
Solving POMDPs Using Quadratically Constrained
Linear Programs

Christopher Amato
camato@cs.umass.edu

Daniel S. Bernstein
bern@cs.umass.edu

Shlomo Zilberstein
shlomo@cs.umass.edu

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT
Developing scalable algorithms for solving partially observ-
able Markov decision processes (POMDPs) is an important
challenge. One promising approach is based on representing
POMDP policies as finite-state controllers. This method has
been used successfully to address the intractable memory re-
quirements of POMDP algorithms. We illustrate some fun-
damental theoretical limitations of existing techniques that
use controllers. We then propose a new approach that for-
mulates the problem as a quadratically constrained linear
program (QCLP), the solution of which provides an optimal
controller of a desired size. We evaluate several optimization
methods for solving QCLPs and compare their performance
with existing POMDP optimization methods. While the op-
timization algorithms used in this paper only guarantee lo-
cally optimal solutions, the results show consistent improve-
ment of solution quality over the state-of-the-art techniques.
The results show that powerful nonlinear programming al-
gorithms can be used effectively to improve the performance
and scalability of POMDP algorithms.

1. INTRODUCTION
Since the early 1990’s, Markov decision processes (MDPs)
and their partially observable counterparts (POMDPs) have
been widely used by the AI community for planning under
uncertainty. POMDPs offer a rich language to describe sit-
uations involving uncertainty about the domain, stochastic
actions, noisy observations, and a variety of possible objec-
tive functions. POMDP applications include robot control
[16], medical diagnosis [12] and machine maintenance [7].
Robots typically have sensors that provide uncertain and
incomplete information about the state of the environment,
which must be factored into the planning process. In a med-
ical setting, the internal state of the patient is often not
known with certainty. The machine maintenance problem,
one of the earliest applications areas of POMDPs, seeks to
find a cost-effective strategy for inspection and replacement
of parts in a domain where partial information about the in-
ternal state is obtained by inspecting products. Numerous
other applications of POMDPs are surveyed in [3].

Developing effective algorithms for MDPs and POMDPs has
become a thriving AI research area [4, 8, 11, 13, 14, 15].
Thanks to these new algorithms and improvements in com-
puting power, it is now possible to solve very large and real-
istic MDPs. In contrast, current POMDP exact techniques
are limited by high memory requirements to toy problems.

POMDP exact and approximate solution techniques cannot
usually find near-optimal solutions with a limited amount of
memory. Even though an optimal solution may be concise,
current exact algorithms that use dynamic programming of-
ten require an intractable amount of space. While work has
been done to make this process more efficient [8], the time
and space complexity of POMDP algorithms remains a seri-
ous challenge. POMDP approximation algorithms can oper-
ate with a limited amount of memory, but as a consequence
they provide very weak theoretical guarantees. In contrast,
we describe a new approach that addresses the space require-
ment of POMDP algorithms while maintaining well-defined
optimality guarantees.

Current techniques to find optimal fixed-size controllers rely
solely on local information [14, 15] thus can give solutions
that are unboundedly below the global optimum. We present
a formulation that defines the optimal fixed-size controller,
and we employ standard nonlinearly constrained optimiza-
tion techniques in order to find POMDP policies using this
formulation. Nonlinearly constrained optimization is an ac-
tive field of research that has produced a wide range of tech-
niques that can quickly solve a variety of large problems [2].
The quadratic constraints and linear objective function of
our formulation belong to a special class of optimization
problems for which many robust and efficient algorithms
have been developed. While these techniques only guaran-
tee locally optimal solutions, the new formulation facilitates
a more efficient search of the solution space and produces
high-quality results. Moreover, the algorithms employ more
advanced techniques than those previously used [14, 15] to
avoid convergence at certain suboptimal points.

The rest of the paper is organized as follows. We first give
an overview of the POMDP model and explain how a so-
lution policy can be represented as a stochastic controller.
We then show how to produce the optimal controller using a
quadratically constrained linear program (QCLP). The op-
timal solution of the QCLP provides an optimal controller
of a desired size. We conclude by demonstrating for a set
of large POMDPs that our formulation permits higher val-
ued fixed-size controllers to be found than those generated
by previous approaches while maintaining similar running
times. This suggests that by using our QCLP, small, high-
valued controllers can be efficiently found for a large assort-
ment of POMDPs.

2. BACKGROUND
In this section, we describe the POMDP model and discuss
earlier work on fixed-size solutions to POMPDs. We also de-
scribe the representation of a POMDP policy as a stochastic
finite-state controller.

2.1 POMDP framework
A POMDP can be defined with the following tuple:
M = 〈S,A, P,R,Ω, O〉, with

• S, a finite set of states with designated initial state
distribution b0

• A, a finite set of actions

• P , the state transition model: P (s′|s, a) is the proba-
bility of transitioning to state s′ if action a is taken in
state s

• R, the reward model: R(s, a) is the expected immedi-
ate reward for taking action a in state s

• Ω, a finite set of observations

• O, the observation model: O(o|s′, a) is the probability
of observing o if action a is taken and this results in
state s′

In this paper, we consider the case in which the process un-
folds over an infinite sequence of stages. At each stage the
agent selects an action, which yields an immediate reward,
and receives an observation. The agent must choose an ac-
tion based on the history of observations seen. Note that be-
cause the state is not directly observed, it may be beneficial
for the agent to remember the observation history. The ob-
jective of the agent is to maximize the expected discounted
sum of rewards received. Because we are interested in the
infinite sequence problem, we use a discount, 0 ≤ γ < 1, to
maintain finite sums.

Finite-state controllers can be used as an elegant way of rep-
resenting POMDP policies using a finite amount of memory.
The state of the controller is based on the observation se-
quence, and in turn the agent’s actions are based on the
state of its controller. We allow for stochastic transitions
and action selection, as this can help to make up for lim-
ited memory [17]. The finite-state controller can formally
be defined by the tuple 〈Q,ψ, η〉, where Q is the finite set of
controller nodes, ψ : Q→ ∆A is the action selection model
for each node, and η : Q×A×O → ∆Q represents the node
transition model for each node given an action was taken
and an observation seen. The value of a node q at state s,
given action selection and node transition probabilities, is
provided by:

V (q, s) =
X

a

P (a|q)
ˆ
R(s, a)+

γ
X
s′

P (s′|s, a)
X

o

O(o|s′, a)
X
q′

P (q′|q, a, o)V (q′, s′)
˜

This equation is referred to as the Bellman equation.

2.2 Previous work
Policy Iteration (PI) [11] is a technique to find optimal
POMDP controllers that alternates between policy improve-
ment and evaluation. Although PI was originally developed
for deterministic controllers, it can be extended to stochastic
ones as well. In the improvement phase, dynamic program-
ming is used to enlarge the controller. This is referred to as
a backup. Nodes that have lesser or equal value for all states
are removed. The incoming edges of these nodes are redi-
rected to the dominating nodes, guaranteeing at least equal
value. The new controller is then evaluated using the above
Bellman equation to determine the updated value for each
node and state. This process continues until the controller
is no longer changed by the improvement phase. While this
method guarantees that a controller arbitrarily close to opti-
mal will be found, the controller may be very large and many
unnecessary nodes may be generated along the way. This
is exacerbated by the fact that the algorithm cannot take
advantage of an initial state distribution and must attempt
to improve the controller for any initial state.

Poupart and Boutilier [15] have developed a method called
bounded policy iteration (BPI) that uses a one step dynamic
programming lookahead to attempt to improve a POMDP
controller without increasing its size. Like PI, it alternates
between policy improvement and evaluation, but does not
add nodes during the improvement phase. BPI iterates
through the nodes in the controller and uses a linear pro-
gram, shown in Table 1, to find a distribution over backed
up values that dominates the node for all states. The linear
program examines the value of probabilistically taking an
action and then transitioning into the old controller, and if
an improvement can be found, these values are used to up-
date the action selection and node transition probabilities of
the controller. Like PI, BPI cannot readily take advantage
of an initial state distribution, thus it may require many
more improvements and nodes than is necessary for a given
start state. BPI guarantees to at least maintain the value
of a provided controller, but it is not likely to find a concise
optimal controller without adding nodes.

Meuleau et al. [14] have proposed another approach to im-
prove a fixed-size controller. The authors use gradient as-
cent (GA) to change the action selection and node transi-
tion probabilities and increase value. A cross-product MDP
is created from the controller and the POMDP, and ma-
trix operations allow the gradient to be calculated. Unfor-
tunately, this calculation does not preserve the parameters
as probability distributions. This further complicates the
search space and is less likely to result in a globally optimal
solution.The gradient can then be followed in an attempt to
improve the controller. Due to the complex and incomplete
gradient calculation, this method can be time consuming
and error prone.

2.3 Theoretical disadvantages of BPI and GA
Even simple POMDPs may require more advanced tech-
niques than BPI or gradient ascent in order to find an op-
timal controller of a fixed size. This can be seen with the
two state POMDP with two actions and one observation in
Figure 1. The transitions are deterministic, with the state
alternating when action A1 is taken in state 1 or action A2 is
taken in state 2. When the state changes, a positive reward

For a given node q
Variables xa and xq′,a,o

Maximize ε, for
Improvement constraints:

∀s V (q, s) + ε ≤
P

a xa

h
R(s, a) + γ

P
s′ P (s′|s, a)

P
o O(o|s′, a)

P
q′ xq′,a,oV (q′, s′)

i
Probability constraints:P

a xa = 1 and ∀a
P

q′ xq′,a,o = ca

∀a xa ≥ 0 and ∀q′, a, o xq′,a,o ≥ 0

Table 1: The linear program for BPI. Variable xa represents P (a|q) and variable xq′,a,o represents P (q′|q, a, o)
for the given node, q.

Figure 1: Simple POMDP for which BPI and GA
fail to find an optimal controller

is given. Otherwise, a negative reward is given. Since there
are no informative observations, given only a single node
and an initial state distribution of being in either state with
equal likelihood, the best policy is to choose either action
with equal probability. This can be modeled by a one node
stochastic controller with value equal to 0.

If the initial controller is deterministic and chooses either ac-
tion, say A1, BPI will not converge to the optimal controller.
The value for this controller in state 1 is R−γR/(1−γ) and
−R/(1− γ) in state 2. For γ > .5, which is common, value
is negative in each state. Based on a one step lookahead, as-
signing any probability to the other action, A2, will raise the
value for state 2, but lower it for state 1. This is because the
node is assumed to have the same value after a new action
is taken, rather than calculating the true value of updating
action and transition probabilities. Since BPI requires that
there is a distribution over nodes that increases value for all
states, it will not make any improvements.

Likewise, the gradient calculation in GA will have difficulty
finding the optimal controller. Because Meuleau et al. for-
mulate the problem as unconstrained, some heuristic must
be used to adjust the gradient to ensure proper probabilities
are maintained. For the example problem, some heuristics
will improve the controller, while others will remain stuck.
In general, no method can guarantee finding the globally op-
timal solution. Essentially, this controller represents a local
maximum for both of these methods, resulting in subopti-
mal behavior.

3. OPTIMAL FIXED-SIZE CONTROLLERS
The linear program used by BPI may allow for controller im-
provement, but can easily get stuck in local maxima. While
Poupart and Boutilier suggest heuristics for becoming un-
stuck, we believe that a nonlinear approach is more appro-
priate. Using a single step or even a multiple step backup
to improve a controller will generally not allow the optimal
controller to be found. While one node may appear better
in the short term, only an infinite lookahead can predict the
true change in value.

Meuleau et al. must construct a cross-product MDP from
the controller and the underlying POMDP in a complex pro-
cedure to calculate the gradient. Also, their representation
does not take into account the probability constraints and
thus does not calculate the true gradient of the problem.
Techniques more advanced than gradient ascent may be used
to traverse the gradient, but these shortcomings remain.

Unlike BPI and Meuleau et al.’s gradient ascent, our formu-
lation allows the optimal controller to be found for a given
size. This is done by considering the values of each node and
state pair variables. To ensure that these values are correct
given the action selection and node transition probabilities,
quadratic constraints (the Bellman equations for each node
and state) must be added. This results in a quadratically
constrained linear program. Although it is often difficult to
solve a QCLP exactly, many robust and efficient algorithms
can be applied. Our QCLP has a simple gradient calcula-
tion and an intuitive representation that matches well with
common optimization models. The more sophisticated non-
linearly constrained optimization techniques typically used
to solve QCLPs may require more resources, but commonly
produce much better results.

We believe that many POMDPs have small optimal con-
trollers or can be approximated concisely. As the optimiza-
tion complexity primarily depends on the controller size and
not the size of the POMDP, this allows the algorithm to scale
up to large problems. Optimization techniques permit these
controllers to be found while maintaining moderate resource
usage. In the next section, we give a formal description of
the QCLP and a proof that it provides the optimal controller
of a fixed size.

For variables: x(q′, a, q, o) and y(q, s)
Maximize X

s

b0(s)y(q0, s)

Given the Bellman constraints:

∀q, s y(q, s) =
X

a

240@X
q′

x(q′, a, q, o)

1AR(s, a) + γ
X
s′

P (s′|s, a)
X

o

O(o|s′, a)
X
q′

x(q′, a, q, o)y(q′, s′)

35

And probability constraints:

∀q, o
X
q′,a

x(q′, a, q, o) = 1

∀q, o, a
X
q′

x(q′, a, q, o) =
X
q′

x(q′, a, q, ok)

∀q′, a, q, o x(q′, a, q, o) ≥ 0

Table 2: The quadratically constrained linear program for finding the optimal fixed-size controller. Variable
x(q′, a, q, o) represents P (q′, a|q, o), variable y(q, s) represents V (q, s), q0 is the initial controller node and ok

is an arbitrary fixed observation.

3.1 QCLP formulation
Unlike BPI, which alternates between policy improvement
and evaluation, our quadratically constrained program im-
proves and evaluates the controller in one phase. The value
of an initial node is maximized at an initial state distri-
bution using parameters for the action selection probabil-
ities at each node P (a|q), the node transition probabili-
ties P (q′|q, a, o), and the values of each node in each state
V (q, s). This approach differs from previous approaches in
that it explicitly represents the node values as variables.
To ensure that the values are correct given the action and
node transition probabilities, nonlinear constraints must be
added to the optimization. These constraints are the Bell-
man equations given the policy determined by the action
selection and node transition probabilities.

To reduce the representation complexity, the action selection
and node transition probabilities are merged into one, where:

P (q′, a|q, o) = P (a|q)P (q′, |q, a, o)

and X
q′

P (q′, a|q, o) = P (a|q)

This results in a quadratically constrained linear program.
QCLPs may contain quadratic terms in the constraints, but
have a linear objective function. They are a subclass of gen-
eral nonlinear programs that has structure which algorithms
can exploit. This produces a problem that is more difficult
than a linear program, but simpler than a general nonlin-
ear program. The QCLP formulation also permits a large
number of algorithms to be applied.

Table 2 describes the QCLP which can provide the opti-
mal fixed-size controller. The value of a designated initial

node is maximized given the initial state distribution and
the necessary constraints. The first constraint represents the
Bellman equation for each node and state. The second and
last constraints ensure that the variables represent proper
probabilities, and the third constraint guarantees that ac-
tion selection does not depend on the observation that has
not yet been seen.

Theorem 1. An optimal solution of the QCLP results in
an optimal stochastic controller for the given size and initial
state distribution.

Proof. The optimality of the controller follows from the
Bellman equation constraints and maximization of a given
node at the initial state distribution. The Bellman equa-
tion constraints restrict the value variables to valid amounts
based on the chosen probabilities, while the maximum value
is found for the initial node and state. Hence, this produces
an optimal controller.

4. METHODS FOR SOLVING THE QCLP
Constrained optimization seeks to minimize or maximize
an objective function based on equality and inequality con-
straints. When the objective and all constraints are linear,
this is called a linear program (LP). As our formulation has
a linear objective, but contains some quadratic constraints,
it is a quadratically constrained linear program. Unfortu-
nately, our problem is nonconvex. Essentially, this means
that there may be multiple local maxima as well as global
maxima.

On the positive side, a wide range of nonlinear program-
ming algorithms have been developed that are able to effi-
ciently solve nonconvex problems with many variables and

constraints. Methods may also be combined to promote con-
vergence and improve solution quality. Locally optimal so-
lutions can be guaranteed, but at times, globally optimal
solutions can also be found. For example, merit functions,
which evaluate a current solution based on fitness criteria,
can be used to improve convergence and the problem space
can be made more convex by approximation or domain infor-
mation. These methods are much more robust than gradi-
ent ascent, while retaining modest efficiency in many cases.
Also, the quadratic constraints and linear objective of our
problem often permits better approximations and is usually
more convex than problems with higher degree objective and
constraints.

For this paper, we used a freely available nonlinearly con-
strained optimization solver called snopt [9] on the NEOS
server [5, 10, 6]. The algorithm finds solutions by a method
of successive approximations called sequential quadratic pro-
gramming (SQP). SQP uses quadratic approximations which
are then solved with quadratic programming (QP) until a
solution to the more general problem is found. A QP is
typically easier to solve, but must have a quadratic objec-
tive function and linear constraints. In snopt, the objective
and constraints are combined and approximated to produce
the QP. A merit function is also used to guarantee conver-
gence from any initial point. The POMDP and nonlinear
optimization models were described using a standard opti-
mization language AMPL, and gradients were calculated by
the NEOS solver.

5. EXPERIMENTS
In this section, we compare the results of a nonlinear opti-
mization algorithm, snopt, with those of BPI. The gradient
ascent developed by Meuleau et al. was also implemented,
but produced significantly worse results and required sub-
stantially more time than the other techniques. For exam-
ple, the best six node controller for the machine domain
examined below had a value that was over 40% lower and
a time over 400% longer than the controllers found by the
QCLP and BPI. GA was unable to improve larger controllers
for this domain in under 8 hours. BPI was implemented in
a manner that is very similar to the original techniques de-
scribed in [15].

A 57 state grid world and a 256 state machine maintenance
problem are used to examine the values and running time
for fixed-size controllers given an initial state distribution.
BPI and snopt were initialized with the same ten random
deterministic controllers and best and mean solutions are
reported. We also report the mean time for each algorithm
to complete the optimization of a single controller. Because
the NEOS server was used for running snopt, exact time
comparison was not possible. Yet, based on the fact that
both algorithms ran on high-end desktop computers, we can
conclude that the higher-complexity of solving QCLPs does
not make our approach intractable. In fact, solution times
differ by a small constant factor in our experiments.

5.1 Hallway benchmark
The hallway domain, shown in Figure 2 and introduced by
Littman, Cassandra and Kaelbling [13], is a frequently used
benchmark for POMDP algorithms. It consists of a grid
world with 57 states, 21 observations and 5 actions. There

Figure 2: The grid world for the hallway domain

are 14 squares in which the robot may face north, south, east
or west, and a goal square. The robot begins in a random
location and orientation and must make its way to a goal
state by turning, going forward or staying in place. The start
state is never the same as the goal state and the observations
consist of the different views of the walls in the domain.
Both the observations and transitions are extremely noisy.
Only the goal has a reward of 1 and the discount factor used
was 0.95.

The results for this domain are shown in Table 3 and Figure
3. We see that for all controller sizes the mean value pro-
duced by the QCLP is more than twice that of BPI and the
best QCLP controllers only miss this mark by a small margin
in two cases. The optimal policy for the underlying MDP,
which represents an upper bound on the optimal POMDP
policy, was found to be 1.519. The QCLP provides a very
good solution to the POMDP that is significantly closer than
that found by BPI.

The time taken to produce these controllers, although diffi-
cult to compare, remains similar, but the difference increases
as controller size grows. While in this case the much better
results produced using QCLP required more computation
time, it is not generally the case the QCLP is less efficient.
The necessity of improving the controllers for all states and
reliance on an LP causes BPI to produce much less improve-
ment than the QCLP for this problem.

Poupart and Boutilier also report results for BPI on a 1500
node controller. In their implementation an escape tech-
nique, which attempts to avoid local maxima, was also used.
After 69 hours, BPI produced a controller with a value of
0.51. Our QCLP formulation generates a controller with
65% higher value in 0.22% of the time with 0.67% of the
representation size.

5.2 Machine maintenance
In order to test performance on a larger problem, we con-
sider a machine maintenance domain with 256 states, 4 ac-
tions and 16 observations [4]. There are four independent
components in a machine used to manufacture a part. Each
component may be in ‘good,’ ‘fair’ or ‘bad’ condition as well

nodes QCLP BPI

1 < 1 min < 1 min
2 < 1min < 1 min
4 < 1 min < 1 min
6 1.4 mins 1.6 mins
8 6.9 mins 2.9 mins
10 9.1 mins 4 mins

Table 3: Mean running times for the QCLP and BPI
on the hallway problem

Figure 3: Hallway domain: (a) the best and (b) the mean values using BPI and the QCLP for increasing
controller size

as ‘broken’ and in need of a replacement. Each day, four
actions are possible. The machine can be used to ‘manu-
facture’ parts or we can ‘inspect,’ ‘repair,’ or ‘replace’ the
machine. The ‘manufacture’ action produces ‘good’ parts
based on the condition of the components. ‘Good’ compo-
nents always produce ‘good’ parts, and ‘broken’ components
always produce ‘bad’ parts. Components in ‘fair’ or ‘bad’
condition raise the probability of producing ‘bad’ parts. The
condition of the resulting part is fully observed. Inspecting
the machine causes a noisy observation of either ‘good’ or
‘bad’ for each component. Components in ‘good’ or ‘fair’
condition are more likely to be seen as ‘good,’ and those in
‘fair’ or ‘broken’ are more likely to be seen as ‘bad.’ Re-
pairing the machine causes parts that are not ‘broken’ to
improve one condition with high probability. The ‘replace’
action transitions all components to ‘good’ condition. Re-
wards for each action are: 1 for manufacturing good parts
for the day, -1 for inspecting, -3 for repairing and -15 for
producing bad parts. A discount factor of 0.99 was used.
For more details, see [4].

For this problem, the optimal policy for the underlying MDP
is known to be 66.236. We see in Table 4 and Figure 4 that
very small controllers produce solutions which are close to
this upper bound. The techniques using the QCLP show
higher best and mean values for all controller sizes than
those produced by BPI. While the differences are less dra-
matic than the previous example, they are no less consis-
tent. Also, the lower mean values for BPI suggest a heavier
reliance on the initial controller for producing high values.
And although we again notice a disparity in running time as
the number of nodes increases, we also notice that the best
10 node controller produced by BPI has lesser value and
longer running time than the best 4 node controller for the
QCLP. This suggests that smaller controllers could replace
those produced by BPI.

6. CONCLUSIONS
We introduced a new approach for solving POMDPs using
a nonlinear programming formulation of the problem, which

defines an optimal fixed-size stochastic controller. Near-
optimal controllers can be found using standard nonlinear
optimization techniques. This provides a promising new way
for solving POMDPs and approximating optimal solutions
with concise controllers. We show that by using nonlinear
optimization algorithms, we can produce higher valued con-
trollers than those found by BPI, the existing state-of-the-
art approach. We demonstrate empirically a consistent im-
provement over a range of controller sizes. We also show that
better solutions can be found with significantly smaller con-
trollers. These results suggest that optimal or near-optimal
controllers could be found for large POMDPs, making our
approach very useful in a range of practical application do-
mains.

In the future, we plan to examine the relationship between
the nonlinear formulation and the performance of various
optimization algorithms. Different representations may bet-
ter match current nonlinearly constrained optimization meth-
ods and may thus produce better solutions. We also plan
to study the applicability of the QCLP approach to problems
involving multiple agents modeled as decentralized POMDPs.
The BPI technique has already been generalized successfully
to the multi-agent case [1]. In future work, we expect to be
able to demonstrate similar performance gains in optimizing
fixed-size controllers for a set of agents in large multi-agent
domains.

nodes QCLP BPI

1 < 1 min 1.3 mins
2 < 1 min 4.6 mins
4 7.9 mins 14.1 mins
6 42.4 mins 25.5 mins
8 57.5 mins 42.9 mins
10 130.8 mins 62.8 mins

Table 4: Mean running times for the QCLP and BPI
on the machine problem

Figure 4: Machine domain: (a) the best and (b) the mean values using BPI and the QCLP for increasing
controller size

7. ACKNOWLEDGMENTS
Support for this work was provided in part by the National
Science Foundation under Grant No. IIS-0535061 and by
the Air Force Office of Scientific Research under Agreement
No. FA9550-05-1-0254.

8. REFERENCES
[1] D. S. Bernstein, E. Hansen, and S. Zilberstein.

Bounded policy iteration for decentralized POMDPs.
In Proceedings of the Nineteenth International Joint
Conf. on Artificial Intelligence, Edinburgh, Scotland,
2005.

[2] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, 2004.

[3] A. Cassandra. A survey of pomdp applications. In
AAAI Fall Symposium, 1998.

[4] A. R. Cassandra. Exact and Approximate Algorithms
for Partially Observable Markov Decision Processes.
PhD thesis, Brown University, Providence, RI, 1998.

[5] J. Czyzyk, M. Mesnier, and J. Moré. The NEOS
server. IEEE Journal on Computational Science and
Engineering, 5:68–75, 1998.

[6] E. Dolan. The NEOS server 4.0 administrative guide.
Technical Report ANL/MCS-TM-250, Argonne
National Laboratory, Mathematics and Computer
Science Division, 2001.

[7] J. Eckles. Optimum maintenance with incomplete
information. Operations Research, 16:1058–1067, 1968.

[8] Z. Feng and S. Zilberstein. Efficient maximization in
solving POMDPs. In Proceedings of the Twentieth
National Conf. on Artificial Intelligence, Pittsburgh,
PA, 2005.

[9] P. E. Gill, W. Murray, and M. Saunders. Snopt: An
SQP algorithm for large-scale constrained
optimization. SIAM Review, pages 99–131, 2005.

[10] W. Gropp and J. Moré. Optimization environments
and the NEOS server. Approximation Theory and
Optimization, pages 167–182, 1997.

[11] E. A. Hansen. Solving POMDPs by searching in
policy space. In Proceedings of the Fourteenth Conf.
on Uncertainty in Artificial Intelligence, pages
211–219, Madison, WI, 1998.

[12] M. Hauskrecht and H. Fraser. Modeling treatment of
ischemic heart disease with partially observable
Markov decision processes. In Proc. of American
Medical Informatics Association annual symposium on
Computer Applications in Health Care, pages 538–542,
1998.

[13] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling.
Learning policies for partially observable
environments: Scaling up. Technical Report CS-95-11,
Brown University, Department of Computer Science,
Providence, RI, 1995.

[14] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R.
Cassandra. Solving POMDPs by searching the space
of finite policies. In Proceedings of the Fifteenth Conf.
on Uncertainty in Artificial Intelligence, pages
417–426, Stockholm, Sweden, 1999.

[15] P. Poupart and C. Boutilier. Bounded finite state
controllers. In Advances in Neural Information
Processing Systems, 16, Vancouver, BC, 2003.

[16] R. Simmons and S. Koenig. Probabilistic navigation in
partially observable environments. In Proc. of the 14th
International Joint Conference on Artificial
Intelligence, pages 1080–1087, 1995.

[17] S. Singh, T. Jaakkola, and M. Jordan. Learning
without state-estimation in partially observable
Markovian decision processes. In Machine Learning:
Proceedings of the Eleventh International Conference,
pages 284–292, 1994.

