ;)
want to computex._; at timet given thati = .(¢). The backward ~ 3: determine{x._ )}
propagation of an offex = (z!,...,z") to timet with i = ¢(t) is 4: return an element ofx.__ ) }

tackled in two stages.

1. Determination of the seX.__, of the offersz that give to agent 4.2 Issueswith Different Deadlines

—tattimet the utility given byx at time¢ + 1: We explore the situation of different deadlines related to each single

issue to negotiate. The backward propagation construction is altered
1 n ) ) - as follows:
Xeoy= {z: (z,...,2" €AY [u]_i(zj).(é]_i)} —
j=1

e we consider the set of the issues negotiable at the deadline of the

oo ; bargainingT;
_ J J\ . (87 \t+1 " Y _
- Z [u*i(‘r ) (0%)) ] }’ @ e atT the agent(7T) would accept a bundle of offers such that it
=t concerns exclusively the issues negotiabl& and the offer on

in generalX._ _; is a geometric place of — 1 dimensions. Notice each singular issue gives to her non-negative utility, i.e., the value
that all the offers belonging t& . _; are indifferent for the agent  of the offer for each negotiable issue is just the reservation price
—iandX. _; is a compact set sincé is compact. RP]'F)'

o(T)’

2. Determination of the sétx._ _; } of the offers belonging t& . _;

that maximize the utility of ageritat timet: e atT — 1the ageni(T — 1) would offer a bundle of offers com-

posed ofRPLjﬁ) for eachj such that the issugis negotiable at

Y L (5Tt T

Z [“z (=7) - (&7) ] ’ e we backward propagate this bundle of offers according to the con-

- struction presented in the previous section until the deadline of
bargaining of other issues is reached,;

e as the deadline of bargaining of an issue (or several issues) is
reached, the issue becomes negotiable. Suppose that in backward

We provide a mathematical analysis of the multi-issue offer back- propagation we reach the dead|iié of just the issuek: at T

ward propagation. We prove that, given a multi-issue offer at time the set of negotiable issues is enriched by the igsukhe agent

t + 1, its backward propagation at timels always made up of at L(T’“) would accept at tim&" the bundle composed @&) the

least one offer and we prove that the offer prescribed by backward ) \1die of offers that she would make &t backward propagated

r ion is Par fficient in th im . . .
propagation is Pareto efficient in the subspace at time to the timeT" — 1 (notice that a such bundle does not comprise

{x—_i} = arg Imax

i=

this is due to the fact that among all the offers thatvould accept
attimet+1 (i.e., X—_;) the agent makes at time the offer that

is the best for herself. In genert__; } can be a set of offers.

Proposition 4.1 Forall x € A, forall ¢t < T, and for alli, X _; any offer on the issug) and(b) the oﬁerRPZsz) on the issué.
is always a non-empty set. The situation in which more than one issue becomes negotiable at
We report the proof in Appendix A. T" is tackled similarly;

e fromT" — 1 the backward propagation will be accomplished on
the entire set of the issues negotiablé_th

e the above procedure is repeated for each issue or set of issues that
Proof. SinceU; is continuous and concave fhand X . _; is a com- has deadlines betwe&nand0.

pact set, there exists at least one global minimum by Weierstrass.

Proposition 4.2 Forall x € A, forall t < T, and for all7, {x _;}
is always a non-empty set.

Proposition 4.3 For all x € A and for all 4, the agreement Summarily, the backward propagation construction has origin at
(x_;,t) are Pareto efficient in subspace at time T — 1 with the set of all negotiable issues at tiffigthen during the

construction every tim&" an issuek becomes negotiable the offer

prescribed by backward induction for a such issue at fitfie— 1

Proposition 4.4 The agreement{x*(0),1) prescribed by multi- is the reservation pricézPI’“(Tk), the offer prescribed for the other

We report the proof in Appendix A.

issue backward induction is Pareto optimal. issues is given by the backward propagation along the issues that
Proof. It trivially follows from Proposition 4.3 and from the discount- are ni%otlable d’™ + 1. Then the backward propagat_ltzn continues
ing of the utility in time.O fromT" — 1 considering all the issues negotiable at tiffie Notice

As discussed in the proofs of the Proposition 4.3 the backwardhat the backward induction construction in the case the issues have
propagation of a multi-issue offer is the result a linear/convex pro-different deadlines is a subconstruction of the construction accom-
gramming problem. We recall that the linear programming complexplished in the case the issues have the same deadlines. As a result, the
ity is polynomial [7]. This means that the complexity of the algorithm two properties of the backward induction construction accomplished
that produce the above multi-issue backward induction constructiomith the same deadline for all the issues hold also in this castg
when the utility functions of the two agents are linear is linear with agreement is Pareto efficieni;)(the computational complexity of
the deadline and polynomial with the number of issues. We report irthe construction is linear with the deadline of bargaining and poly-
Figure 2 an example of backward propagation with two issues. Waomial with the number of issues. We report in Figure 3 an example
report in Algorithm 1 the algorithm of backward propagation with of backward propagation in which the deadlines on the two issues
multiple issues when the deadline over the issues is unique. are different. We report in Algorithm 2 the algorithm of backward
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propagation with multiple issues when the deadlines over the issuds still linear with the bargaining time, but it is not polynomial with
are different. the number of issues being the complexity of convex programming
techniques.

Finally, the backward induction construction presented in this pa-
per is a prominent technique to study efficient multi-issue negotia-
tion. In particular, we will employ it in future to determine the the

Algorithm 2 MULTI _ISSUE BACKWARD _PROPAGATION(X, t)

1: determine the feasible agreement gét) on the issues nego-
tiable at timet

2: for all j such that = T —1sets’ = RPf'(tH) equilibrium strategies of the agents in the presence of incomplete in-
3: for all j such that < T 1 determineX._ _, ) for only the formation.
issues negotiable at timet 2
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values assigned to the's in the step 2 of the algorithm [1] P.C.Cramton, L. M. Ausubel, and R. J. Deneckétandbook of Game
Theory volume 3, chapter Bargaining with Incomplete Information,
1897-1945, Elsevier Science, 2002.
[2] S. S. Fatima, M. Wooldridge, and N. R. Jennings, ‘An agebdsed
framework for multi-issue negotiationArtificial Intelligence 152, 1—
4.3 Equilibrium Strategieswith Multiple | ssues 45, (2004). _ _
[3] D. Fudenberg and J. Tirol&§ame TheoryThe MIT Press, Cambridge,
We denote by* (¢) the offer prescribed by the backward induction MA, USA, 1991.
[4] J. C. Harsanyi and R. Selten, ‘A generalized nash salutar two-

constructions given above. In general(t) € R™, however, as dis-
cussed above, in the case the issues have different deadlines the offe
x*(t) is defined on just a subsetBf", i.e., the set of the negotiable 5]
issues. We can now state the following result as extension of the re-
sult given for the one-issue bargaining: (6]

Proposition 4.5 The bargaining game of Subsection 2.1 in which (7]
the utility functions are defined on multiple attrioutes has one and [g]
only one subgame perfect equilibrium. The equilibrium strategies for

t < T are given by: o]
t>0 10
; t—1 .
Uf(t> _ ) accept it §o,,",) = offer(x) with *[]L(t)(x7t -1)> o
U (x*(t—1),t —1)
offer(x*(t)) otherwise 12

wherex is an offer defined on exclusively the issues negotiable &3]
time t. The agreement is therefore achieved at tiime- 1 on the
pricex*(0). [14]
Notice that a bundle comprising any non-negotiable issue is rejecteds)
independently from the values of the offers on the other issues.

[16]
5 Conclusions

Automated negotiations have been suggested as a way to facilitate
increasingly efficient electronic trading. The computational speed oA
autonomous agent can significantly enhance negotiation, especial
in presence of a combinatorial number of possible deals. In this p

tional tractability. Economics and computer science literature lacks,
of studies on what is tractable and what is not in alternating-offers.{Z

In this paper we have provided an analysis of perfect informatiothen X =

person bargaining games with incomplete informatidignagement
Sciencel8, 80-106, (1972).

J.-B. Hiriart-Urruty and C. Lemdchal, Convex Analysis and Mini-
mization Algorithms,|Springer-Verlag, Berlin, Germany, 1996.

Y. In and R. Serrano, ‘Agenda restrictions in multi-isseergaining’,
Journal of Economic Behavior and Organizatj&3, 385-399, (2004).
N. Karmarkar, ‘A new polynomial-time algorithm for linearggram-
ming’, Combinatorica4(4), 373-395, (1984).

S. Kraus,Strategic Negotiation in Multiagent Environmenthe MIT
Press, Cambridge, MA, USA, 2001.

G. Lai, C. Li, K. Sycara, and J. Giampapa, ‘Literature savion
multi-attribute negotiations’, Technical Report CMU-RRF¥04-66,
Carnegie Mellon University, (December 2004).

S. Napel,Bilateral Bargaining: Theory and ApplicationsSpringer-
Verlag, Berlin, Germany, 2002.

M. J. Osborne and A. RubinstiBargaining and MarketsAcademic
Press, San Diego, CA, USA, 1990.

H. Raiffa, The Art and Science of Negotiatiorlarvard University
Press, Cambridge, USA, 1982.

J. S. Rosenschein and G. ZlotkRules of Encounter. Designing Con-
ventions for Automated Negotiations among Comput&re MIT
Press, Cambridge, MA, USA, 1994,

A. Rubinstein, ‘Perfect equilibrium in a bargaining nedd Economet-
rica, 50(1), 97-109, (1982).

T. Sandholm, ‘Agents in electronic commerce: Componertirteto-
gies for automated negotiation and coalition formatigkitonomous
Agents and Multi-Agent Systen3¢l), 73-96, (2000).

I. Stahl,Bargaining Theory Stockholm School of Economics, Stock-
holm, Sweden, 1972.

Proofs

a'('?(.l Proof of the Proposition 4.1

per we analyze the alternating-offers negotiation protocol. One oy, prove that X
the main problems related to this protocol concerns its computazgngider x € A.x =

consists of at least one element. We

——i

(.. .,z™). We call X; _, =
er Y, [l () (011 = Sy o) - (620,
X _;NA. XI_, is a non-empty set

alternating-offers bargaining with finite-horizon on multiple issuessince >-7_, [u’;(z7) - (62,)"""] is finite and U-; is con-
in-bundle and we have shown that the determination of the equilibtinuous, concave, and strictly monotonic. In addition, since
rium strategies — considered intractable in literature — is computa>_ ;1 [v’;(¢”) - (§7,)*"'] > 0 andé’ ;s are non-negative, there
tionally tractable both when all the issues related to a single agergxists at least € X _; such that for allj we haveu’ ;(z*) > 0
have the same deadline and when each single issue has its own deéick.,z € X7 _; N A_;). We need to prove that a suglsatisfies, for
line. In detail, when the utility functions are linear, the complexity is all 7, u{(zk) >0(.e,ze X _;,NA_;NA,). Starting fromx it is
linear with the bargaining time and polynomial with the number of possible to build a path that connestso z just along the directions

issues. Our proposal can be also employed when the utility functions

are generically concave; in this case the computational complexity "'

h that——=:
a dxi

du’

< 0andw’, > 0. Givenx = (z',...,2"),



we consider a movement on just the componehtsuch that
yvi = (y',z? ..., z™). By backward propagation:

[ @2+ ki) - 0 =

n
Jj=2

Whi(y) - uli@h) = 0 [l @) - (0, - 1)
j=2

since """, [u’ ;(27) - (87, — 1)] < 0, we have that!;(y') <
ul,;(z'). We can move along’ direction until (1) is satisfied or
u'(y') = 0. If (1) is not satisfied, we can move aloag, and so
on. By continuity, concavity, and strictly monotonicity &f and by
the positivity of Y-, [u? ,(«7) - (67 ,)"""], there exists at leasta
such that 7,4’ ,(27) < v’ ,(z7) and (1) is satisfied. Then, by op-
posite preferences hypothesis, along each singular compariemts
which the path is built the corresponding util'mj increases. Since,
by hypothesis orx, we havevj,u!(z?) > 0, thenVj, u?(27) >
ul (7) > 0. Follows thatvj, u? (27) > 0,4’ ;(?) > 0.0

A.2 Proof of the Proposition 4.3

We recall the definition of Pareto efficiendk.—_;, t) is Pareto effi-
cient int if:

. U»; (X, t) 2 U»; (ngi,t)
A {U_i (x,t) > U_i (X__1, 1)

We call S;(U,t) and S_;(U, t) the sub-level sets of/; andU_;
at ¢ defined as followsS;(U,t) = {x € A : Usy(x) > U} and
S_i(U,t) = {x € A: U_;(x) > U}. We identify the frontier of
S; andS_; with S; andS_;, respectively. The frontief is a level
set (i.e.,.5_;(U,t) = {x € A: U_;(x) = U}). We note that, given
ax € A, forallz € S;(U;(x),t) N S_;(U-;(x),t) we have that
(z,t) Pareto dominates or is Pareto indifferent(g¢). Moreover,
given ax € A, forallz € S;(U;(x),t) N S_;(U-:(x),t) we have
that(z, ¢) is Pareto indifferent téx, ¢).

By hypothesisx._; = max U_;(x,t), what we want to

xeX o _;
prove is thatx_ _; is Pareto efficient in the subspace at timé&\Ve
consider a generic optimization problem of the form:

@)

By Karush-Kuhn-Tucker theorem [5% is a local minimum of the
problem (2) if and only iff andg are convex and linear and there
existA® € Randx € R™, 1 € R? such that\® > 0, A > 0, u # 0
and:

{)\OVf(Z) + AVyg(Z) + uVh(z) =0 3)
g(Z)A =0

If his not linear, Karush-Khun-Tucker expresses just a necessary

condition [5]. In our case (2) can be written as:

s.t.g(z) <0
st.U_i(z,t) —U_i(x,t+1) =0

{min —Ui(z,t)
4)

wherex andt are fixed, ang/(z) < 0 are of the formz’ — RP,,, <
0OandRP?, — 2’ <0.

We analyze two casesa)(the minimumx. _; is inner toA (i.e.,
g(x——;) # 0), (b) the minimumx._; is on the frontier ofA (i.e.,
g(x——i) = 0).

Case §). We initially consider lineat/; andU_;. Sincex. _; is
a minimum of (4), then, by Karush-Khun-Tucker, there exfs R
andy € RP such that such that® > 0, i # 0 and:

VUi(XHfi,t) = %VUfi(XH7i7t). (5)

By opposite preferences and (5),VU;(x——_;,t) and
VU_;(x——;,t) are opposite. By linearity ofU; and U_; we
have thaiS; andS_; are hyper-planes and, in particulal, = S_;.
By the fact thatVU; (x—_;,t) andVU_;(x—_;, t) are opposite we
have that the intersection betwegnandS_; is justS; = S_; [5].
This means that in the subspace at timg) all the points belonging
to S; = S_; are Pareto-indifferent tex. _;, t), (i5) any point outer
S; = S_; are Pareto-dominated . —;, t).

We consider concav®; andU_;. The gradients ot/; andU_;
in x__; are opposite by Karush-Khun-Tucker and by hypothesis of
opposite preferences. We consider the two gradi®tifs(x.——;, t)
andVU_;(x—_;,t) and the hyper-plane orthogonal to the gradients
that passes ir. ;. A such hyper-plane corresponds to the level sets
of linear utility functions with the gradients in the same directions of
VU;i(Xx——i,t) andVU_;(x——_;, t). SinceU; andU_; are concave
the sub-level set§; andS_; are subsets of the the sub-level sets of
linear functions with the gradients directed in the same way, then the
intersection betweefl; andS_; is justS; = S_;. This means that
in the subspace at time (3) all the points belonging t&; N S_;
are Pareto-indifferent tax. _;, t), (i) any point outeiS; N'.S_; are
Pareto-dominated bfx._;, ¢t). Note that ifU; andU_; are strictly
concave, then their level sets are strictly convex &pedh S_; =
Xe —j.

Case b). We initially consider lineat/; andU_; are linear. Since
X _; isaminimum of (4), then, by Karush-Khun-Tucker, then there
existsA! € Rand\; € R™, u; € R? such that(A7, A;) > 0 and
(AY, i, i) # 0 and:

“ANVU; (xe—iy t) + AiVg (xe i) + i VU (X, t) = 0
g(xe—i) X =0

We consider the case in which just a single constrgift._ ;) = 0

is active, it is the case in which the minimuwm__; is placed on just
one border. In the cases in which the minimwm _; is placed on
more than one border, (3) singularly holds for each border. Wesprov
that also in this casgS; N S—;) = (S; N S_;). From:

MNVU; (x—iyt) = XiVg (X —i) + i VU; (X, t)

since\; Vg (x——;) has at least one component equal to zerol@nd
andU_; have opposite preferences on such component, follows that
i < 0. We consider now the optimization problem:

min —U_;(z,t)
s.tg(z) <0
s.t. Ui(Zﬂf) — Ui(XHfzgt + 1) =0

(6)



wherex andt, andg is the same set of functions of the problem (4).
We want to prove thak._; is a minimum for (6). We have to find
(A%, 2_) > 0and(\%,;, A_;, u—;) # 0 such that:

A0, VU_(Z,t) + A\=iVg(xe—i) + p—iVUi(x—i,t) = 0
g(xe—i)A=i =0

We set\?; = —pi, Ay = A, andu_; = \?. Notice that\? ; > 0
andA_; > 0. Thus, by Karush-Khun-Tuckeg.__; is a minimum

for U_; alongU;(z,t) = U;(x——i,t). Thus, the sub-level sef;
andS_; have not common intersection.ihbut.S; NS _;. This means
thatx._; is not Pareto-dominated id in the subspace at time
Similarly to the cased), if U; andU_; are concave, their sub-level
sets are sub-sets of the sub-level sets of linear functions with the same
gradients. Thex. _; is not Pareto-dominated iA in the subspace
attimet. O



