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Abstract

Decomposition is an important property that
we exploit in order to render problems more
tractable. The decomposability of a problem im-
plies the existence of some “independences” be-
tween relevant variables of the problem under
consideration. In this paper we investigate the
decomposability of functions which take values
into an Abelian Group. Examples of such func-
tions include: probability distributions, energy
functions, value functions, fithess functions, and
relations. For such problems we define a no-
tion of conditional independence between sub-
sets of the problem’s variables. We prove a de-
composition theorem that relates independences
between subsets of the problem’s variables with a
factorization property of the respective function.
As particular cases of this theorem we retrieve
the Hammersley-Clifford theorem for probability
distributions; an Additive Decomposition theo-
rem for energy functions, value functions, fithess
functions; and a relational algebra decomposition
theorem.
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general case of independence with similar decomposability
properties. Results concerning additive (rather than multi-
plicative) decomposability in various scenarios have been
explored in [Bertelle and Brioschi '72] [Keeney and Raiffa
'76] [Bacchus and Grove '95]. Similarly, in the context of
relational databases decomposition results such as MVD
(Multi-Valued Decomposition) were obtained, see [Butz
'00] and references therein.

In this paper, we seek a unifying thread of decomposability
results. More precisely we examine the decomposability of
functions which take values into an Abelian group. Let us
call this class of function$._, 4 . F._, 4¢ includes as par-
ticular cases: strictly positive probability distributions; ad-
ditive decomposable functions and relations among others.
We show that fotF._, 4 we can define a general notion of
Conditional Independence that is the natural generalization
of probabilistic Conditional Independence. This General
Conditional Independence will allow us tdecompose”

a function f from F._ 4 in the same way as a proba-
bility distribution can be “decomposed”. More precisely,
we prove a generalization of the well known Hammersley-
Clifford theorem, which holds for arbitrary functions from
F_ac-

These results, in addition to unifying a broad class of de-
composition results that have been previously proved in
particular cases, should hopefully clear the path for porting
results and techniques developed in settings that represent

Probabilistic Graphical Models (PGMs) have proved to beparticular cases of._, 4¢.

an effective way of representing probability distributions in
a concise and intuitive form. Compact graphical represen
tations support efficient reasoning and learning algorithm
in many cases that arise in practice [Pearl '88, Cowell et
'99, Jordan '05]. The key idea behind PGMs is the notion
of probabilistic independence. Independence allows us t
“decompose” the probability distribution into smaller parts,
thereby substantially reducing the number of independe
parameters that we need to know in order to specify thep

probability distribution.

aﬁgnd Independence in a general setting.

The rest of the paper is organized as follows: In section
2 we introduce some definitions regarding Decomposition
In section 3 we
hrink our domain of interest and define a General Con-

ditional Independence concept for functions whose ranges

Bre Abelian GroupsF._,ac. Subsequently, we explore

some of the properties of this generalized independence re-

r\Eltion. This section also contains the main result of this

aper: a factorization property consisting in the natural
generalization of the Hammersley-Clifford theorem [Besag

Given the successful exploitation of independence in74] for arbitrary functions fromF._, 4 . In section 4 we

PGMs it is natural to ask whether we can define a moregresent some important particular cases of decomposable



functions which take values into an Abelian Group, suchThe rest of this paper is concerned with variable-based in-
as: probability distributions, additive decomposable func-dependence. More precisely, we will consider the particu-
tions and relations. Section 5 concludes with a summarylar case where the operator,”” is an operatom s
discussion, and a brief outline of some directions for fur-G x G — G . That is, the solutions to the problems

ther research. P, P, P, are elements from the same s€t. Further-
more, we will assume that the operatof,’" does not
2 Decomposition and Independence depend on the problemB, P, P, and therefore we can

drop them from the notation yielding a single operator:

Decomposition is an key technique that makes the solutioi + G x G — G. Lastly, we will consider; to be an

of otherwise complex problems tractable by the means of
a divide and conquer approach. . Decomposition exploits

the fact that occasionally a problem can be spl#gdom-

posed into subproblems which can be solved in isolation3  Independence & Decomposition inF._, 44
and then the overall solution can be obtained by aggregat-

ing the partial solutions. If such is the case, we say thaj this section we consider Independence and Decom-
the two parts aréndependentvith respect to the problem  yosapility of functions whose ranges are Abelian Groups:

under consideration. F._ ac. After defining Abelian Groups (3.1), we introduce

The subproblems, in practice, are seldom disjoint, but all ighe definition of Conditional Independence with respect to
not lost in this case, because we can define a weaker notidh function f, - I(-,-|-) (3.2) (Note that for probabilistic

of independence, namely conditional independence, that idependence the functiohis the very probability distri-
still useful. bution). We then show thak (-, -|-) satisfies four proper-

ties that are considered as essential/defining for the notion
Furthermore, if one or more of the subproblems are furthegy independence, see [Pearl '88] (3.3). These properties
decomposable into smaller parts, we can apply the samgre: trivial independence, symmetry, weak union and in-
strategy of aggregating partial solutions, recursively. Thusiersection. We then recapitulate the main results already
inadiyide and conquer fashion, we Wo_uld _be able to O_btairbxisting in the literature, (e.g., [Geiger and Pearl '93)),
a solution for our problem by aggregating it from solutions yegarding Conditional Independence relations that satisfy
of smaller and smaller parts. these four properties (3.4). The main target of these results

In what follows we will try to capture these intuitions un- IS to establish the equivalenc_e_ between conditiongl inde-
derlying Decomposition and Independence with more prePendence and graph separability (Note: the graph in ques-

belian Group for reasons that will become apparent later

cise definitions. tion is obtained by not drawing an edge between two vari-
o ) ) ables whenever they are independent of each other given
Definition (problem): A problem P is a triple P = the rest of the variables, and drawing one otherwise). We

(D, S, solp) whereD is a set called thdomain setSisa  then present the main theorem which allows us to “piece
set called thesolutions seandsolp : D — Sisafunction  gown” a set of pairwise conditional indepeindependences-
_that maps an elementfrom the domain of the problem to  jences of the fornii; (A, B|C) into a global decomposition

its solutions. of the functionf over the maximal cliques of the associ-

Example:  Determinant_Computation(M?,R,det) ~ ated graph. This theorem is the natural generalization of
function that returns the determinant of a matrix. tions, to the more general case&f. 4¢

Definition (conditional independence - variable-based)
Given a problemP = (D, S, solp) we say that,D is de-
composable intad and B conditioned onC, or equiva-
lently, thatA is independent oB conditioned onC, both
with respect to the problen®, if D = A x B x C (or
more liberally D is isomorphic withA x B x C) and Definition. (Abelian Group) An Abelian Group is a
there exist two problem®, = (A x C,Sac,solp,) and  quadruple(G,&,6,5) whereG is a nonempty setp :
P, = (BxC, Spc, solp,) and an operataph > : S4cx G x G — G'is a binary operation over elements fraih
Spc — Sp suchthatforald = (a,b,¢) € Ax B x C we that returns an element ¢f, 9 ¢ G ando : G — G is
have: a unary operation over the elements@fthat returns an
element ofG, with the following properties:

3.1 Abelian Groups

We start with the definition of Abelian Groups (a.k.a. com-
mutative groups), followed by some illustrative examples.

solp(d = (a,b,c)) = solp,(a,c) @];1’132 solp, (b, c)

o 1. @is associative i.e¥g1, g2, 93 € G (1P (g2Dg3)) =
Where@Pl’ 2 :Sac X Sgpe — Sp. 1 ((91 @92)@93)



2. ®is commutative i.eYg1,92 € G g1 D go = g2 D 1 Notation. Let (X, )acv stand for a collection of variables

that take values into the spacé’¥,).cv, whereV is a

set of indices for these variables. For a subsetf 1 let

4. © is an inversion operator i.eYg € G 3h € X4 = XqeaX, and in particular left stand forXy,. The
Ggoh=hog=0. Wewill call 6g the unique collection (X, ).cy represents the relevant variables per-
h with the previous property. Subsequently, the in-taining to our problemX’4 will stand for the set of all pos-
version property can be written 8 € G 3'© g €  sible configurations for the variables indexedAyTypical
Gstgdpog=6gdg=061 elements of¥4 will be denoted as s = (x4 )aca. Simi-
larly, X 4 will stand for(X,)aca andX will stand for X, .

Examples: 1. (R, +,0,—) is a group, whereR is the set  Given sets of variable indice$, B,C C V we will assert

of real numbers; is the addition between real numbebs; conditional independence statements regarding the associ-

is zero; and—is the unary operator minus that returns theated subsets of variable$,, X 5,X such as: the sets of

3. fis anidentity elementi.evg € G gdbd = 0Pg =g

inverse of a real number (e.g=(7) = —7and—(—6) =  variablesX 4 and X 5 are independent conditioned ofr

6). In more common notation we useas a binary operator and write/ (X 4, X 5| X ). We will actually use the short-

wherea — b actually stands fos + —b. hand formulation,A and B are independent conditioned
on C, and the shorthand notatidi{A, B|C) to stand for

2. ((0,00),+,1, ~1) is a group, where: is the multipli- (X s XnlX
cation between real numbers;is one; and ~is the in- (Xa, Xp|Xc).

verse of a real number with respect to multiplication (i.e, Definition (Conditional Independence with respect to a
a~! = 1). In more common notation we use fractions function f - I;(-,-|-)): Let (G,+,0,—) be an Abelian
as binary operators therefore having expressions sugh as Group, (X, ).cv be a collection of variables indexed by
which stands for - b= 1. V andX = x,cv X, be the set of configurations for these
variables. Letf : X — G be a function from the set to

G. Furthermore, letd, B,C C V a partition ofV (hence
X = X4 xXpxX¢c). Thenwe say that is independent of
4.75 = ({0,1},®,0,—) is a group wherep stands forthe B conditioned orC with respect to the functioif, and we
Exclusive OR (XOR) operation (or equivalently, addition write I;(A, B|C), if there exist two functiong, f> such
modulo 2). Moreexactlyd 0 =0;0®1=1;10=1 that:

andl ® 1 = 0, and— is the identity operator, that is:0 =

0;and—1=1.1 f(X) = f(Xa,Xp,Xc) = fi(Xa, Xc) + f2(XB, Xo)

For the purposes of simplifying notation, for the rest of this
section, we will use as operators the standard operation¥herefi : X¥a x Xo — Gandf; : Xp x Xo — G.
of the Additive Abelian Group instead of the fancier ones|nstead of the previous formula we will use the shorthand
that we have introduced in the definition of a group. Morengtation
precisely, instead of saying: 166, &, 6,5) be a group ...,
we will say: let(G,+,0,—) be a group ... . This will f(V)=f(A,B,C) = f1(A,C) + fo(B,C)
make the definitions and proofs look more familiar since
they are in additive notation. However the only propertiesll
that we will use are those of groups and as a consequen
all the results will hold for arbitrary groups, such as, for
example, the multiplicative or thi, group. Additionally, to the case of probabilistic independence where it is possi-
we will also use the shorthand notationaab b to stand for ble thatA, B, C do not coverV” . In our (general) case, if
a @ ©b, which in our familiar additive notation, to be used A B.C do not cover” then f(A, B, C) is not necessar-
from now on, will be nothing bud — b (which stands for ily defined. In the case of probability distribution there is a
a+—b). natural way to defing(A) whenA G V based onf (V).

] ) That is, by the means of marginals. In the more general
3.2 Independence with respect to a functiorf cases that we will study, (e.g., additive independence) the

. . . equivalent notion of a marginal is not necessarily present.
We now proceed to define a general notion of Condi- e .
. . . As a consequence the theory developed in this context will
tional Independence with respect to a functjgri (-, -|-).

o C . g . i of
This independence relation is basically a formalization ofIoe weaker, and hence more general. In the terminology

the intuition behind decomposition presented in Section 2.[Gelger & Pearl '93] independence statements, 53|C’)

. such thatA, B, C coverV, are calledsaturatedindepen-
namely, that independence should allow us to decomposeda
X ence statements.
problem into subproblems, solve them separately and then
combine the results. We start with some notations, thefexamples of Conditional Independence with respect to a

present the definition and some illustrative examples. functionf , I(-,-|-):

3. (R,-, 1, ~1)is not a group. This is becausehas no
inverse.

®fote that in our notion of conditional independence just
defined,A, B, C is necessarily a partition df as opposed



Probabilistic:  I¢(-,-|-): In the case when the group is
((0,00),+,1, ~1) and furthermore the functiofi : X —

(0, 00) is a probability distribution (that isy |y f(z) =

1, ormore generally,, df = [ f(x)dz = 1) then our no-
tion of conditional independendg (-, -|-) becomes proba-
bilistic conditional independence. Note that this group in-
cludes strictly positive probabilities only, in order to satisfy
the group property()(has no inverse element); (A4, B|C')

in this case is equivalent with:

f(A,B,C) = f1(A,C) - f2(B,C)

obtained by substituting in the definition the original
with the probabilistic group binary operator This is an
alternative definition for probabilistic conditional indepen-

3. (Weak Union) I(A,BU D|C) = I;(A,B|C UD)
-VA, B,C, D a partition of V.

4. (Intersection) Iy (A, B|CUD) & I;(D,B|CUA) =
I;(AuD,B|C)-VA,B,C,D apartitionof V. R

Proof. See the extended version of the paper [Silvescu and
Honavar '05]H

In order to prove Trivial Independence we need the identity
element property of the Abelian groyg-, +,0,—). To
prove Symmetry we needed commutativity. And to prove
Intersection we needed associativity and most importantly
the inverse operator. So it seems that we “need” all the
Abelian Group properties.

dence, see [Lauritzen '96]. Thus, we have just shown thag-4 Markovian Properties of Independence

probabilistic conditional independence is a particular cas
of Conditional Independence with respect to a functfon
when f happens to be a probability distribution.

Additive: If(-,-|-): In the case the group iR, +,0, —)
and we have a functiofi : X — R we obtain the notion of
Additive Independence i.e.:

f(A>B>C) = fl(AaC) +f2(B’O)

Relational: Iy(-,-]): In the case the group i€, =
({0,1},®,0,—) and we have a functiorf : X — Zy
(a.k.a. relation) we obtain:

f(A,B,C) = f1(A,C) ® f2(B,C)

3.3 Properties ofIf(-,-|-)

In this section we prove some properties associated wit
Ii(-,-).
[Pearl and Paz '87, Pearl '88 Geiger and Pearl '93, Cowel
et. al. ' 99] have identified as desirable for any conditional
independence relation because they capture some intuiti
notions that pertain to independence. We will show that th
our Conditional Independence relation with respect a func
tion f - If(-,-|-) satisfies these properties, thus providing
supporting evidence that this is the “right” concept .

Theorem 1 (independence properties)Let (G, +,0, —)
be an Abelian Group, X, ).cv be a collection of variables
indexed byV, f : X — G be a function from the set’
to the groupG, and A, B, C, D be subsets of/. Then
the Conditional Independence relation with respectfto
I;(-,-|-) has the following properties:

1. (Trivial Independence) I;(A,0|B) - VA, B a parti-
tion of V.

2. (Symmetry) I;(A, B|C) iff I;(B,A|C) -VA,B,C
a partition of V.

?Ne start with a survey some known results regarding

Conditional Independence relations satisfying the above-
mentioned four properties [Geiger and Pearl '93]. We
first introduce some graph terminology, then define differ-
ent types of Markov properties and subsequently, estab-
lish their equivalence. We end with a theorem that states
the equivalence between graph separability and conditional
independence. All results hold under the assumptions of:
trivial independence, symmetry, weak union and intersec-
tion.

Graph notions: A graphis a pairG = (V, E) whereV is

a finite set of vertices an#l' is a set of edges. That i%]

is set of pairs of vertice® C V x V . A graph is called
undirectedif it has the property that for every, 5 € V
(o, B) € Eifand only if (3,«) € E. Thus for the case of
undirected graphs there is no distinction between the edges
(o, B) and (3, «) and we will use them interchangeably to
nean the same thing, namely an undirected edge between

These are general properties that researcherg andg. In what follows we will only consider undirected

graphs.

\,%graphg = (V, E) is called complete iff there is an edge

etween all of its vertices. Aubgraphof a graphGg =
(V, E)) associated with set of verticdd’, V' C V, is a
graphG’ = (V', E’) suchthat’ = EN(V’'xV"). A set of
verticesC' C V is called acliquein the graphG = (V, E)
if the subgraph off associated witld” is a complete graph.
That s, there is an edge between every two vertic&s iim
the graphg. A clique C' is called amaximal cliqueof G if
there is no other cliqué” in the graph such thatC' c C".
Given agraply = (V, E) we will use M axCliques(G) to
denote the set of maximal cligues @f

Given a setd C V we denote byV(A) and callneigh-
bourhood of A the set of vertices fronV'\ A that share
at least one edge with an elementAn More precisely,
N(A) ={B|8 ¢ A and 3o € A such that (o, 3) € E}.

Given two verticesy, 3 € V we say that there existgmth
betweernn and g if there exists a set of vertices, ..., vk,



k > 0 such that(a,v1), (i, vi+1), (v, 8) € E VI < I(a,B|V\{«,3}) € Z. In genera,l given a sé&t of not

i < k. We will call the sequence;, 1, ...,7%, 3 the path  necessarily pairwise conditional independence statements
from « to 8. Furthermore, given three subsets of verticeswe define the seE,.;,wise as the set of of all pairwise
A,B,C C V we say thatC separates4d from B in the  independence statements that can be inferred frbos-
graphG = (V, E) if there is no path between a vertexdn  ing theTrivial independence, Symmetry, Weak uni@md

to a vertex inB that does not contain vertices frath We  Intersectionaxioms (i.e., all pairwise Independence state-
will use Sepg (A, B|C) to denote the fact that separates ments from the closure &f, - =1 ). Furthermore we define

A from Bin the graphg = (V, E). the associated dependence grgpR) of such a general set

of conditional independence statemextas the associated

Definition (Markov properties): [Pearl '88, Lauritzen dependence graph f,uirss.. M

'96] Let G = (V, E) be an undirected graph wheVeis a
set of indices into a collection of variabléX,,),cv. Then  Theorem 3 (separability < conditional independence):
we say that the conditional independence relation has thgseiger and Pearl '93]et X be a set of saturated indepen-
following properties relative to the graghiff: dence statements over a finite set of variall&s,).cv
indexed by elements frofi. Let X+ be the closure of2
1. (P) Pairwise Markov Propertyrelative to G iff ~ With respect to saturated trivial independence, symmetry,
(0, B) ¢ E = I(ev, B|V\{a, BY) . intersection and weak union. And 16(X") the depen-
dence graph associated with set of pairwise independence
2. (L) Local Markov Propertyrelative to G iff Va € statements iflc*. Then for anyA4, B, C partition of V we
V I(a, V\{{a} UN ()N (a)) . have:

3. (G) Global Markov Propertyrelative tog iff for any Sepg(s+) (A, B|C) « I(A,B|C) e nt
two setsA, B C V such that"\ (4 U B) separates!
andB in the grapty we havel (A, B[V\(AUB)). B pryof See [Geiger and Pearl ‘93] Theorem 13 for a proof
of this theoreml

It turns out that the previous three relations are equivalen
for any independence relation satisfying properties 1-4 o
the previous section (trivial independence, symmetry, wea
union and intersection).

orollary: In particulariy(-,-|-) satisfies the equivalence
etween graph separability and Conditional Independence
stated in the previous theorem

So far we have seen that any $etof Conditional Inde-
pendence statements produces a grgph™) such that
separability in this graph is equivalent to Conditional In-
dependence in the closure Bf If the Independence re-
lation in question isl¢(-,-|-) we have furthermore that
Proof. This theorem has been proved by [Pearl and Paepgs+)(A, B|C) <1;(A,B|C) € ¥t f(A,B,C) =

'87] and can also be found in [Pearl ‘88, Lauritzen '96, Jor- f; (A, C) + fo(B,C). We will next prove the main result
dan '05]. Note that the Global Markov property is slightly of the paper, namely, a theorem that will allow us to “com-
weaker in our case because we have only saturated indgile” pairwise decompositions that are implied by condi-
pendence and hence we cannot pick arbitrary sets that sefienal independence statements between two sets of vari-
arated andB instead of justX'\ (AU B) . Nevertheless the ables conditioned on a third one, of the foff{ A, B|C) €
equivalence still holds. See the longer version of this papeE*=-f(A, B,C) = fi1(4,C) + fo(B,C) into a “finer’
[Silvescu & Honavar '05] for a complete prodl decomposition over the maximal cliques of the associated
graphG(XT). In other words, this theorem shows that if
the four properties are satisfied, we can “boil down” a set of
Definition (closure): Let (X,,)acv be a collection of vari-  pairwise decompositions to one “wholisticholistic” decom-
ables indexed by , X be an arbitrary set of independence position over the maximal cliques of the associated graph
statements of the formh(A, B|C), whereA, B,C' isapar- G(XT).

tition of V, andA a set of axioms. We denote By the set

of allindependence statements that can be inferred fromthg 5 The factorization theorem

independence statementsinin a finite number of steps by

using only axioms from the sed. If such is the case, we We now proceed to prove the theorem that ties the Con-
call =T the closure of: under the axioms{.H ditional Independence relation with respect to a function
£ I¢(-,+]), with a factorization property of the functioh
over the maximal cliques of the associated graph.

Theorem 2 (Markov properties equivalence):[Pearl and
Paz '87] (G)«< (L) < (P) for any conditional indepen-
dence relation/ (-, -|-) that satisfiesTrivial independence,
Symmetry, Weak uniomnd Intersection B

Corollary. In particular: (G) < (L) < (P)for I¢(-,-|-). B

Definition (associated dependence graph): Given a

set ¥ of pairwise conditional independence statement
I(o, BIV\{e, B}), a graphG(X) = (V,E) is called Definition (factorization property): LetG = (V, E) be
the associated dependence graph (o, 3) ¢ E < anundirected graph, 1€¢G, +,0, —) be a group(X,)acv



be a collection of variables indexed byand f : X —
G be a function from the set to the groupG. We say

that f satisfies the factorization property (F) with respect

to the graply iff there exist a collection of function§f :
Xo — G}CEMaxCliques(g)

fe(C)

2.

CeMaxCliques(G)

Theorem 4 (factorization): LetG = (V, E) be an undi-
rected graph(G, +, 0, —) be an Abelian Group(X,, )acv
be a collection of variables indexed By, f : X — G
be a function from the set to the groupG. LetI(-,-|-)

conditional independence relation induced by the functio

f . Then(G) & (L) & (P) & (F), where all the Markov
properties are with respect tby (-, -|-). B

Proof. We will prove (F)=- (G) and (P)= (F) and this will

be enough to prove the theorem because the other equiv

lences follow from theMarkov propertiestheorem in the
previous section.

(F)= (G) LetG = (V,E)beagraphand : ¥ — G

n

Which implies, by definition, thafs (A, B|V\(AU B)) .

(P)= (F) In order to prove this implication we will use the
following helpful lemma:

Lemma (Moebius inversion): Let f and g be two func-
tions defined on the set of all subsets of a finite iSet
of variable indices, taking values into an Abelian Group
(G,+,0,—) . Then the following two statements are equiv-
alent:

(Dforall ACV:g(A) =) p.pca f(B)
(@forall ACV: f(A) =¥ ppcal—1)4\Elg(B)
where, by(—1)* we mean- if kis odd and+ if k is even.

(Note that we need this explicitation because multiplication
is not necessarily defined over the elements of G)

Proof. A proof of this lemma can be found in [Griffeath’76,
Lauritzen '96, Jordan '05]. See also the longer version of
fhis paper [Silvescu & Honavar '05H

We are now ready to prove the &)(F) implication from
thefactorization theorem.

be a function that satisfies the factorization property withLet f : X — G be the function, which induces an Inde-

respect tq7. Then it follows that:

2.

CeMaxCliques(G)

fV) = fe(C)

Now let A, B be two sets such thaf\ (A U B) separates
A andB in the graphg. Then

>

CeMaxCliques(G) & CNA#D

+ 2.

CeMaxCliques(G) & CNA=0

fv) = fe(0)

fe(C)

Let fl (V\B) = ZCEA]axCliques(g) & CNA#D fC(C) and
f2(VANA) = X cemanciiques(c) & cnazo fo(C). To show

that f; and f, are well defined we have to show that the
right hand sides of their definitions contain only variables

from V\ B and V'\ A respectively. Obviously, contains
only variables that are not from. We will show thatf;
has variables fron\ B only, by contradiction.

Supposef; contains variables frons. Then it follows that
there exists a cliqu€’ such thatC € MaxzCliques(G),
CNnA+#0PandalsaCNB #0. Leta c CNnAandg e
C N B. ButsinceC is a clique ing it follows that («, )
is an edge irg, which contradicts the fact th&t\(A U B)
separates! and B in the graphg.

Now given thatf; and f, are well defined we can write:

fV) = HA(WV\A) + fa(V\B)
fi(A, VA(AU B)) + f2(B, V\(AU B))

pendence relatiofi (-, -|-) over the variables indexed By
andg = (V, E) the graph with respect to whicly (-, -|-)
has the Pairwise Markov property (P). L&t € X be an
arbitrary, but fixed, element ct. We define forallA C V
the function

galzr) = f(za,xye)

where(z4,2%) is an elemeny with y, = z, if y € A
andy, = z7 if v ¢ A. Sincez™ is fixed,g4 depends on
throughz 4 only. Now, for allA C V, let

Y )MVlgp(a)

B:BCA

fa(z) =

This formula implies thajf 4 («) depends om: throughz 4
only.

By applying the Moebius inversion lemma to the functions
f andg we get:

f@) =gv@) = 3 fal)

A:ACV

We will show next thatf(z) = 0 wheneverA is not a
cligue of G. This fact, along with absorbing, into fy,
wheneverA is not a maximal clique and where C M €
MaxzCliques(G) , will prove our factorization property (F)
over the maximal cliques of the gragh (absorption: if
A C M € MazxzCliques(G) we can redefing},(z) =
fu(x) + fa(z) andf)(z) = 0).

To show thatf4(z) = 0 wheneverA is not a clique of,
let o, 8 € A such that(a, 3) ¢ E and letC = A\{«a, §}.



Then we have In the particular case wherf is a probability distrib-
ution the last implication in the previous theorem ((P)
fa@)= > (DN { gp(x) - gpufay () —(F)) is known as the Hammersley-Clifford theorem [Be-
B:BCC sag '74]. The proof technique based on the Moebius Inver-
—  9Busy(®) + 9BU{a,py ()} sion Lemma was first used for proving the Hammersley-
Clifford theorem for probabilities in [Griffeath '76] , see
We now want to show thalys(z) — gpuia}(¥) —  also [Lauritzen '96, Jordan '05]. To the best of our knowl-
9Bu{p} () +9BULa.py(z) = 0forall B C C = A\{a, 8}, edge, the proof presented is the first proof that holds for the
which will prove our claim. (o, ) ¢ E implies that general case of conditional independence with respect to a
I (o, BIV\{e, 8}) (by (P)), so there exisfy, f> such that  function f which takes values into an Abelian Group.

FV) = files V\{a, 8}) + F2(5, Ve, B}) 4 Particular Cases

ie.,
We now review some important examples of functions over
fxv) = fi(Ta, Tvi\fa,8)) + f2(2s, Tv\(a,5y) Vov € X particular Abelian Groups and the associated factorization
theorems.
by consideringry of the form (zg, x4, 23,25) Ve €
Xp, 2o € Xa,25 € X3 WhereR = V\(B U {a, 8}) we Probability Theory In the case when we consider

get functions f : X — (0,00) where the group is
((0,00),-,1, ~1) and additionally we impose the con-
9Bu{apy () = f(oB,Ta,28,TR) straint thaty__ f(z) = 1, or more generally/, df =

Fil@n, Ta,25) + folep, 2g,75) (F1) Jx f(x)dz = 1, we obtain strictly positive probability dis-
tributions and the notion of conditional independence be-
comes probabilistic conditional independence. By the fac-
torization theorem with respect to an associated gi@ph
we can decompose the probability distribution in terms of
clique potentialsf¢ as:

forallzp € Xp,z, € Xy, 23 € X3. By instantiatinge s
in the formula( 1) with 275 we get

9BU{a} (ZL') = f(.’IJB,CCa,Z‘%,.’IJE)
= fl(mB’xa’x;%)+f2(x37x27x}<2) f(v): H fC(O)
CeMaxCliques(G)
forall zg € X, 2, € X,. Similarly by instantiatinge,,

in in the formula(£1) with 2 we get This is precisely the Hammersley-Clifford theorem [Besag

'74, Griffeath '76, Lauritzen '96, Jordan '05] .
gpuipy(z) = flzp,25, 28 7%)

Fi(zp, b, %) + fales, zg, k) Additive Decomposability / Value Theory When we

consider functionsf : X — R where the group is
R, +,0,—) we obtain an additive decomposition of the

forall zp € Xp,23 € A3. And finally, by instantiating  fnction f over the maximal cliques of the associated graph
bothz,, andzs with z7, andz; respectively, in the formula G.

(f1) we get f(V)= > fe(0)

CeMaxCliques(G)

gB(x) = f($B7mfw l‘E,.’L‘*R)
filzp, x5, 2R) + fa(vp, 75, 75) This decomposition theorem can be used to decompose
value functions or fitness functions. A set of theorems in
the same spirit, while not in the same framework are the
utility decomposition theorems. See [Bacchus and Grove
'95] and references therein.

for all x5 € Xp. Now computing the formulgx) =

98(%) — 9Bu{a} (%) — 9BU(E} (T) + 9BU{0,5} (2) With these
alternative expansions we get

(x) = fi(zwp,z},23) +f2(1'B’I;;7gj*R) Relational Algebra A relation is a functionr : X —
{0,1}. If we consider the groui, = ({0,1},®,0,—) we

* * *
—J1\TB, L, T — 2B, Tz, X T .
fi@p, 2o, a) = fo(w, 25 0h) can decompose any relatiorin terms of smaller relations

—files, x5, wR) = f2(wp, 15, 7R) defined over subsets &f. In this case the factorization
+fi(zp, za,2R) + folxp, 28, 2F) theorem with respect to an associated grépill be:
=0
r(V) = X rc(C)

] CeMaxCliques(G)



5 Summary and Discussion marginals in the general case, a completeness theorem can
be proved. In a longer version of this paper [Silvescu and

In this paper, we have introduced a general notion of Contonavar ‘05] we prove a completeness theorem that states

ditional Independence/Decomposability. Following the in-that the axioms ofrivial independence, symmetry, inter-
tuitions derived from the general case, we introduced th&€ction and weak unioare a complete characterisation of
notion of Conditional Independence relative to a function Conditional Independences for functions over an Abelian

which takes values into an Abelian Group[/{, |-). Wk Group G . This thgorem is a natural generalization, for
then proved that (-, -|-) satisfies the following four prop- functions over Abelian groups, of a completeness theorem
erties: trivial independence, symmetry, weak union and info" Positive probability distributions and the four above-
tersection, which are held to be essential properties for th_glentloned axioms in a saturatgd probab|I|_st|c condmo_nal
notion of independence [Pearl '88]. As a consequence, W@dependence.(whlch was previously obtained by [Geiger

obtained the equivalence of the Global, Local and Pairwis&nd Pgarl '93]). This is one more important piecg of'evi—
Markov Properties fot ; (-, -|-), as well as the equivalence dence in support of the fact that these four properties in the

between Conditional Independence and Graph Separabili turate;q _setulp, ?js our gase is, are indeed an axiomatic core
in the associated graph, based on well known results e.gfo" Conditional Independence.
[Geiger and Pearl '93]. We then proved the main theorem

of this paper, which allows us to “lift up” a set of pairwise References
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