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Abstract

For nonmonotonic reasoning, a default condi-
tional α → β has most often been informally
interpreted as a defeasible version of a clas-
sical conditional, usually the material condi-
tional. There is however an alternative in-
terpretation, in which a default is regarded
essentially as a rule, leading from premises
to conclusion. In this paper, we present a
family of logics, based on this alternative in-
terpretation. A general semantic framework
under this “rule-based” interpretation is de-
veloped, and associated proof theories for a
family of weak conditional logics is specified.
Nonmonotonic inference is easily defined in
these logics. One obtains a rich set of non-
monotonic inferences concerning the incorpo-
ration of irrelevant properties and of prop-
erty inheritance. Interestingly, the logics pre-
sented here are weaker than the commonly-
accepted base conditional approach for defea-
sible reasoning. However, this interpretation
resolves problems that have been associated
with previous approaches.

1 Introduction

A major approach in nonmonotonic reasoning is to rep-
resent a default as an object that one can reason about,
either as a conditional in some object language, or as
a nonmonotonic consequence operator. Thus for exam-
ple “an adult is (typically or normally) employed” might
be represented a → e, where → represents a default or
normality conditional, distinct from the material condi-
tional ⊃. In such approaches, one can typically derive
other defaults from a given set of defaults. There has
been widespread agreement concerning just what princi-
ples should constitute a minimal logic. Such a minimal
logic would form a “conservative core” of defaults com-
mon (so it is suggested) to all approaches to nonmono-
tonic reasoning. However, the resulting default condi-
tional is quite weak, at least compared with the mate-
rial conditional, in that it does not (in fact, should not)

fully support principles such as strengthening of the an-
tecedent, transitivity, and modus ponens.

Since one would want to obtain these latter properties
by default, such logics are extended nonmonotonically by
a “closure” operation or step. This closure operation has
been defined, for example, in terms of a preferred subset
of the models of a theory. In the resulting set of models,
one obtains strengthening of the antecedent, transitivity,
or (effectively) modus ponens, wherever feasible. Essen-
tially then, there are two components to default reason-
ing within such a system. First, there is a standard,
monotonic logic of conditionals that expresses relations
among defaults that are deemed to always hold. Sec-
ond, there is a nonmonotonic mechanism for obtaining
defaults (and default consequences) where justified. In
essence, these approaches treat the default conditional
like its classical counterpart, the material conditional,
where feasible or by default.

While this work captures an important notion of de-
fault entailment – perhaps the most important notion –
it is not without difficulties. As described in the next
section, some principles of the suggested core logic are
not uncontentious; as well, there are examples of de-
fault reasoning in which one obtains undesirable results.
Lastly, there are more recent approaches, notably ad-
dressing causality, in which one requires a weaker notion
of default inference, rejecting, for example, contrapos-
itive default inferences. In response to these points, I
suggest that there is a second, distinct, interpretation of
default conditionals, in which a default is regarded more
like a rule, with properties more in line with a rule of
inference than a weakened classical conditional.

In the following sections I describe an approach un-
der this second interpretation. I begin by proposing an
exceptionally weak logic of conditionals; from this ba-
sis a family of conditional logics is defined. Given a
default conditional α → β, the underlying intuition is
that α supplies a context in which, all other things be-
ing equal, β normally holds or, more precisely, in the
context of α, the proposition expressed by α ∧ β is
more “normal” than that expressed by α ∧ ¬β, which
is written as ‖α‖w ∩ ‖¬β‖w < ‖α‖w ∩ ‖β‖w or equiv-
alently ‖α ∧ ¬β‖w < ‖α ∧ β‖w. Notably, all of the
logics that are considered are weaker than the afore-



mentioned “conservative core”. It proves to be the case
however that a nonmonotonic operation is very easily de-
fined; this nonmonotonic step essentially specifies that
a property is irrelevant with respect to a default un-
less it is known to be relevant. Thus, given a default
α → β, one would want to also accept the strengthen-
ing (α ∧ γ) → β whenever “reasonable”. The nonmono-
tonic step corresponds to formalising the conclusion that
that ‖α ∧ γ‖w ∩ ‖¬β‖w < ‖α ∧ γ‖w ∩ ‖β‖w, given that
‖α‖w ∩ ‖¬β‖w < ‖α‖w ∩ ‖β‖w. This nonmonotonic step
easily admits inferences that in other approaches has re-
quired significant formal machinery. As well, I show that
the aforementioned difficulties that arise in interpreting
a default as a weak classical conditional do not arise here.

This distinction between treating a default as a con-
ditional or as a rule is not new. However a logic (that
is, with both semantics and proof theory) capturing this
interpretation has not been investigated previously, nor
has a fully general nonmonotonic closure operator been
developed under this interpretation.

The next section reviews previous work in conditional
approaches to nonmonotonic reasoning. Section 3 infor-
mally reviews the approach while Section 4 describes a
family of weak conditional logics. Section 5 considers
the incorporation of a nonmonotonic extension to a con-
ditional knowledge base. Section 6 is a discussion.

2 Conditional Logics and
Nonmonotonic Reasoning

2.1 Conditional Logics
In recent years, much attention has been paid to condi-
tional approaches to default reasoning. Such approaches
address defeasible conditionals whose meaning is based
on notions of preference among worlds or interpretations.
Thus, the default that a bird normally flies can be rep-
resented propositionally as b → f .1 These approaches
are typically expressed using a modal logic in which the
connective → is a binary modal operator. The intended
meaning of α → β is approximately “in the least worlds
(or most preferred worlds) in which α is true, β is also
true”. Possible worlds (or, again, interpretations) are ar-
ranged in at least a partial preorder, reflecting a metric
of normality or preferredness on the worlds. Given a set
of defaults Γ, default entailment with respect to Γ, |∼ Γ,
can be defined via:

If Γ ` α → β then α |∼ Γβ. (1)

There has been a remarkable convergence or agreement
on what inferences ought to be common to all non-
monotonic systems, and in the literature a seeming di-
versity of conditional approaches essentially allows the
same inferences. These include approaches based on

1An alternative is to treat the conditional as a nonmono-
tonic inference operator, b |∼ f . In a certain sense these ap-
proaches can be considered equivalent [Boutilier, 1994]; here,
for simplicity, we remain within the conditional logic frame-
work.

intuitions from probability theory such as ε-entailment
[Pearl, 1988] (or 0-entailment or p-entailment [Adams,
1975]), from qualitative possibilistic logic [Dubois et al.,
1994], as well as modal-logic based approaches such as
preferential entailment [Kraus et al., 1990], C4 [Lamarre,
1991], and CT4 [Boutilier, 1994], Consequently it has
been suggested that the resulting set of inferences may
be taken as specifying a conservative core [Pearl, 1989]
that arguably should be common to all default inference
systems. One expression of this logic of conditionals is as
follows. The logic includes classical propositional logic
and the following rules and axioms:2

RCEA/LLE: From ` α ≡ β infer ` (α → γ) ≡ (β →
γ).

RCM/RW: From ` β ⊃ γ infer ` (α → β) ⊃ (α → γ)
ID/Ref: α → α

CC/And: ((α → β) ∧ (α → γ)) ⊃ (α → β ∧ γ)
RT/Cut: ((α → β) ∧ (α ∧ β → γ)) ⊃ (α → γ)
ASC/CM: ((α → β) ∧ (α → γ)) ⊃ (α ∧ β → γ)
CA/Or: ((α → γ) ∧ (β → γ)) ⊃ (α ∨ β → γ)
Following [Lamarre, 1991] we call the above logic C4, as
the conditional logic based on a S4-like accessibility re-
lation (although Lamarre’s axiomatisation is not exactly
as given above). Note however, these principles are not
uncontentious; for example, [Poole, 1991] can be viewed
as arguing against CC/And. Likewise, [Neufeld, 1989]
suggests against CA in some cases.

The semantics of these approaches is generally
phrased in terms of a modal framework, in which possi-
ble worlds are ranked by a notion of relative normality or
unexceptionalness. The underlying modal logic is gener-
ally taken to be S4 in which accessibility between worlds
is given by a reflexive, transitive binary relation. A con-
ditional α → β is true at a world just when there is an
accessible world in which α ∧ β is true and α ⊃ β is
true at all worlds that are less or equally exceptional, or
if there are no accessible α worlds. Thus, “birds fly”,
b → f , is true if, in the least b-worlds, b ⊃ f is true.
Since penguins are birds (either 2(p ⊃ b) or p → b)
but penguins don’t fly (p → ¬f), this means that the
least exceptional world in which there are penguins are
more exceptional than the least worlds in which there
are birds.

The resulting logic is weak. For example, the following
relations which hold for the material conditional do not
hold for the weak conditional:
Strengthening: From α → γ infer α ∧ β → γ.
Transitivity: From α → β and α → γ infer α → γ.
Contraposition: From α → γ infer ¬γ → ¬α.
Modus ponens: From α → β and α infer β.

2Two systems of nomenclature have arisen, one associ-
ated with conditional logic and one with nonmonotonic con-
sequence operators. We list both (when both exist) when
first presenting an axiom or rule.



Nor would we want these principles to always hold for
defaults. On the other hand, it would seem that one
would want these properties to hold by default. Thus
given that birds normally fly, and we are presented with
a green bird, we would like to conclude that it flies.
Clearly, this is not something that can be done within
the logic; that is, given that a bird is asserted to fly
by default, one cannot thereby conclude via (1) that
a green bird flies by default. That is, simply put, the
inference b → f ` b ∧ g → f does not obtain, or
{b → f, b ∧ g → ¬f} is satisfiable. The problem is
that there is nothing requiring preferred worlds in which
birds fly to include among them green-bird worlds.

2.2 Nonmonotonic Extensions to
Conditional Logics

Given the above considerations, various means of
strengthening the logic to incorporate strengthening or
transitivity in a principled fashion have been proposed.
We focus in this subsection on two well-known ap-
proaches for nonmonotonically extending, or taking the
(conditional) closure of, a conditional knowledge base.

Rational closure [Lehmann and Magidor, 1992] is an
exemplar of a set of approaches that assumes, in a se-
mantic sense, that a world is as unexceptional as con-
sistently possible.3 Thus, given that birds fly, all other
things being equal, a world where a bird flies will be
ranked below one where it does not. Similarly, since
there is no reason to suppose that greenness has any
bearing on flight, one assumes that green-bird-flying
worlds are ranked as low as possible. Hence one would
expect to find that at the least green-bird worlds that
fly is true; similarly, at the least nongreen-bird worlds
we would also expect to find that fly is true. Hence
green birds (normally) fly as do non-green birds. Define
β ≺ α by

3(α ∨ β) ∧ ((α ∨ β) → ¬α).

Thus, informally, at the least α∨ β worlds, ¬α is in fact
true; hence β is true at such worlds and any α world
is not less than these worlds. From this we can define
an ordering on formulas of classical logic. The sign `C4

stands for logical derivation in C4, as the representative
of the systems discussed in the previous section.

Definition 2.1 Given a default theory T , the degree of
a formula α is defined as follows:

1. degree(α) = 0 iff for no δ do we have T `C4 δ ≺ α.

2. degree(α) = i iff degree(α) is not less than i and
T `C4 β ≺ α only if degree(β) < i

3. degree(α) = ∞ iff α is assigned no degree in Parts
1 and 2 above.

From this the closure operation is defined:

3As with the base logic of the previous subsection, there
have been an number of other approaches, founded on differ-
ent intuitions, but again converging to essentially the same
system.

Definition 2.2 The rational consequence relation, with
respect to default theory T is given by:

α |∼ T β iff degree(α) < degree(α∧¬β) or degree(α) = ∞.

Consider the following example:

Example 2.1

T = {b → f, b → w, p → b, p → ¬f}.

Hence, birds fly and have wings, while penguins are birds
that do not fly. We obtain inferences such as

b∧g |∼ T f, b∧¬g |∼ T f, b |∼ T¬p, and p∧g |∼ T¬f.

Notably, one does not obtain the result p |∼w even
though this inference would appear to be sanctioned by
the defaults p → b and b → w. Thus, in the rational clo-
sure, one does not obtain inheritance of properties (in
this case w) across exceptional subclasses (p). A further
discussion of properties of the rational closure is deferred
to the next subsection; however it is worth pointing out
that the failure to allow full inheritance of properties has
been addressed, for example in [Benferhat et al., 1993]
via the lexicographic closure of a set of defaults. How-
ever these extensions are syntax-dependent, and come
at the expense of higher complexity than the original
formulation.

A second, well-known approach is conditional entail-
ment [Geffner and Pearl, 1992]. Conditional entailment
was formulated in part to reconcile approaches exem-
plified by conditional logics on the one hand, and ear-
lier approaches such as circumscription on the other. In
conditional entailment, defaults are arranged in a partial
order, determined in part by the specificity of a rule’s an-
tecedent. This priority order over the set of defaults ∆L
is defined such that every set ∆ of defaults in conflict
with a default r contains a default r′ that is less than
that default in the ordering. Given this ordering on rules,
an ordering on worlds can then be defined: If ∆(w) and
∆(w′) are the defaults falsified by worlds w and w′ re-
spectively, then w is preferred to w′ iff ∆(w) 6= ∆(w′),
and for every rule in ∆(w) \ ∆(w′) there is a rule in
∆(w′) \∆(w) which has higher priority. As usual, β is a
default consequence of α just if β is true in the most pre-
ferred α worlds. We obtain the same consequences given
for Example 2.1 as for the rational closure; moreover we
obtain that p |∼w. However full inheritance of proper-
ties is not supported. Consider the following example
[Geffner and Pearl, 1992]:

Example 2.2

T = {b → f, p → s, s → b, p → ¬f}.

(Thus, birds fly; penguins are shorebirds; shorebirds fly;
but penguins don’t fly.) The expected inference p |∼ T b
does not obtain.

Rational closure and conditional entailment formalise
important and interesting phenomena in nonmonotonic
reasoning, and have found widespread application in the



literature. However there are problems with both ap-
proaches when considered as a general approach to for-
malising reasoning with defaults or normality condition-
als. Rational closure, for example, employs a very strong
minimization criterion that is not always appropriate.
Consider the following elaboration of an example given
by John Horty:

Example 2.3

> → ¬f, b → f, > → n, o → ¬n.

(Normally one does not eat with the fingers (f), but one
does when eating bread at a meal (b); normally one uses
a napkin (n), but not when one is out of napkins (o).)
The rational closure of these conditionals gives that, if
one is not out of napkins (¬o), one is not eating bread
(¬b). Clearly this interaction between unrelated defaults
is undesirable.

In addition, consider the following example [Geffner
and Pearl, 1992]:

Example 2.4

a → e, u → a, u → ¬e, f → a.

(That is, adults are normally employed, university stu-
dents are normally adults but are not employed, and
Frank Sinatra fans are normally adults.) In both con-
ditional entailment and rational closure we obtain the
default inference that Frank Sinatra fans are not uni-
versity students. But this is a curious inference, since
there is nothing in the example that would seem to re-
late Frank Sinatra fans to university students. So this is
arguably an instance in which the result obtained is too
strong. As well, if the conditional u → ¬e is dropped
from the theory, one now loses the default inference that
Frank Sinatra fans are not university students. In this
instance, it seems strange that a nonmonotonic infer-
ence between Frank Sinatra fans and university students
should be mediated by a person’s being employed or not.

2.3 Reconsidering Defaults
As suggested, at least some of these examples do not
necessarily reflect a problem with the approaches per
se. Rather, our thesis is that there are (at least) two
distinct interpretations that can be given to a default.
First, there is the intuition that a default is essentially
a weak version of the material conditional (or, in more
recent approaches, necessary entailment), and should be-
have as such a conditional, except that it is defeasible.
Note that conditional entailment explicitly adopts the
intuition that a default is essentially a weak version of
the material conditional. That is, the default α → β is
basically the same as > → (α ⊃ β) (i.e. the material
counterpart normally holds) together with specificity in-
formation implicit in α [Geffner and Pearl, 1992, p. 232].
There are certainly instances (for example in diagnos-
ing abnormalities in a circuit [Reiter, 1987]) where one
wants, all other things being equal, a default to behave
as a material conditional.

However, there are also situations where one does not
want this behaviour. For example, consider the theory
that asserts of a person that if they were to get a good
evaluation at work, they would be happy. On the other
hand, if they were to break their leg, they would not be
happy:
Example 2.5

T = {r → h, bl → ¬h}.
In rational closure and conditional entailment, as well as
in the corresponding circumscriptive abnormality the-
ory, one obtains the inference r |∼¬bl: if someone gets
a good evaluation then they won’t break their leg. As
well, it is not clear how such a theory could be repaired
to avoid this conclusion; breaking the conflict by, for ex-
ample adding r ∧ bl → ¬h doesn’t solve the problem.

These considerations indicate that conditional clo-
sures, as represented by rational closure and conditional
entailment (and by implication applying also to exten-
sions of these works and related work) at times produce
undesired conclusions. However, the monotonic conse-
quences of the “conservative core” can also lead to un-
intuitive conclusions; consider the following example (of
unknown source):

A crime has been committed, of which the
two suspects are John and Mary. In deciding
who to arrest, the detective decides that if the
murder weapon is found in John’s room, then
John will be arrested; if found in Mary’s room
then Mary will be arrested. If the weapon if
found with John’s fingerprints, then John will
be arrested, and if Mary’s then Mary.

We can symbolize this by:
Example 2.6

rJ → J, rM → M, fJ → J, fM → M, 2¬(J∧M).

What if the gun is found in John’s room but with Mary’s
fingerprints (or vice versa)? Assume that to settle this
conflict, it is decided that fingerprints decide the culprit.
So we add

rJ ∧ fM → M and rM ∧ fJ → J.

With these defaults we can derive rJ → ¬fM contrary
to one’s intuitions.

These considerations indicate that there are situations
in which nonmonotonic operations based on the default
“core” logic lead to unintuitive results. Moreover, these
unintuitive results arguably arise from properties of the
underlying logic. This is illustrated in (2.5) and (2.4)
where, in one fashion or another, one does not want to
apply the contrapositive of a default; rather a default is
to be applied in a “forward” fashion only. Under this
second interpretation a default is regarded more as an
(object-level) rule, whose properties would be closer to
those of a rule of inference. Hence, given a conditional
α → β, if the antecedent α happens to be true, we con-
clude β by default. Given ¬β we specifically do not want
to conclude ¬α.



3 Defaults as Rules
The general approach developed here is the same as those
described in the previous section: we begin by specifying
a conditional logic of defaults and subsequently provide
a principled, nonmonotonic means to extend the logic to
account for irrelevant properties. Our point of departure
is that we informally treat defaults more like rules of
inference, in that defaults are intended to be applied in
a “forward” direction only.

Our interpretation, roughly, is that the antecedent of
a default establishes a context in which the consequent
(normally) holds, or holds all other things being equal.
Thus for example, if one accepts that normally bread is
eaten with the fingers, b → f , then our interpretation is
that b∧f is more normal, usual, or preferable than b∧¬f .
Hence one can consider that, for default α → β, the
formula α established a context, and in this context it is
the case that β is more normal (typical, etc.) than ¬β.
We express this semantically by introducing a binary
relation of relative normality <w between propositions;
formula α → β is true in a model M at world w if

‖α‖w ∩ ‖¬β‖w <w ‖α‖w ∩ ‖β‖w, (2)

that is, the proposition (see the next section) ‖α‖w ∩
‖β‖w is more normal (typical, etc.) than ‖α‖w ∩ ‖¬β‖w

at world w. It seems reasonable that this binary relation
of relative normality < be asymmetric and transitive,
and so we generally assume that these conditions hold.

We note that the form of (2) has appeared regularly
in the literature, going back at least to [Lewis, 1973].4
The difference is that usually the interpretation of (2) is
along the lines of “the least worlds where α∧¬β is true
are less normal than the least α ∧ β worlds”. Thus for
example in [Lewis, 1973, pp. 54-56] P �i Q is used to
express that “the proposition P is at least as possible,
at the world i, as the proposition Q.” However, as the
exposition makes clear, what this notation really means
is that the least P -worlds are at least as possible, at the
world i, as the least Q-worlds.

Filling in the (formal) details yields a weak logic of
conditionals C, significantly weaker than the so-called
“conservative core”, in which weak conditionals of the
form α → β can be interpreted. The operator → is a
binary modal operator defined not in terms of accessibil-
ity among possible worlds, but rather directly in terms
of pairs of propositions. For the sake of increased ex-
pressibility, it is convenient to also introduce a notion
of necessity, expressed by 2α for “α is necessarily true”
or semantically, “α is true at all worlds considered possi-
ble”. Our notion of necessity is given a physical interpre-
tation (as opposed to, say, an epistemic interpretation).
Thus we might use 2(k ⊃ c) to express propositionally
that a knife k is necessarily a piece of cutlery c.

Since the base logic is very weak, we also consider
various strengthenings of the logic, and in the end sug-
gest a preferred logic, that we call C+, for expressing
statements of normality. However, notably all of these

4We use < in the opposite sense of Lewis.

strengthenings are still weaker than the “core” set of de-
faults. However we show that these logics have desirable
properties; as well, the undesirable inference illustrated
in (2.6) is not obtained.

Moreover, it proves to be the case that nonmonotonic
reasoning is definable in a very simple and straightfor-
ward manner. Consider again our example that one nor-
mally eats bread with the fingers, b → f . One would
also want to be able to incorporate irrelevant proper-
ties, when reasonable. Thus it would seem that barring
information to the contrary, one should (nonmonotoni-
cally) accept that normally whole-wheat bread is eaten
with the fingers, b ∧ w → f . Semantically this would
mean, that given ‖b∧¬f‖w <w ‖b∧ f‖w that one would
like to extend a model to have ‖b ∧ ¬f‖w ∩ ‖w‖w <w

‖b∧ f‖w ∩ ‖w‖w and so ‖b∧w ∧¬f‖w <w ‖b∧w ∧ f‖w.
But how to do this, at least in broad outline, is straight-
forward: Basically, the (semantic) relation X <w Y as-
serts that in the “context” (set of possible worlds) X∪Y ,
partitioned by X,Y , we have that Y is more normal than
X. Our nonmonotonic assumption is that this obtains
in all “feasible” subcontexts (where, of course ‘feasible”
needs to be defined). That is, for proposition Z, un-
less there is reason to conclude otherwise, we assert that
Z ∩ X <w Z ∩ Y . The next section develops the for-
mal details of the family of weak conditional logics for
defaults, while the following section addresses nonmono-
tonic reasoning in this family of logics.

4 The Approach

4.1 Formal Preliminaries
We assume some familiarity with modal logics. LPC

is the language of classical propositional logic defined,
for simplicity, over a finite alphabet P = {a, b, c, . . . } of
propositional letters or atomic propositions. Formulas of
LPC are constructed from the logical symbols ¬, ∨, ∧, ⊃,
and ≡ in the standard manner. The symbol > is taken
to be some propositional tautology, and ⊥ is defined as
¬>. Our language for expressing weak conditionals, L, is
LPC extended with the binary operator→ and the unary
operator 2. The operator → is the weak conditional, in
contrast to the material conditional ⊃; the operator 2

expresses necessity. For convenience, arguments of both
→ and 2 are members of LPC ; that is, we do not allow
nested occurrences of → nor 2. As is usual, we will use
3 to abbreviate ¬2¬.

Formulas are denoted by the Greek letters α, β, α1,
. . . and sets of formulas by upper case Greek letters Γ,
∆, Γ1, . . . . The symbol `, possibly subscripted with
the name of a system, is used to indicate derivation of a
formula from a set of formulas.

The semantics is based on the notion of a possible
world, where a possible world can be thought of a com-
plete, consistent description of how the world could con-
ceivably be. Each world w will have associated with it
a set of possible worlds N(w) where w′ ∈ N(w) indi-
cates that according to w, w′ is a possible world. Every
formula will be either true or false at a world w in a



model M . That α is true at world w in model M will be
written M,w |= α. If α is true at every world in every
model, then α is valid, written |= α. Given a world w,
we identify the proposition expressed by a sentence α
at w with the set of possible worlds in which α is true,
denoted ‖α‖w, that is,

‖α‖w = {w′ ∈ N(w) | M,w |= α}.

Propositions (viz. sets of possible worlds) are also de-
noted by the upper case letters Xw, Yw, . . . . Most often
we will drop the subscript w since the world in question
will be understood unambiguously.

4.2 The Base Logic
Unlike the approaches described in Section 2, we do not
employ a Kripke structure on possible worlds for the
interpretation of the conditional →. Rather, each world
in a model is associated with a binary notion of relative
normality, denoted <, between sets of possible worlds,
or propositions. Sentences are interpreted with respect
to a model, as follows.
Definition 4.1 A comparative conditional model is a
tuple M = 〈W,N,<, P 〉 where:

1. W is a set (of states or possible worlds);
2. N : W 7→ 2W \ ∅.
3. < ⊆ W ×2W ×2W with properties described below;
4. P : P 7→ 2W .

P maps atomic sentences onto sets of worlds, being those
worlds at which the sentence is true. For w ∈ W , N(w)
gives the set of those worlds considered possible at w. We
require that w ∈ N(w). The relation < associates with
each world w ∈ W a binary notion of relative normality
between propositions; we write X <w Y to assert that,
according to world w, proposition Y is more normal than
X. We will require that X, Y ⊆ N(w) and will consider
just the case where X∩Y = ∅. That is, given a partition
{X, Y } of a subset of the possible worlds, the relation
X <w Y asserts that Y is more normal (unexceptional,
etc.) than X at world w. We assume that < is a strict
partial ordering on its last two arguments, that is for
w ∈ W , <w is asymmetric and transitive. As well, we
will assume that the incoherent proposition is maximally
abnormal:

If X 6= ∅ then ∅ <w X. (3)

Truth of a formula at a world in a model is as for propo-
sitional logic, with additions for 2 and →:
Definition 4.2

1. M,w |= p for p ∈ P iff w ∈ P (p).
2. M,w |= α∧ β iff M,w |= α and M,w |= β.
3. M,w |= ¬α iff M,w 6|= α.
4. M,w |= 2α iff ‖α‖w = N(w).
5. M,w |= α → β iff ‖α‖w ∩ ‖¬β‖w <w ‖α‖w ∩
‖β‖w.

Thus α → β is true just if the proposition expressed by
α ∧ β is more normal than that expressed by α ∧ ¬β.

Consider the logic closed under classical propositional
logic along with the following rules of inference and ax-
ioms:

Nec: From ` α infer ` 2α.

K: ` 2(α ⊃ β) ⊃ (2α ⊃ 2β).

T: ` 2α ⊃ α.

CEA: ` 2(α ≡ α′) ⊃ ((α → β) ≡ (α′ → β)).

CECA: ` 2(α ⊃ (β ≡ β′)) ⊃ ((α → β) ≡ (α → β′)).

RR: ` 3α ⊃ (α → α).

NA: ¬(⊥ → α)

CEM: (α → β) ⊃ ¬(α → ¬β)

Trans: ` 2(¬(α1 ∧ α2) ∧ ¬(α1 ∧ α3) ∧ ¬(α2 ∧ α3)) ⊃
([(α1∨α2 → α2)∧ (α2∨α3 → α3)] ⊃ (α1∨α3 → α3))

We call the smallest logic based on the above axiomati-
sation C. Nec, K, and T characterise 2. CEA (Con-
ditional Equivalent Antecedents) gives substitution of
necessary equivalents in the antecedent of a conditional.
CECA (Conditional Equivalent Consequents, given An-
tecedents) asserts the same thing with respect to conse-
quents, but is somewhat more general, in that the conse-
quents need be equivalent just in the “context” given by
the antecedent. RR is restricted reflexivity; here as with
other conditionals we disallow the incoherent proposition
⊥ to be the antecedent of a true conditional. NA (Ni-
hil ex Absurdo) asserts that the incoherent proposition
never normally implies anything. [Benferhat et al., 1992]
expresses this axiom nicely, that “while ⊥ (classically)
entails anything, it should preferentially entail nothing”.
CEM is the excluded middle for a weak conditional; in
the semantics this is reflected by asymmetry of <. Sim-
ilarly Trans reflects transitivity of < in the semantics.
We obtain the following basic results:

Theorem 4.1

1. From ` α ≡ α′ infer ` (α → β) ≡ (α′ → β)

2. From ` β ≡ β′ infer ` (α → β) ≡ (α → β′)

3. ` (α → β) ⊃ (α → (α ∧ β))

4. ` (α → β) ⊃ (α → (α ⊃ β))

5. ` 3α ⊃ (2(α ⊃ β) ⊃ (α → β)).

6. ` (3α ∧2β) ⊃ (α → β)

7. ` ¬(α → ⊥)

The first two results express substitution of logical equiv-
alents in the antecedent and consequent of a conditional.
These rules have been called RCEA and RCEC in the
conditional logic literature. The next two results effec-
tively express the range of equivalent forms a conditional
may take on with respect to the consequent. The follow-
ing two results, Parts 4 and 5, connect the modalities 2

and →. The former is analogous to RCE in the condi-
tional logic literature, while the latter is slightly weaker



than MOD. The last result asserts that no proposition
normally implies the incoherent proposition.

Of those axioms in the presumed “core” logic (Sec-
tion 2), RCM, RT, ASC, CC, and CA are not valid
in C. Nonetheless, despite its (monotonic) inferential
weakness, the logic allows a rich set of nonmonotonic in-
ferences, as covered in the next section. However, first
we explore properties of the (monotonic) logic.

Properties of the Logic
Soundness of the logic is shown by a straightforward
inductive argument. For the completeness proof, it is
of interest to first consider the weakest logic compati-
ble with the semantic framework given in Definition 4.1.
Completeness is given with respect to the weakest real-
istic semantic framework; the corresponding weakened
axiomatic system is called C−. Then the roles of non-
triviality, asymmetry and transitivity in the semantics
is clearly reflected in the axioms that are added to C−,
yielding the system C.

Definition 4.3 A weak comparative conditional model
is a comparative conditional model (Definition 4.1),
M = 〈W,N,<, P 〉 except that we define < simply by
< ⊆ W × 2W × 2W .

Consider the logic over L closed under classical propo-
sitional logic and Nec, K, T, along with the following
axioms:

CEA: ` 2(α ≡ α′) ⊃ ((α → β) ≡ (α′ → β)).

CECA: ` 2(α ⊃ (β ≡ β′)) ⊃ ((α → β) ≡ (α → β′)).

The smallest logic based on the above axiomatisation is
called C−. It is easily shown that C− is sound with
respect to weak comparative conditional models.

Completeness is demonstrated by constructing a
canonical model [Chellas, 1980; Hughes and Cresswell,
1996] for the logic C−, that is, a model such that every
non-theorem of C− is false at some world in the model.

We obtain the characterization result:

Theorem 4.2 α is valid in the class of weak compara-
tive conditional models iff ` α in C−.

Given this result, we can next consider the addition
of properties to the logic that will strengthen C− to our
“official” base logic C. If <w is to be interpreted as cap-
turing a notion of normality between propositions, then
there are arguably four properties that are necessary, in
that if any were omitted, then <w would be arguably too
weak to capture this notion of normality. These proper-
ties are as follows:

1. Min ∅1: ∅ <w X for every ∅ 6= X ⊆ N(w).

2. Min ∅2: X 6<w ∅ for every X ⊆ N(w).

3. Asymmetry: If X <w Y then Y 6<w X.

4. Transitivity: If X <w Y , Y <w Z then X <w Z
provided X, Y , Z are pairwise disjoint.

We obtain the following correspondence between these
semantic conditions and their corresponding axioms:

Theorem 4.3
C− + min ∅1 (min ∅2, asymmetry, transitivity) is

complete with respect to the class of weak compara-
tive conditional models closed under RR (NA, CEM,
Trans).

Corollary 4.1 C is complete with respect to the class
of comparative conditional models.

4.3 Extensions to the Logic
In the logic C most properties of the relation <w stem
from its being a strict partial order (viz. asymmetric and
transitive), along with the fact that ∅ is the minimum in
<w. In this subsection we look at strengthening <w by
considering properties that seem reasonable for a notion
of normality. Consider the following:

1. Continues Down:
If X <w Y then X \ Z <w Y .

2. Continues Up:
If X <w Y then X <w Y ∪Z provided X∩Z = ∅.

3. Restricted Continues Down/Up:
If X <w Y then X \ Z <w Y ∪ (X ∩ Z).

4. Continues Down/Up:
If X <w Y then X \ Z <w Y ∪ Z.

5. Weak Disjoint Union:
If X1 <w Y1, X2 <w Y2, Y1 ∩ Y2 = ∅ and

(X1∪X2)∩(Y1∪Y2) = ∅ then X1∪X2 <w Y1∪Y2.
For Continues Down, if X is less normal than Y , then a
stronger proposition than X (viz. X \Z) is also less nor-
mal than Y . That is, removing worlds from a proposition
serves to strengthen it, thereby making it “less normal”.
Continues Up is a dual: if X is less normal than Y , then
a weaker proposition than Y (viz. Y ∪ Z) is also more
normal than X. That is, adding worlds to a proposition
serves to make it “more normal”. For Restricted Contin-
ues Down/Up, if X < Y , then “part” of X can be shifted
to Y ; hence X is strengthened and Y weakened by the
same set of worlds. Continues Down/Up combines Con-
tinues Down and Continues Up, as well as generalises
Restricted Continues Down/Up. Weak Disjoint Union
allows for the combination of two independent instances
of <w, provided that the result yields a relation in which
the arguments are disjoint.

Interestingly, Continues Down, Continues Up, and
their combination have appeared in the belief revision lit-
erature. Our relation < is what [Alchourrón and Makin-
son, 1985] call a (transitive) hierarchy ;5 while < with
Continues Down/Up is a regular hierarchy. Their inter-
pretation of < echoes ours for X < Y , that “X is less
secure or reliable or plausible . . . than Y ” [Gärdenfors
and Rott, 1995, p. 75].

Consider next the following formulas:
5In [Alchourrón and Makinson, 1985], < is a binary re-

lation on deductively-closed sets of sentences which, in the
finite case, serves as well as sets of worlds for expressing
propositions.



WSA: 2(β ⊃ γ) ⊃ ((α → β) ⊃ (α ∧ γ → β))
CW: (α ∧ β → γ) ⊃ (α → (β ⊃ γ))
CM: 2(β ⊃ γ) ⊃ ((α → β) ⊃ (α → γ))
WCA: (α → β) ⊃ ((α ∨ γ) → (β ∨ γ)).
D: ((α ∧ β → γ) ∧ (α ∧ ¬β → γ)) ⊃ (α → γ).
WSA (Weak Strengthening of the Antecedent) is a
stronger version of the easy result in C: 2γ ⊃ ((α →
β) ⊃ (α ∧ γ → β)). CW (Conditional Weakening, or
“Conditionalisation” in nonmonotonic consequence rela-
tions) gives a conditional version of one half of the deduc-
tion theorem. The formula CM allows weakening of the
consequent of a conditional. In conditional approaches
it more often appears in a weaker form, as a rule of in-
ference, where it is called RCM or (as a nonmonotonic
inference relation) Right Weakening. As well, this for-
mula can be seen as allowing a form of modus ponens
in the consequent of a conditional. Combining WSA
and CW yields the formula WCA (Weak CA), which
allows incorporation of information uniformly in the an-
tecedent and consequent of a conditional. D supplies a
certain “reasoning by cases” for the conditional.

We obtain the following correspondence between se-
mantic conditions and the axiomatisation:
Theorem 4.4

C + Continues Down (Continues Up, Restricted Con-
tinues Down/Up, Continues Down/Up, Weak Disjoint
Union) is complete with respect to the class of compara-
tive conditional models closed under WSA (CW, CM,
WCA, D).
For ease of discussion, let C+ be the logic:

C + WSA + WCA + WDJ = C + WSA +
CW + CM + WDJ.
For purposes of discussion6 we will take C+ as our “offi-
cial” logic for a rule-based interpretation of defaults and
statements of normality.

We obtain the following easy results:
Theorem 4.5

1. `C+ (α → (β ∧ γ)) ⊃ (α → β)
2. From ` β ⊃ γ infer `C+ (α → β) ⊃ (α → γ)

The first (called CM) is a converse to CC/And. The
second, (RCM or Right Weakening) is a common con-
dition for conditional approaches; it is a weaker version
of our CM.

The following formulas are not derivable in C+:
1. (α → (β ⊃ γ)) ⊃ ((α → β) ⊃ (α → γ))
2. ((α → γ) ∧ (β → γ)) ⊃ (α ∨ β → γ)

The first of these is called CK in the conditional logic
literature; MPC in that of nonmonotonic inference re-
lations. It is the natural strengthening of CM to modus
ponens in the consequence of a conditional. The sec-
ond is called CA or OR. It is a natural strengthening
of Theorem 4.5.1. As mentioned, there are authors (e.g.

6Which is to say, the point is open to debate.

[Neufeld, 1989]) who see this formula as problematic. As
well, various other characterizing formulas in preferen-
tial systems are not theorems here, specifically CC/And,
RT/Cut, and ASC/Cautious Monotony. (The lack of
CC/And means that we do not have what [Gärdenfors
and Makinson, 1994] call an inference system.)

We defer further analysis and discussion to the full
paper, in which we argue that for our purposes these
formulas are not necessarily desirable. In Section 6 we
briefly consider further extensions to the logic.

5 Considerations on Nonmonotonic
Reasoning

We claimed at the outset that the logic C and its
strengthenings would allow a simple approach to non-
monotonic inference, having just the “right” properties
for a rule-based interpretation of a conditional. For these
logics, the central idea is that, given a partition {X, Y }
of a context X ∪ Y ⊆ W , the relation X <w Y as-
serts that Y is more normal (unexceptional, etc.) than
X. To obtain nonmonotonic inference, we simply as-
sume that this relation holds in any subcontext, that is
X ∩ Z <w Y ∩ Z, wherever “reasonable”.

Informally this notion of “reasonable” is straightfor-
ward to specify:

If we have X <w Y then assert X ∩ Z <w

Y ∩ Z just when, for every X ′, Y ′ where
X ∩ Z ⊆ X ′ ⊆ X and Y ∩ Z ⊆

Y ′ ⊆ Y

we don’t have Y ′ <w X ′.
As well we have the constraint that Y ∩ Z 6= ∅. More
formally, we have the following:
Definition 5.1 Let M = 〈W,N,<, P 〉 be a comparative
conditional model in C.
Define M∗ = 〈W,N,<∗, P 〉, an augmentation of M , by:

1. M∗ is a comparative conditional model, and
2. X <∗

w Y iff Y 6= ∅ and there are X ′ ⊇ X,
Y ′ ⊇ Y such that

(a) X ′ <w Y ′ and
(b) for every X ′′, Y ′′ where

X ⊆ X ′′, Y ⊆ Y ′′ and Y ′′ <w X ′′

we have:
X ′ ⊆ X ′′, Y ′ ⊆ Y ′′.

It can be noted that in Definition 5.1, if we have Con-
tinues Down, then we don’t need to bother with X ′ and
X ′′, since monotonically we get that if X ′ < Y ′ then
X < Y ′ for any X ⊆ X ′. As well, Definition 5.1 in
combination with Continues Up may perhaps give too
many relations: From X < Y we have X < Y ∪ Z by
Continues Up and then, all other things being equal we
nonmonotonically conclude X < Z. Thus from X < Y
and arbitrary (but in accordance with the conditions of
the definition) Z, we obtain that X < Z. Assuming
that this is a problem, then there are two ways in which
this difficulty can be resolved. First, one can decide that



Continues Up (and so CW) is too strong for our logic
of conditionals. Or, second, the Definition 5.1 can be
restricted to apply to certain “minimal” sets of worlds.

We define |=∗ as validity in the class of augmented
comparative conditional models; that is |=∗ α iff α is
true at every world in every augmented comparative con-
ditional model. Nonmonotonic inference is defined as
follows:
Definition 5.2 Let Γ ⊆ {α → β | α, β ∈ LPC} ∪ {2α |
α ∈ LPC}.

Define: α |∼ Γβ iff |=∗ Γ ⊃ (α → β).
We say that β is a nonmonotonic inference from α with
respect to Γ, or just β is a nonmonotonic inference from
α if the set Γ is clear from the context of discussion.

We illustrate nonmonotonic inference first by a famil-
iar example:

b → f, (4)
b → w, (5)

2(p ⊃ b), (6)
p → ¬f. (7)

Thus birds fly and have wings, and penguins are (neces-
sarily) birds that do not fly. We obtain the following:

b ∧ w |∼ f, p ∧ w |∼¬f,
b ∧ ¬w |∼ f, p ∧ b |∼¬f,
b ∧ ¬p |∼ f, p ∧ b ∧ w |∼¬f.

We also obtain b ∧ x ∧ y ∧ z |∼w for x ∈ {>, g,¬g}, y ∈
{>, p,¬p}, z ∈ {>, f,¬f}. Thus green (g) birds have
wings, as do non-green flying penguins. As well p |∼w,
and so penguins inherit the property of having wings by
virtue of necessarily being birds. Note that if we replaced
(6) by p → b, we would no longer obtain p |∼w; however
we would obtain the weaker b∧p |∼w. We justify this by
noting that a normality conditional α → β does not im-
ply a strict specificity relation between α and β whereas
2(α ⊃ β) does.

The next example further illustrates reasoning in the
presence of exceptions.

q → p, r → ¬p, q → g (8)
So Quakers are pacifists while Republicans are not, and
Quakers are generous. We obtain q ∧ ¬r |∼ p and q ∧
r |∼ g. Thus in the last case, while Quakers that are
Republican are, informally, exceptional Quakers, they
are nonetheless still generous by default.

We do not obtain the undesirable inference ¬o |∼¬a,
noted in Example 2.3 in Section 2. Further, for Exam-
ple 2.4 we do not obtain f |∼¬u. Last, we note that while
we obtain full incorporation of irrelevant properties, we
do not obtain full default transitivity. Thus

a → b, b → c (9)
does not yield a |∼ c (nor, incidentally, do we obtain
¬b |∼¬a). However we do get a ∧ b |∼ c. If we replaced
a → b with 2(a ⊃ b) we would get a |∼ c. If we replaced
b → c with 2(b ⊃ c) we would again get a |∼ c, in C
(in fact we could derive a → c in those logics containing
CM, as given in Theorem 4.3).

6 Discussion
We could go on and add other conditions in the seman-
tics. Space considerations dictate against a lengthy dis-
cussion, but two conditions are worth noting here:
Disjoint Union: If (X ∪ Y ) ∩ Z = ∅ then:

X <w Y iff X ∪ Z <w Y ∪ Z.

Connectivity: For X, Y ⊆ W , either Y <w X or X <w

Y .
Disjoint union has appeared frequently in the literature,
for example [Savage, 1972; Fine, 1973; Dubois et al.,
1994]. The addition of disjoint union requires that the
notion of a model be altered slightly (from a relation < to
≤); the resultant semantic framework would correspond
to the basic definition of a plausibility structure [Fried-
man and Halpern, 2001]. The addition of connectivity
would make <w a qualitative probability in the terminol-
ogy of [Savage, 1972].

7 Conclusion
We have argued that there are two interpretations of a
default conditional: as a weak (typically material) impli-
cation, or as something akin to a rule of inference. The
former interpretation is explicit in, for example, circum-
scriptive abnormality theories, and implicit in an ap-
proach such as conditional entailment. It is clear that
there are many, and varied, applications in which the
first interpretation is appropriate. However we have also
noted that there are various reasons to suppose that this
is not the only such interpretation: First, work such as
[Poole, 1991] and [Neufeld, 1989] can be viewed as ar-
guing against principles of the “core” logic underlying
this first interpretation (the former arguing against the
principle CC/And and the latter against CA/Or). Sec-
ond, there are examples of inferences in approaches such
as rational closure or in conditional entailment that are
either too weak or too strong. Last, there are emerg-
ing areas (such as causal reasoning) in which a “weak
material implication” interpretation is not appropriate.
While this distinction has been recognized previously,
what is new here is the development of a family of log-
ics, with a novel semantic theory and proof theory, along
with a specification of nonmonotonic inference, for the
“rule-based” interpretation.

All of the logics presented here are quite weak, at least
compared to the “conservative core” or, equivalently, the
system P of [Kraus et al., 1990]. We argue however that
such lack of inferential capability is characteristic of a
“rule-based” interpretation of a conditional. Moreover
it proves to be the case that nonmonotonic reasoning is
defined very easily in these logics, and allows a rich set
of inferences concerning the incorporation of irrelevant
properties and of property inheritance.

An open question concerns how informal, common-
sense defaults should be classified – whether as a defea-
sible classical conditional or as a rule. Certainly past
work has favoured the “defeasible classical conditional”
interpretation. However, a case can be made that many



examples formerly interpreted as belonging to the first
category are better interpreted as belonging to the “rule”
category. Consider Lewis’ approach to counterfactuals
[Lewis, 1973] in which the following example, concern-
ing a past party, is given: “If John had gone it would
have been a good party” and “If John and Mary had
gone it would have not been a good party”. From this
we deduce that “if John had gone, Mary would not have
gone”. This, to most readers, is a strange result: John’s
going and Mary’s going are (presumably) independent
events. Arguably this result ought not to obtain, and
so perhaps counterfactuals, as previously modelled by
Lewis’ sphere semantics, may be better interpreted via
the “rule” interpretation.
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