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Abstract

We provide a conceptual description of the field of non-
monotonic reasoning as comprising two essentially different
theories, preferential and explanatory nonmonotonic reason-
ing. The relationship between the two constitutes the main
theoretical problem of nonmonotonic reasoning, and its solu-
tion should hopefully provide an impetus for the future devel-
opment of the field.

Introduction
Studies in nonmonotonic reasoning have given rise to two
different approaches that we will callpreferentialand ex-
planatory nonmonotonic reasoning. The explanatory ap-
proach includes default and modal nonmonotonic logics, as
well as logic programming with negation as failure (see, e.g.,
(Marek & Truszczýnski 1993; Bochman 2005)). The prefer-
ential approach was initiated in (Gabbay 1985) on the logical
side, and in (Shoham 1988) on the AI side. It encompasses
nonmonotonic inference relations and a general theory of
belief change (see (Bochman 2001; Schlechta 2004)).

Differences between the two approaches can be found on
a number of levels. To begin with, there are two senses
in which a logical formalism can be nonmonotonic. First,
it can belocally nonmonotonic in that its rules do not ad-
mit addition of new premises, that is, they do not satisfy
Strengthening the Antecedent. Second, it may beglobally
nonmonotonic in that adding further rules to a system may
invalidate previous conclusions. These two kinds of non-
monotonicity are largely independent. Thus, preferentialin-
ference relations (Kraus, Lehmann, & Magidor 1990) are
locally nonmonotonic (Birds fly does not implyPenguins
fly). However, they are globally monotonic, since addition
of new conditionals does not invalidate previous conclu-
sions. On the other hand, default logic (Reiter 1980) ex-
emplifies the combination of local monotonicity with global
nonmonotonicity. Any default theory can be extended with
default rules obtained from existing ones by strengthening
their premises; they will not change the set of extensions. On
the other hand, adding arbitrary new rules to the default the-
ory may result in creating new extensions, so nonmonotonic
conclusions made earlier will not, in general, be preserved.
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Despite this difference, one of the main incentives be-
hind the preferential approach has been the hope that default
logic and other formalisms can be subsumed by the prefer-
ential approach under some ingenious notion of preference.
Unfortunately, subsequent studies have raised grave doubts
about this hope. Thus, the nonmonotonic semantics of de-
fault logic has turned out to violate even the most basic pos-
tulates of cumulative inference (see (Makinson 1989)).

In a hindsight, this outcome should have been expected,
since the selection of intended models in the explanatory ap-
proach is not preferential in a usual sense; rather, such mod-
els are determined as models satisfying certain justification
conditions with respect to the rules. On a most abstract level,
they are expressible as fixed points of an operator which is
not even monotonic. Accordingly, the relevant preference
appears to be a trivial, zero-one preference that differenti-
ates only right models from bad ones.

Both preferential and explanatory nonmonotonic reason-
ing can be seen as theories of a reasoned use of assump-
tions. Now, preferential reasoning treats such assumptions
as defaults, namely as normality assumptions we can use
whenever there is no evidence to the contrary. This pre-
sumptive reading has a semantic counterpart in the notion of
normality: defaults should hold for normal circumstances,
and the theory tells us to assume that the world is as normal
as is compatible with the known facts. This naturally creates
a preferential setting, in which the normality of models is
measured by the set of defaults they support (see below).

Explanatory reasoning assigns, however, a different role
to assumptions. Following (Poole 1989), we can call such
assumptionsconjectures. Conjectures are assumptions that
we make in order to explain observations. The supposition
of normality is not essential here; we make conjectures only
if there is evidence that requires them for explanation, in
contrast to defaults that can be freely assumed whenever
possible. As was argued by Poole, the distinction between
defaults and conjectures is closely related to the distinction
between prediction and explanation: while we use defaults
in order to predict facts that are yet unknown, conjectures
are invoked when we have to explain known facts. Untreated
syphilis can explain paresis, though the syphilis assumption
does not have predictive force of deriving paresis.

Unfortunately, the above distinction has been obscured,
because all the main formalisms of nonmonotonic reason-



ing, including default logic, have claimed their rights and
responsibility on representation of normality defaults. Thus,
Reiter has suggested in (Reiter 1980) that we can identify
such defaults with default rules of the formA:B/B, appro-
priately called normal default rules.

On our view, the preferential approach provides a more
adequate analysis of normality defaults. The examples in the
literature that reveal a discrepancy between Reiter’s normal
defaultsA:B/B and corresponding preferential conditionals
A |∼B point out in favor of the latter. So the criticism raised
against default logic in the preferential camp seems justified
so far as we are talking about which notion better reflects our
understanding of normality. Still, there is nothing wrong or
nonintuitive about having bothA : B/B andA : ¬B/¬B
in a default theory, though it is certainly counterintuitive to
treat such rules simultaneously as normality defaults. In the
setting of default logic, such rules say simply that, whenA
holds, bothB and¬B are equally admissible conjectures.
This indicates, however, that default logic has a subject of
its own that should not be extrapolated to the entire field of
nonmonotonic reasoning.

Nonmonotonic Reasoning and Logic

Nonmonotonic reasoning changes the ways logic is used.
To begin with, there are many reasons to believe that non-
monotonic reasoning cannot be expressed in the form of a
logical inference in some ingenious ‘nonmonotonic logic’.
Logical systems provide only a more or less tightframe-
work in which nonmonotonic reasoning can be represented
and performed. This pertains not only to monotonic logical
systems, but also to so-called nonmonotonic logics.

Many nonmonotonic formalisms have two components.
The first is a logical framework, e.g., classical logic in
circumscription, or a modal logic in modal nonmonotonic
logics. The second, nonmonotonic, component determines
which of the possible models should be considered as in-
tended ones. In ordinary logical systems, the semantics de-
termines the logical consequences of a theory, but also, and
most importantly, it provides an interpretation for the syn-
tax itself. Namely, it provides propositions and rules of a
syntactic formalism withmeaning, and its theories with in-
formational content. By its very design, however, the non-
monotonic semantics is defined as a certainsubsetof the set
of possible models, and consequently it does not determine,
in turn, an interpretation of the syntax. As a result, two rad-
ically different theories may have the same nonmonotonic
semantics. Furthermore, such a difference cannot be viewed
as apparent, since it may well be that by adding further rules
or facts to both these theories, we obtain new theories that
already have different nonmonotonic models.

The above situation is quite similar to the distinction be-
tween meaning (intension) and extension of logical names,
a distinction that is fundamental for modern logic. Non-
monotonic semantics provides, in a sense, the extensional
content of a theory in a particular context of its use. In order
to determine the meaning, or informational content, of a the-
ory, we have to consider the underlying logic. This requires
a clear separation of logical and nonmonotonic aspects of

nonmonotonic reasoning. The separation suggests the fol-
lowing understanding of nonmonotonic reasoning:

NMR = Logic + Nonmonotonic Semantics

Logic and its associated logical semantics are responsi-
ble for providing the meaning of the rules of the formalism,
while the nonmonotonic semantics provides us with non-
monotonic consequences of a theory. The benefits of this
separation will be described below. As we will see, how-
ever, both approaches to nonmonotonic reasoning will have
to be elaborated in order to comply with this schema.

Preferential Nonmonotonic Reasoning
The main problem nonmonotonic reasoning deals with is
that default assumptions are often incompatible with one
another, or with known facts. In such cases of conflict we
must have a reasoned choice. The preferential approach
follows here the slogan“Choice presupposes preference”.
Namely, it asserts that the choice of assumptions should be
made by establishing preferences among admissible options.
This makes preferential approach a special case of a general
methodology that is at least as old as the decision theory.

Epistemic States
It has been suggested in (Bochman 2001) that a general rep-
resentation of preferential nonmonotonic reasoning can be
given in terms of epistemic states, defined below.

Definition 1. An epistemic stateis a triple (S, l,≺), where
S is a set of(admissible) belief states, ≺ a preference rela-
tion onS, while l is a labeling function assigning a deduc-
tively closedbelief setto every state fromS.

On the intended interpretation, belief states are gener-
ated by allowable combinations of default assumptions. The
preference relation is usually based on the supposition that a
belief state generated by a larger set of defaults is preferred
to a state generated by a smaller set. Additional preferences
arise from priorities among defaults themselves (see below).

Epistemic states are epistemic because they say nothing
directly about what is actually true, but only what is believed
(or presumed) to hold. This makes them relatively stable
entities; change in facts does not necessary lead to change in
epistemic states. The actual assumptions made in particular
situations are obtained by choosing preferred belief states
that are consistent with the facts.

Prioritization A formal description of epistemic states
generated by default bases provides us with characteristic
properties of epistemic states arising in particular situations.
An epistemic state isbase-generatedby a set of propositions
∆ with respect to a classical consequence relationTh if

• S is the setP(∆) of subsets of∆;

• l(Γ) = Th(Γ), for anyΓ ⊆ ∆;

• ≺ is monotonic onP(∆): if Γ ⊂ Φ, thenΓ ≺ Φ.

The preference order on belief states is usually derived
from priorities among individual defaults. This task is re-
ducible to a problem of combining a set of preference rela-
tions into a single ‘consensus’ preference order. Let∆ be



ordered by apriority relation ⊳ which will be assumed to
be a strict partial order:α⊳β will mean thatα is prior to β.

Recall that defaults are presumed to hold insofar as it is
consistent to do so. Hence any defaultδ determines a pri-
mary preference relation4δ onP(∆) by which admissible
belief sets containing the default are preferred to belief sets
that do not contain it:Γ 4δ Φ ≡ if δ ∈ Γ thenδ ∈ Φ.

Now the problem of finding a global preference order
amounts to constructing an operator that maps the set of
preference relations{4δ| δ ∈ ∆} to a single preference
relation onP(∆). By the results from (Andreka, Ryan, &
Schobbens 2002), if this operator is required to satisfy the
Arrow’s conditions, it should be defined via the following
lexicographic rule:

Γ ≺ Φ ≡ Γ 6= Φ ∧ (∀α ∈ Γ\Φ)(∃β ∈ Φ\Γ)(β ⊳ α)

(Lifschitz 1985) was the first to use this construction in
prioritized circumscription, while (Geffner 1992) employed
it for defining preference relations on sets of defaults.

Despite its virtues, the above definition of preference still
does not cover some applications, because it is based on
absolute, unconditional priorities. Thus, inheritance hierar-
chies (see below) turn out to be representable in terms of pri-
orities that are conditional upon presence of other defaults.

A conditional priority relation on∆ is a ternary relation
α ⊳Γ β (whereΓ ⊆ ∆) saying thatα is prior to β with re-
spect toΓ. Conditional priorities can also be used for defin-
ing preference relations as follows:

Γ ≺ Φ ≡ Γ 6= Φ & (∀α ∈ Γ\Φ)(∃β ∈ Φ\Γ)(β ⊳Γ α)

It turns out that, under some natural additional conditions,
this generalized preference relation has the same nice fea-
tures as in the absolute case.

Nonmonotonic inference and its kinds
All nonmonotonic inference relations presuppose a two-step
selection procedure: for an evidenceA, we take the set〈A〉
of belief states that are consistent withA and choose pre-
ferred elements in this set. Askeptical inference(or predic-
tion) is obtained when we infer only what is supported by
each of the preferred states. Namely,B is a skeptical con-
clusion fromA if each preferred belief set that is consistent
with A, taken together withA itself, impliesB.

Definition 2. B is a skeptical consequenceof A in an epis-
temic state ifA→B holds in all preferred states from〈A〉.

A set of conditionals that are valid in an epistemic stateE

forms askeptical inference relationdetermined byE.
A credulous inference(or explanation) is obtained by in-

ferring conclusions supported by at least one preferred belief
state consistent with the facts. In other words,B is a credu-
lous conclusion fromA if at least one preferred admissible
belief state in〈A〉, taken together withA, impliesB.

Definition 3. B is acredulous consequenceof A in an epis-
temic state ifA→B is supported by at least one preferred
belief state in〈A〉.

The set of conditionals that are credulously valid in an
epistemic stateE forms acredulous inference relationde-
termined byE. The above definition generalizes the notion

of explanation from (Poole 1988). Credulous inference is
only one, though important, instance of a broad range of
non-skeptical inference relations (see (Bochman 2003)).

Axiomatic characterization

A common ground for axiomatization of both skeptical and
credulous inference is provided by a logic of conditionals
suggested in (van Benthem 1984). Thebasic inference rela-
tion is determined by the following postulates:

Reflexivity A |∼A

Left Equivalence If � A↔ B andA |∼C, thenB |∼C

Right Weakening If A |∼B andB � C, thenA |∼C

Antecedence If A |∼B, thenA |∼A ∧B

Deduction If A ∧B |∼C, thenA |∼B → C

Cautious Monotony If A |∼B ∧ C, thenA ∧B |∼C

Since all the above postulates involve at most one con-
ditional premise, the basic entailment boils down to deriv-
ability among single conditionals. The following theorem
provides a direct description of this derivability relation.

Theorem 1. A |∼B 
B C |∼D if and only if eitherC � D,
or A→ B � C → D andC→¬D � A→¬B.

Basic inference does not allow to combine different con-
ditionals, but it is complete for derivability among individual
conditionals; it captures exactly the one-premise derivability
of both skeptical and credulous inference relations.

The following postulate was singled out in (Gabbay 1985)
as a characteristic feature of sceptical inference:

(And) If A |∼B andA |∼C, thenA |∼B ∧ C.

Indeed, in the framework of basic inference, And is all we
need for capturing precisely the preferential inference rela-
tions from (Kraus, Lehmann, & Magidor 1990). Such infer-
ence relations provide a complete axiomatization of skepti-
cal inference with respect to epistemic states. An important
special case of preferential inference, rational inference re-
lations, are determined by linearly ordered epistemic states;
they are obtained by adding further

(Rat. Monotony) If A |∼B andA |≁¬C, thenA∧C |∼B.

In contrast, credulous inference relations do not satisfy
And. Still, they are axiomatized as basic inference relations
satisfying Rational Monotony.

Rational Monotony is not a ‘Horn’ rule, so it does not al-
low us to derive new conditionals from given ones. In fact,
credulous inference relations do not derive much more con-
ditionals than what can be derived already by basic inference
(see (Bochman 2001)). This indicates that there should be
no hope to capture credulous nonmonotonic reasoning by
derivability in some nonmonotonic logic. Though less ev-
ident, the same holds for skeptical inference. Both these
kinds of inference need to be augmented with an appropri-
ate globally nonmonotonic semantics that would provide a
basis for the associated systems of defeasible entailment,as
described in the next section.



Defeasible entailment
Practically all problems of reasoning with default condition-
als are reducible to the question what conditionals can be
derived from a conditional default base. The latter problem
constitutes therefore the main task of a theory of default con-
ditionals (cf. (Lehmann & Magidor 1992)).

For a skeptical reasoning, a most plausible understanding
of default conditionals is obtained by viewing them as skep-
tical inference rules in epistemic states. Accordingly, prefer-
ential inference can be considered as alogic behind skepti-
cal nonmonotonic reasoning. This does not mean, however,
that nonmonotonic reasoning about default conditionals is
reducible to preferential derivability. Preferential inference
is severely sub-classical and does not allow us, for exam-
ple, to infer “Red birds fly” from “Birds fly”. In fact, this is
precisely the reason why such inference relations have been
called nonmonotonic. Clearly, there are good reasons for
not accepting such a derivation as alogical rule; otherwise
“Birds fly” would imply also “Birds with broken wings fly”
and even “Penguins fly”. Still, we can accept “Red birds
fly” as anonmonotonic(or defeasible) conclusion in the ab-
sence of information against it. By doing this, we would
just follow the general strategy of nonmonotonic reasoning
of making reasonable assumptions on the basis of available
information. Thus, the logical core of skeptical inference,
preferential inference relations, should be augmented with a
mechanism of making nonmonotonic conclusions. Speaking
generally, we would like to keep reasoning classically about
default conditionals insofar as this does not conflict with the
default base and evidence. In contrast to preferential infer-
ence, which is locally nonmonotonic, this reasoning will be
globally nonmonotonic, since addition of new conditionals
can block some of the conclusions made earlier.

On the semantic side, default conditionals are constraints
on epistemic states, but usually there is a large number of
epistemic states that satisfy a given set of conditionals, so
we have an opportunity to choose among them. Our guiding
principle in this choice can still be that the epistemic states
should be as normal as is permitted by the constraints. By
choosing particular such states, we will adopt conditionals
that will not be derivable by preferential inference alone.

The above considerations lead to a seemingly inevitable
conclusion that default conditionals possess a clear logical
meaning and associated logical semantics based on epis-
temic states (or possible worlds models), but they still need
a globally nonmonotonic semantics that would provide an
interpretation for the associated defeasible entailment.

Actually, the literature on nonmonotonic reasoning is
abundant with theories of defeasible entailment. Initial for-
mal systems, rational closure (Lehmann 1989) and Pearl’s
Z (Pearl 1990), have turned out to be insufficient for repre-
senting defeasible entailment, so they have been refined to
systems such as lexicographic inference (Lehmann 1995),
and similar modifications ofZ (e.g., (Tan & Pearl 1995)).
Unfortunately, the refined systems have encountered an op-
posite problem, namely, together with some desirable prop-
erties, they produced unwanted conclusions. All these sys-
tems have been based on rational inference. A more gen-
eral approach based on preferential inference has been sug-

gested in (Geffner 1992). Finally, a more syntactic approach
has been pursued in inheritance hierarchies (see (Horty
1994)). Though inheritance reasoning deals with a quite re-
stricted class of conditionals constructed from literals,it has
achieved a remarkably close correspondence with intuition.

Despite the diversity, most of the systems of defeasi-
ble entailment presuppose that classical implications corre-
sponding to default conditionals should serve as defaults in
the nonmonotonic reasoning sanctioned by a default base.
This idea can be made precise by requiring that the epistemic
states for a default baseB should be base-generated by the
corresponding set~B of material implications (see above).
Already this constraint on intended models allows us to de-
rive “Red birds fly” from “Birds fly” for default bases that
do not contain conflicting information about redness. It also
sanctions defeasible entailment across exception classes, un-
like Z and rational closure that cannot make such a deriva-
tion. Still, the constraint is insufficient for some important
reasoning patterns. What is lacking here is a principled way
of constructing a preference order on default sets. As for
now, Geffner’s conditional entailment and inheritance rea-
soning constitute two most plausible solutions.

Geffner’s theory provides a very plausible interpretation
of defeasible entailment. Still, it does not capture inheri-
tance reasoning. The main difference between the two is
that inheritance hierarchies determine priorities in a context-
dependent way, namely in presence of other defaults that
provide a (preemption) link between two defaults. Indeed,
it has been shown in (Bochman 2001) that inheritance rea-
soning is representable by epistemic states that are base-
generated by default conditionals ordered by certain condi-
tional priority orders (see above). Still, the corresponding
construction could hardly be called simple or natural.

A more natural representation of inheritance reasoning
has been given in (Dung & Son 2001) as an instantiation
of an argumentation theory that belongs already to explana-
tory nonmonotonic formalisms. Furthermore, Geffner him-
self has shown in (Geffner 1992) that conditional entail-
ment still does not capture some important derivations, and
it should be augmented with an explicit representation of
causal reasoning. In fact, the causal generalization sug-
gested by Geffner in the last chapters of his book has served
as one of the inspirations for a causal theory of reasoning
about actions and change (see (Turner 1999)). This theory
will be described later as an essential part of the explanatory
approach to nonmonotonic reasoning.

Finally, a most glaring omission of the above picture of
defeasible entailment is that it does not covercredulous,
or explanatory, nonmonotonic reasoning. Furthermore, for
now it is even unclear whether the above approach in terms
of epistemic states is capable of representing such a reason-
ing, though the representation of inheritance reasoning in
this framework suggests that it might. Anyway, explanatory
reasoning is a well-established theory in its own right, so our
next task will consist in singling out its basic principles.



Explanatory Nonmonotonic Reasoning
Explanation is the basic ingredient of explanatory non-
monotonic reasoning. Propositions may be not only true or
false in a model, but some of them are explainable (justified)
by other accepted facts and rules. In the epistemic setting,
some of the propositions arederivablefrom other by rules
that are admissible in the situation. In the objective setting,
some facts arecausedby other facts and causal rules act-
ing in the domain. Furthermore, explanatory nonmonotonic
reasoning is based on very strong principles ofExplanation
Closureor Causal Completeness(Reiter 2001), according to
which any fact holding in a model should be explained, or
caused, by the rules of the domain. Incidentally, it is these
principles that make explanatory reasoning nonmonotonic.

By the above description,abduction is an integral part
of explanatory nonmonotonic reasoning. Abducibles cor-
respond not to normality defaults, but to conjectures repre-
senting base causes or facts that do not require explanation;
we assume the latter only for explaining evidence.

Explanatory formalisms often adopt simplifying assump-
tions that exempt, in effect, certain propositions from the
burden of explanation.Closed World Assumption(Reiter
1978) is the most important assumption of this kind. Ac-
cording to it, negative assertions do not require explanation.
It is important to note that theminimization principleis ac-
tually a result of combining Explanation Closure with the
Closed World Assumption. Consequently, the minimization
principle need not be viewed as a principle of scaled prefer-
ence of negative information; rather, it is a by-product of the
stipulation that negated propositions can be accepted with-
out any further explanation, while positive assertions always
require explanation. This understanding explains why Mc-
Carthy’s circumscription, that is based on the principle of
minimization, is subsumed also by explanatory formalisms.

The above principles form an ultimate basis for all formal
systems of explanatory nonmonotonic reasoning. They pre-
suppose, however, a richer picture of what is in the world
than what is usually captured in logical models. The world
is not a mere assemblage of unrelated facts, it has a structure
that forms a basis for our explanatory and causal claims. It
is this structure that makes the world intelligible and con-
trollable. By this picture, explanatory and causal relations
form an integral part of understanding of and acting in the
world. Such relations should form an integral part of knowl-
edge representation, at least in Artificial Intelligence.

Explanatory nonmonotonic reasoning and logic
Default and autoepistemic logics, and semantics of logic
programming, are usually described in a shortcut way in ac-
cordance with the following identity:

Nonmonotonic Logic = Syntax + Nonmonotonic Semantics.

The very name ‘NonmonotonicLogic’ conveys here sim-
ilarity with ordinary logical systems, for which the equal-
ity is appropriate. The analogy is clear, but unfortunately
misleading. The nonmonotonic semantics does not deter-
mine the meaning of the propositions and rules of the for-
malism, so the above ‘shortcut’ definition leaves us without
an exact or even clear meaning of the source syntax. Default

rules do not bear on their heads information about when and
how they can be applied. This is the main reason why the
knowledge representation in such systems is essentially an
art based on accumulated experience.

In order to determine the logical meaning, or informa-
tional content, of a nonmonotonic theory, we should con-
sider its underlying logic. Fortunately, such a logic can of-
ten be restored from the nonmonotonic semantics. Given
a syntactic formalismF with a nonmonotonic semanticsS,
the syntactic formalism determines the basic informational
units that we will call theories, for which the semantics pro-
vides a nonmonotonic interpretation (a set of models). Let
S(∆) denote the nonmonotonic semantics of a theory∆.
Then theoriesΓ and ∆ can be called(nonmonotonically)
equivalent if S(∆) = S(Γ). This equivalence does not
determine, however, the logical meaning of theories; note
that due to the nonmonotonicity ofS, we may also have
S(∆ ∪ Φ) 6= S(Γ ∪ Φ), for some theoryΦ. A standard de-
finition of meaning in logic says, however, that two notions
have the same meaning if they determine the same extension
in all contexts. In our case, a context can be seen as a larger
theory including a given one, which leads us to the following

Definition 4. TheoriesΓ and∆ are stronglyS-equivalent,
if S(∆ ∪ Φ) = S(Γ ∪ Φ), for any theoryΦ.

This notion of strong equivalence has actually been sug-
gested in logic programming (see (Lifschitz, Pearce, &
Valverde 2001)), but it has general significance. It is already
a logical notion, since strongly equivalent theories are in-
terchangeable in any larger theory without changing the as-
sociated nonmonotonic semantics. This suggests that there
may exist a logicL formulated in the syntaxF such that
theories are strongly equivalent if and only if they are logi-
cally equivalent inL. In this case, the logicL can be viewed
as the underlying logic of the formalism that will determine
the logical meaning of theories and, in particular, of the rules
and propositions of the syntactic frameworkF.

The attention to the underlying logics behind non-
monotonic reasoning is rewarded with a better understand-
ing of the range of such logics that are appropriate for ex-
planatory nonmonotonic reasoning. It reveals, in particular,
that the traditional map of such a reasoning is patently in-
complete, and should be completed with a number of im-
portant formalisms, creating a continuous range from logic
programming to modal nonmonotonic logics.

A distinctive feature of default and modal nonmonotonic
logics is that they are inherentlyepistemic formalisms.
Namely, they are essentially based on beliefs and knowl-
edge, so the semantic models represent possibly incomplete
sets of beliefs, while their rules allow us to make inferences
based on absence of belief, or consistency. Due to its epis-
temic character, default logic is a logically weak formal-
ism that does not support many classical inferences (such
as reasoning by cases). It also has other well-known short-
comings, and numerous variants of default logic have been
suggested in attempts to make it more in accord with intu-
itions. However, relatively modest success of these attempts
has shown that it is impossible to radically improve default
logic without abandoning its epistemic interpretation.



On the other side of the map, logic programs can be em-
bedded into the above epistemic formalisms,though not vice
versa. This means that logic programming is a more specific
nonmonotonic formalism with a richer logic. Furthermore,
in between these extreme cases, there is a room for interme-
diate systems, in particular, for causal reasoning.

Causal reasoning is now a dominant approach for solving
the frame problem in representing actions and change (see
(Giunchigliaet al. 2004)). It employs the already mentioned
distinction between facts that hold in a situation versus facts
that are caused by other facts and the rules. All facts that
hold in a situation should be either caused by other occur-
rent facts, or else preserve their truth-values in time (by the
inertia assumption). Causal reasoning constitutes an impor-
tant turning point in the development of explanatory non-
monotonic reasoning, since from its very beginning it was
designed as a formalism that should provide an objective
description of factual and causal information about action
domains. It has shown that an epistemic view of explana-
tory nonmonotonic reasoning is not the only possibility.

Biconsequence Relations
Biconsequence relation is a consequence relation for reason-
ing with respect to a pair of contexts. Taken in an abstract
setting, the two contexts will be termed, respectively, the
contexts oftruth andfalsity. In the truth context propositions
are evaluated as being true or non-true, while in the falsity
context they can be false or non-false. Then a bi-context
reasoning can be interpreted as a reasoning with possibly
inconsistent and incomplete information, and also as a four-
valued reasoning (see (Belnap 1977)).

On the interpretation suitable for nonmonotonic reason-
ing, the truth context is the main (objective) one, while the
falsity context provides assumptions, or explanations, that
justify inferences in the main context.

A bisequentis an inference rule of the forma : b 
 c : d,
wherea, b, c, d are sets of propositions. According to the
abstract, four-valued interpretation, it says

‘If all propositions froma are true and all propositions
fromb are false, then either one of the propositions from
c is true or one of the propositions fromd is false’.

According to theexplanatory interpretation, it says

‘If no proposition fromb is assumed, and all proposi-
tions fromd are assumed, then all propositions froma
hold only if one of the propositions fromc holds’.

A biconsequence relationis a set of bisequents satisfying
the usual rules of Reflexivity, Monotonicity and Cut with
respect to each of the two contexts. It can be seen as a fusion,
or fibring, of two Scott consequence relations.

u will denote the complement of a setu of propositions.
A pair (u, v) of sets of propositions is abitheoryof a bicon-
sequence relation ifu : v 1 u : v. Bitheories are closed with
respect to the bisequents of a biconsequence relation. A set
u is atheoryof 
, if (u, u) is a bitheory of
.

By a bimodelwe will mean a pair of sets of propositions.
A set of bimodels will be called abinary semantics.

Definition 5. A bisequenta : b 
 c : d is valid in a binary
semanticsB, if, for any(u, v) ∈ B, if a ⊆ u andb ⊆ v, then
eitherc ∩ u 6= ∅, or d ∩ v 6= ∅.

The set of bisequents valid in a binary semantics forms a
biconsequence relation. Moreover, any biconsequence rela-
tion is determined in this sense by its canonical semantics
defined as the set of its bitheories. Now, any bimodel(u, v)
can be viewed as a four-valued interpretation, whereu is the
set of true propositions, whilev is the set of propositions that
are not false. Biconsequence relations provide in this sense
a syntactic formalism for four-valued reasoning.

A bisequent theoryis an arbitrary set of bisequents. For
any bisequent theory∆ there is a least biconsequence rela-
tion 
∆ containing it that describes the logical content of
∆. This allows us to extend the notions of a bitheory and
propositional theory to arbitrary bisequent theories.

Structural rules Some additional structural rules for bi-
consequence relations play an important role in what fol-
lows. A biconsequence relation isconsistent, if it satisfies

Consistency A : A 


Consistency says that no proposition can be taken to hold
without assuming it. This amounts to restricting the binary
semantics toconsistentbimodels, that is, bimodels(u, v)
such thatu ⊆ v. On the four-valued interpretation, no
proposition can be both true and false in such models.

A biconsequence relation isregular if it satisfies

Regularity If b : a 
 a : b, then: a 
 : b.

Regularity asserts that an admissible set of assumptions
should be compatible with taking these assumptions as actu-
ally holding. It holds for aquasi-reflexivebinary semantics
in which, for any bimodel(u, v), (v, v) is also a bimodel.

Local four-valued connectives Any four-valued connec-
tive is definable in biconsequence relations via introduction
and elimination rules. For this study, however, we will re-
strict ourselves to thelocally classicalconnectives that be-
have as ordinary classical connectives with respect to each
of the two contexts. A functionally complete basis for such
connectives is provided by the following two connectives.
The first is a four-valuedconjunction:

A ∧B is true iff A is true andB is true.

A ∧B is false iffA is false orB is false.

The second is thelocal negation¬:

¬A is true iff A is not true ¬A is false iffA is not false

As usual, the disjunctionA∨B is defined as¬(¬A∧¬B).
Let¬u denote the set{¬A | A ∈ u}. Then any bisequent

a : b 
 c : d is equivalent to

∨

(¬a ∪ c) :
∧

(d ∪ ¬b).
Consequently, the local connectives allow us to reduce bise-
quents to that of the form
 A : B, whereA andB are
classical propositions. The latter bisequents will correspond
to production rulesB ⇒ A of production and causal infer-
ence relations, discussed later.



Nonmonotonic Semantics
Nonmonotonic semantics of a biconsequence relation is de-
fined as a set of itsexplanatory closedtheories, namely the-
ories for which presence and absence of propositions in the
main context is explained (i.e., derived) when the theory it-
self is taken as the assumption context.

Exact semantics A most general kind of nonmonotonic
reasoning is obtained by requiring that the assumption con-
text should determine itself as a unique objective state.

Definition 6. A theoryu of a biconsequence relation
 is
exact, if there is nov 6= u such that(v, u) is a bitheory of

. The set of exact theories forms anexact nonmonotonic
semanticsof 
.

This semantics is nonmonotonic, since the set of exact
theories does not change monotonically with the growth of
the set of bisequents. Regular biconsequence relations con-
stitute the underlying logic for this nonmonotonic semantics.

Default semantics A more familiar class of non-
monotonic models, extensions, correspond to extensions of
default logic and stable models of logic programs.

Definition 7. A theoryu is anextensionof a biconsequence
relation, if there is no bitheory(u′, u) such thatu′ ⊂ u. A
default nonmonotonic semanticsis the set of extensions.

Any exact theory is an extension, though not vice versa.
Extensions explain only why they have the propositions they
have. In other words, we are relieved from the necessity of
explaining why propositions donot belong to an extension.
Now, Consistency (A : A 
) amounts to refutation of any
proposition that is assumed not to hold, so the default non-
monotonic semantics is precisely an exact semantics under
the stronger logic of consistent biconsequence relations.

Interpretation of logic programs Biconsequence rela-
tions provide a logical basis of logic programming. Gen-
eral program rulesnot d, c← a,not b can be directly inter-
preted as bisequentsa : b 
 c : d. Then we have

Theorem 2. Stable models of a general logic program co-
incide with the extensions of the corresponding bisequent
theory.

Moreover, this correspondence is bidirectional, since any
bisequent in a four-valued language is reducible to a set of
bisequents without connectives, and hence to program rules.

Production and Causal Inference
Now we introduce a primarylogical system for explana-
tory reasoning. The system of production inference can
be viewed as a generalization of classical logic obtained by
dropping the Reflexivity postulate of classical inference.It
originates in input/output logics of (Makinson & van der
Torre 2000). Biconsequence relations turn out to constitute
a structural counterpart of this logical formalism.

Production inference relations are based on conditionals
of the formA⇒B saying ‘A produces, or explains, B’.

Definition 8. A (regular) production inference relationis a
binary relation⇒ on the set of classical propositions satis-
fying the following postulates:

(Strengthening) If A � B andB⇒C, thenA⇒C;
(Weakening) If A⇒B andB � C, thenA⇒C;
(And) If A⇒B andA⇒C, thenA⇒B ∧ C;
(Cut) If A⇒B andA ∧B⇒C, thenA⇒C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

The most significant ‘omission’ of the above set of pos-
tulates is the absence of reflexivityA⇒A. It is this feature
that creates a possibility of nonmonotonic reasoning.

Production rules are extended to rules with sets of propo-
sitions in premises using the familiar compactness recipe:

u⇒A ≡
∧

a⇒A, for some finitea ⊆ u.

Let C(u) denote the set{A | u⇒A}. The production
operatorC is monotonic and continuous, and it plays the role
of a derivability operator. Atheoryof a production relation
is a deductively closed setu such thatC(u) ⊆ u.

A semantics for production relations can be given in terms
of pairs of deductive theories called, as before, bimodels.

Definition 9. A classical bimodelis a pair of consistent de-
ductively closed sets. Aclassical binary semanticsis a set of
classical bimodels. A classical binary semantics isconsis-
tent, if u ⊆ v, for any bimodel(u, v).

The validity of production rules is defined as follows.

Definition 10. A production ruleA⇒B is valid in a clas-
sical binary semanticsB if, for any bimodel(u, v) fromB,
A ∈ v only if B ∈ u.

Consistent classical binary semantics provides an ade-
quate representation of regular production inference rela-
tions (see (Bochman 2004a)).

A set of production rules will be called acausal theory.
Semantics of a causal theory will be identified with the se-
mantics of the least production relation including it.

General nonmonotonic semantics Production inference
determines also a natural nonmonotonic semantics. Namely,
the fact that the operatorC is not reflexive creates an impor-
tant distinction among theories of a production relation.

Definition 11. A nonmonotonic production semanticsof a
production inference relation is the set of all itsexact theo-
ries, namely setsu of propositions such thatu = C(u).

An exact theory describes an informational state in which
every proposition isexplainedby other propositions ac-
cepted in this state, so it complies with the explanatory clo-
sure assumption. The nonmonotonic semantics is globally
nonmonotonic, since adding new production rules may lead
to a nonmonotonic change of the associated semantics, even
though production rules themselves are monotonic, since
they satisfy Strengthening (the Antecedent). It can be shown
that regular production inference relations provide a logic of
reasoning with exact theories.

Causal Inference A regular production inference relation
is causalif it satisfies

(Or) If A⇒C andB⇒C, thenA ∨B⇒C.



Causal inference sanctions reasoning by cases, so the pro-
duction rules can already be seen as causal rules. The se-
mantics of causal production relations is provided by usual
possible worlds models(W,R, V ), whereW is a set of
worlds,R an accessibility relation, andV a valuation func-
tion. Causal inference relations require thatR should be
quasi-reflexive, that is,αRβ holds only ifαRα.

Definition 12. A rule A⇒B is valid in a possible worlds
model(W,R, V ) if, for anyα, β ∈ W such thatαRβ, if A
holds inα, thenB holds inβ.

Causal inference relations constitute a logical counterpart
of biconsequence relations for the language of local classi-
cal connectives. By this correspondence, a production rule
A⇒B can be seen as a bisequent
 B : A saying that ifA
is assumed, thenB should hold.

Causal nonmonotonic semantics For the causal reading
of production rules, we restrict the nonmonotonic semantics
to exact theories that are worlds and obtain thecausal non-
monotonic semanticsthat coincides with the semantics of
causal theories from (McCain & Turner 1997).

A world α is an exact world of a production inference
relation if and only if, for any propositional atomp,

p ∈ α iff α⇒ p and ¬p ∈ α iff α⇒¬p.

Causal inference relations provide an adequate logic for
the causal nonmonotonic semantics. Moreover, in the gen-
eral correspondence between causal and biconsequence re-
lations, the causal semantics corresponds to the exact non-
monotonic semantics of biconsequence relations.

By the above description, the exact worlds are determined
ultimately bydeterminaterulesA⇒ l, wherel is a literal.
The causal nonmonotonic semantics of a determinate causal
theory∆ coincides with the classical semantics of itscom-
pletion, comp(∆), defined as the set of classical formulas

p↔
∨

{A | A⇒ p ∈ ∆} ¬p↔
∨

{A | A⇒¬p ∈ ∆},

for any atomp, plus the set{¬A | A⇒ f ∈ ∆}.
As for biconsequence relations, the default nonmonotonic

semantics of causal theories can be obtained by imposing a
causal postulate corresponding to Consistency postulate for
biconsequence relations: for any propositional atomp,

(Default Negation) ¬p⇒¬p.

Default Negation stipulates that negations of atomic
propositions are self-explanatory, and hence it provides a
simple causal expression for Reiter’s Closed World Assump-
tion. This kind of causal inference can also be used as a
logical basis for logic programming. Namely, a program
rulenot d, c ← a,not b can be faithfully interpreted as the
causal ruled,¬b⇒

∧

a→
∨

c (see (Bochman 2004b)).

Epistemic Explanatory Reasoning
Epistemic formalisms of default and modal nonmonotonic
logics find their natural place in the framework of supraclas-
sical biconsequence relations, defined below. On epistemic
understanding of biconsequence relations, the main and as-
sumption contexts are treated, respectively, as contexts of

knowledge and belief: propositions in the main context are
viewed as known, while the assumption context forms the
associated set of beliefs. Accordingly, both contexts corre-
spond to incomplete deductive theories.

Definition 13. A biconsequence relation in a classical lan-
guage issupraclassical, if it satisfies

Supraclassicality If a � A, thena : 
 A : and : A 
 : a.
Falsity f : 
 and 
 : f .

Due to Supraclassicality, both contexts respect the clas-
sical entailment. In addition, sets of positive premises and
negative conclusions can be replaced by their conjunctions,
but positive conclusion sets and negative premise sets are not
replaceable in this way by classical disjunctions.

A semantics of supraclassical biconsequence relations is
obtained from the general binary semantics by requiring that
bimodels are pairs of consistent deductively closed sets (see
Definition 9). Structural rules for biconsequence relations
are also extended to the supraclassical case.

A supraclassical biconsequence relation issaturated, if it
is consistent, regular, and satisfies the following postulate:

Saturation 
 A ∨B,¬A ∨B : B.

For a deductive theoryu, letu⊥ denote the set of all maxi-
mal sub-theories ofu, plusu itself. Then a classical bimodel
(u, v) is saturated, if u ∈ v⊥. A classical binary semantics
B is saturatedif it is regular, and all its bimodels are satu-
rated. Such a semantics provides an adequate interpretation
for saturated biconsequence relations.

Classical nonmonotonic semantics The notions of an ex-
act theory and extension can be directly extended to supra-
classical consequence relations, but they form now deduc-
tively closed sets. Supraclassical biconsequence relations
that are consistent and regular constitute a maximal logic
adequate for extensions. For such biconsequence relations,
an extension is described as a set of propositions that are
provable if taken as the set of assumptions:

u = {A
∣

∣ : u 
 A : u}.

Under this nonmonotonic semantics, bisequent theories
having only rules of the forma:b 
 c: provide an exact rep-
resentation for thedisjunctive default logic(Gelfondet al.
1991). For singular rulesa:b 
 C:, it reduces to the original
default logic of (Reiter 1980).

The following nonmonotonic semantics constitutes an ex-
act non-modal counterpart of Moore’s autoepistemic logic.

Definition 14. A theoryu of a supraclassical biconsequence
relation
 is anexpansionof 
, if, for anyv ∈ u⊥ such that
v 6= u, the pair (v, u) is not a bitheory of
. The set of
expansions determines theautoepistemic semanticsof 
.

Any extension is an expansion, though not vice versa. In
fact, expansions can be precisely characterized as extensions
of saturated biconsequence relations.

The next result states an important sufficient condition
for coincidence of expansions and extensions. A bisequent
theory ispositively simple, if positive premises and positive
conclusions of any bisequent are sets of classical literals.



Theorem 3. If a bisequent theory is positively simple, then
its expansions coincide with classical extensions.

Bisequents with only classical literals in premises and
conclusions correspond to program rules ofextendedlogic
programs with classical negation. The semantics of such
programs is determined by answer sets that coincide with
extensions of respective bisequent theories. Moreover, such
bisequent theories are positively simple, so by the above
theorem extended logic programs obliterate the distinction
between extensions and expansions. This is the logical ba-
sis for a possibility of representing extended logic programs
also in autoepistemic logic (Lifschitz & Schwarz 1993).

Modal Nonmonotonic Logics

A representation of modal nonmonotonic logics can be given
in the framework of modal biconsequence relations. The
modal operatorL in this setting reflects assumptions (or be-
liefs) as propositions in the main context.

Definition 15. A supraclassical biconsequence relation in a
modal language will be calledmodalif it satisfies

Positive Reflection A :
 LA:,

Negative Reflection : LA 
 :A,

Negative Introspection : A 
 ¬LA:.

Any theory of a modal biconsequence relation is amodal
stable setin the sense of (Moore 1985), and hence modal
extensions and expansions will always be stable theories.

For a modal logicM, a modal biconsequence relation


is anM-biconsequence relation, if 
 A:, for every modal
axiom A of M. A modal biconsequence relation is anF-
biconsequence relation, if it is regular and satisfies

F 
 A,LA→B : B.

F-biconsequence relations provide a concise representa-
tion for the modal logic S4F. Any bisequenta:b 
 c:d of
an F-biconsequence relation is already reducible to a modal
formula

∧

(La ∪ L¬Lb)→
∨

(Lc ∪ L¬Ld). Consequently,
any bisequent theory∆ in such a logic is reducible to an
ordinary modal theory that we will denote bỹ∆.

Modal nonmonotonic semantics By varying the modal
logic, we obtain a range of modal nonmonotonic semantics.
A set of propositions is anM-extension(M-expansion) of
a bisequent theory∆, if it is an extension (resp. expan-
sion) of the leastM-biconsequence relation containing∆.
M-extensions of plain modal theories∆ coincide withS-
expansionsfrom (Marek, Schwarz, & Truszchinski 1993).

Since modal extensions and expansions are modal stable
theories, they are determined by their non-modal subsets.
This suggests a possibility of reducing modal nonmonotonic
reasoning to a nonmodal one, and vice versa.

Let uo denote the set of all non-modal propositions inu.
Similarly, o
 will denote the restriction of a modal biconse-
quence relation
 to the non-modal language.

Theorem 4. If u is a modal stable theory, thenu is an ex-
tension of
 if and only ifuo is an extension ofo
.

By this result, non-modal supraclassical biconsequence
relations are sufficiently expressive to capture modal non-
monotonic reasoning. In the other direction, in modal F-
biconsequence relations any bisequent theory∆ is reducible
to a usual modal theorỹ∆. This allows us to use ordinary
modal logical formalisms for representing non-modal non-
monotonic reasoning. Thus, the following result generalizes
the result of (Truszczýnski 1991) about a modal embedding
of default theories.

Theorem 5. If ∆ is an objective bisequent theory, then clas-
sical extensions of∆ are precisely objective parts of S4F-
extensions of̃∆.

We end with considering modal expansions. Two kinds of
expansions are important for a general description. The first
is stable expansionsof Moore’s autoepistemic logic. They
coincide withM-expansions for any modal logicM in the
range5 ⊆ M ⊆ KD45. The second kind of expansions
is reflexive expansionsof Schwarz’ reflexive autoepistemic
logic (Schwarz 1992). They coincide withM-expansions
for any modal logic in the rangeKT ⊆ M ⊆ SW5. ‘Nor-
mal’ expansions in general can be viewed as a combination
of these two kinds of expansions:

Theorem 6. A set of propositions is a K-expansion of a
modal bisequent theory∆ iff it is both a stable and reflexive
expansion of∆.

Conclusions
Despite clear success, twenty five years of nonmonotonic
reasoning research have shown that we need a deep breath
and long term objectives in order to make nonmonotonic rea-
soning a viable tool for the challenges posed by AI. There
is still much to be done in order to meet the actual complex-
ity of reasoning tasks required by the latter. In particular,
the relation between the two principal paradigms of non-
monotonic reasoning has emerged as the main theoretical
problem for a future development of the field.

By a presumably vague, but inspiring analogy, in non-
monotonic reasoning we have both a global relativity theory
of preferential reasoning and a local quantum mechanics of
explanatory reasoning. So, what we need is a unified the-
ory of nonmonotonic reality. As in physics, however, this
unified theory is not going to emerge as a straightforward
juxtaposition of these components.
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