Strong equivalence of nonmonotonic theories — an algebraic approach
(abstract)

Mirostaw Truszczynhski
Department of Computer Science
University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract

We show that the concept of strong equivalence of logic pro-
grams can be generalized to an abstract algebraic setting of
operators on complete lattices. Our results imply characteri-
zations of strong equivalence for several nonmonotonic logics
including logic programming with aggregates, default logic
and a version of autoepistemic logic.

Introduction

The concept of strong equivalence of logic programs was
introduced in (Lifschitz, Pearce, & Valverde 2001). Two
logic programsP and) arestrongly equivalentf for ev-

ery logic programR, programsP U R and@ U R have the
same stable models. It follows that#f is strongly equiva-
lent to@ and S is an arbitrary program containing, then

P can be replaced i¥ with (Q and the stable models of
the resulting program will remain the same as thosé& of
Thus, strong equivalence is fundamental to program rewrit-
ing and optimization and so, it received much attention in
the literature (Lifschitz, Pearce, & Valverde 2001; Lin 200
Turner 2003).

Characterizing the property of the “equivalence for sub-
stitution” is straightforward in the case of classical (raen
tone) logics. For nonmonotonic logics the situation is more
complex. For instance, in logic programming with the se-
mantics of stable models (Gelfond & Lifschitz 1988), hav-

semantics of answer sets generalizes disjunctive logic pro
gramming with the semantics of answer sets (Gelfond & Lif-
schitz 1991) and, therefore, also normal logic programming
with the semantics of stable models.

(Lifschitz, Pearce, & Valverde 2001) presented a charac-
terization of strong equivalence of nested logic programs
by exploiting properties of the logibere-and-thergdHeyt-
ing 1930). (Turner 2001; Lin 2002; Turner 2003) continued
these studies. In particular, (Turner 2001; 2003) intreduc
the notion of anse-modeldefined as a certain pair of sets
of literals, and proved that two nested logic programs are
strongly equivalent if and only if they have the same se-
models. In addition, (Turner 2001) demonstrated that the ap
proach of se-models extends to the case of default theories.

Results and proofs in (Lifschitz, Pearce, & Valverde 2001;
Turner 2001; Lin 2002; Turner 2003) show common themes
and similarities. To a large degree, it is due to the fact that
all characterizations of strong equivalence developerkthe
are rooted, if not directly then at least implicitly, in thagic
here-and-thereln this paper we show that there are addi-
tional reasons behind these similarities, related to tlee fa
that semantics of many nonmonotonic logics can be intro-
duced in abstract algebraic terms. The study of an algebraic
account of strong and uniform equivalence is the main ob-
jective of our paper.

Our tool is the approximation theory, which deals with
properties of fixpoints of operators on complete lattices-(D

ing the same models, stable models or both (these are naturalnecker, Marek, & Truszczski 2000). It provides an al-

generalizations of the condition of having the same models,
which works in the classical logic case) is too weak to guar-
antee the equivalence for substitution. Indeed, the fotigw
two logic programs

P ={p} and Q = {p + not(q)}

have the same stable models (each program{pass its
only stable model). However? U {¢} and@Q U {q} have
differentstable models. The only stable modelt) {¢} is
{p, ¢} and the only stable model 6J U {¢} is {q}.

(Lifschitz, Pearce, & Valverde 2001) studied the problem
of strong equivalence in the setting lofjic programs with
nested expressionalso referred to asested logic programs
(Lifschitz, Tang, & Turner 1999). To interpret nested logic
programs (Lifschitz, Tang, & Turner 1999) introduced the
notion of ananswer setNested logic programming with the

gebraic account of several nonmonotonic logics including
(normal) logic programming, default logic and autoepis-
temic logic, and allows one to state and prove properties
of these logic in a uniform, general and abstract way (De-
necker, Marek, & Truszczyski 2003). Other applications
of the approximation theory include the development of se-
mantics of logic programs with aggregates (Pelov. 2004;
Pelov, Denecker, & Bruynooghe 2004) and an abstract ac-
count of splitting theorems (Vennekens, Gilis, & Denecker
2004b; 20044a).

In this paper, we show that the concept of strong equiva-
lence can be extended to the case of operators on complete
lattices and can be given a purely algebraic account. Our
results yield as corollaries characterizations of strond a
uniform equivalence for every nonmonotonic logic whose
semantics can be defined in terms of fixpoints of operators

on lattices.

An overview of the approximation theory

We start with a brief overview of the approximation theory
(Denecker, Marek, & Truszchgki 2000), which establishes
properties of fixpoints of certain types of operators on com-
plete lattices. The theory yields a uniform abstract trestim
of semantics of major nonmonotonic logics.

A lattice is a partially ordered set, <) such that every
two element se{z, y} C L has aeast upper boundr V y,
and agreatest lower boundr A y. It is common to omit
the explicit mention of the lattice ordering relation frohet
notation and we follow this convention here.

A lattice L is completdf every subset of. has both least
upper and greatest lower bounds. In particular, a complete
lattice has a least element, denotedlhyand a greatest ele-
ment, denoted by .

An operatoron a latticel is any function from/. to L. An
operatorO on L is monotonef for every z, y € L such that
x < y we haveO(z) < O(y). Similarly, an operato© on
L is antimonotonef for every z,y € L such thatr < y we
haveO(y) < O(z). Constantoperators are both monotone
and antimonotone.

Let L be an operator on a lattice. An elementx € L
is a prefixpoint(a fixpoint, respectively) o if O(z) < x
(O(z) x, respectively). If an operato® has a least
fixpoint, we denote this fixpoint byfp(O). The following

theorem by Tarski and Knaster establishes a fundamental

property of monotone operators on complete lattices (Tarsk
1955).

Theorem 1 Let O be a monotone operator on a complete
lattice L. Then,O has a least fixpoint and this least fixpoint
is also the least prefixpoint @b.

Let L be a lattice. The key intuition of the approxima-
tion theory from (Denecker, Marek, & Truszdzski 2000)
is to view elements of the cartesian prodiiétof L asap-
proximationsand order them according to their “precision”.
Namely, ifx,y,2z € L andx < 2 < y, then(z,y) € L?
approximatesz € L. Moreover, if for somer’,y’ € L,
o <z <y,x <z’ andy <y, then(z’,y’) is a “tighter”
or “more precise” approximation te

An element(z, y) € L? is a “proper” approximation only
if z < y. Otherwise, there is nothing that the péir, y) ap-
proximates. Nevertheless, it is useful to extend the iiotoit
of approximation to all elements ih? and define thereci-
sionordering onL?, <,, in symbols, as follows:

(z,y) <p (@,y) if o <2’ andy <y.

One can check that if. is a complete lattice thed?
with the ordering<,, is also a complete lattice. We call this
lattice theproduct latticeof L. Product lattices, as well as
closely related algebraic structures callgithttices were
thoroughly studied in (Ginsberg 1988; Fitting 2002).

Let A be an operator on the product latticé. We denote
by A! and A? the correspondingrojectionfunctions from
L? to L, that is, the unique functions such that

A(I7y) = (Al(xv y)7A2(I7y))'

We say thatd is symmetridf Al(x,y) = A%(y,z). It fol-
lows directly from the definition that if an operatot :
L? — L?* is symmetric then for every € L, A'(x,z)
A%(z, 2).

Let A be a<,-monotone operator ob* andz, 2,y € L.
If x < 2/ then(z,y) <, (2/,y). By the <,-monotonicity
of A, A(z,y) <, A(z',y) and s0,A (z,y) < A%(2',y). It
follows that A'(-,), which is an operator o, is mono-
tone. Similarly, for everyr € L, the operatord?(y,-) is
monotone, too.

We are ready now to introduce the key concepts of the ap-
proximation theory from (Denecker, Marek, & Truszéski
2000).

Definition 1 An operatorA of L? is approximatingif it is
symmetric and<,-monotone. |4 is an approximating op-
erator onL?, then the corresponding-stableoperator S 4
is defined by

SA(x7 y) = (lfp(Al(, y)? lfp(Al(-7 'T))

(By the symmetry ofi, an equivalent definition of 4 is

Let O be an operator on a lattide An operatorA of L2 is
anapproximatingoperator forO if A is approximating and
if for everyz € L, A(z,z) = (O(z),O(x)). In this case,
we also say tha$ 4 is an A-stable operatofor O.

Every operato© on a latticeL has an approximating op-
erator. LetA be an operator on the product latticé defined

by:

il ifx <y
Al(z,y) = { O(x) ifz=y
T otherwise

andA?(z,y) = A'(y, z). The symmetry ofd is guaranteed
by the second part of the definition. Due to the symmetry
of A, to prove thatd is <, monotone, it suffices to show
that if (z,y) <, (2,y’) thenAl(z,y) < Al(2/,y). Itis,
however, straightforward. if < y, A'(x,y) = L. Ifitis not

the case that’ < ¢/, thenA?(2’,y') = T. Otherwiseg =

y =a' =y andA'(z,y) = O(x) = O(a') = A (2", y/).

In general, approximating operators are not unique. For
monotone and antimonotone operators we distinguish par-
ticular approximating operators. Namely, @ is mono-
tone, we define the operatdry by settingCo (z,y) =
(O(x),0(y)). If O is antimonotone, we defin€y by set-
ting Co(z,y) = (O(y),O(x)). In each case, one can verify
that Cp is an approximating operator fap — we call it
canonical

Definition 2 ((Denecker, Marek, & Truszczynski 2000))
Let O be an operator ol and let A be an approximating
operator forO. An element: € L is an A-stable fixpoint of
O if x = S4(z,z). We denote the set of-stable fixpoints
of O by S5t(O, Aop).

It follows directly from the definition that is an A-stable
fixpoint of O if and only if

T = lfp(Al(,l‘))

We note that the concept of a stable fixpoint of an operator
on a complete lattice is parameterized with an approximat-
ing operator. Thus, later in the paper, when generalizieg th
concept of strong equivalence, we will need to make it clear
which “version” of stability we have in mind, that is, which
approximating operators we use to define it.

We will now discuss the relevance of the approximation
theory to studies of nonmonotonic logics, specifically on
the case of logic programming. We will discuss other for-
malisms in a full version of the paper. We focus on the

We start by defining the concept of ertensiorof an op-
erator. LetP and@ be operators on a lattide An extension
of P with R is an operato” v R defined onl by setting

(PV R)(z) = P(x) V R(x),

for everyx € L. If we consider programs in terms of their
one-step provability operators, this definition is a diigenh-
eralization of the concept of the union of two logic pro-
grams. Indeed, if” and R are logic programs, then one can
show thatl's g = Tp V Tg. We call R anextendingopera-

propositional case and assume an underlying language gen-ior andP v R anextensiorof P with R.

erated by a sefi¢ of propositional variables.

Each logic progranP determines two operators: the one-
step provability operatof’> of van Emden and Kowalski
(van Emden & Kowalski 1976) and ttstableoperatorG L p
of Gelfond and Lifschitz (Gelfond & Lifschitz 1988). Both
operators are defined on the lattitq; of all 2-valued in-
terpretations of the set¢. They are fundamental to logic
programming since:

1. prefixpoints and fixpoints of the operaffs are precisely
models and supported modelsBf respectively; and

2. fixpoints of the operatal L p are precisely stable models
of P.

These operators extend to the lattice of 4-valued integpret
tions of the Herbrand base of a logic progrédmwhich use
elements of the Belnap algebra as truth values. The regultin
operators are the 4-valued one-step provability opergtor
(Fitting 1985; 1991) and the 4-valued stable operalt¢r
(Przymusinski 1990). Prefixpoints and fixpoints B are

Next, we note that ifAp and Ag are approximating oper-
ators for P and R respectively, then the operatdrr V Ar
is an approximating operator fét v R. That leads us to the
following definition.

Definition 3 Let P and@ be operators on a latticé and let
Ap and Ag be their approximating operators, respectively.
ProgramsP and @ are strongly equivalentvith respect to
(Ap, Ag) if for every operatorR and for every approximat-
ing operatorAg, of R,

St(PV R,ApV Agr) = St(Q V R, Ag VvV AR)
In such case, we writ® =; Q mod (Ap, Ag).

Thus, givenP and @ and their approximating operators
Ap andAg, P and(@ are strongly equivalent with respect to
(Ap, Ag) If extensions ofP and(@ with an operato have
the same stable fixpoint§4pr VvV Ag)-fixpoints on the one
side and(Aq Vv Ag)-fixpoints on the other) for an arbitrary
operatorR and for an arbitrary approximating operator for

precisely 4-valued models and 4-valued supported models of p.

P. Moreover,7p has the least fixpoint, which corresponds
to the Kripke-Kleene (4-valued) model &f. Similarly, fix-
points of U, are precisely 4-valued stable modelsfoaind

the least fixpoint ofl’,, which is guaranteed to exist, cor-
responds to the well-founded model Bf In other words,

all major semantics of logic programs can be described by
means of fixpoints and prefixpoints of operators on lattices
of interpretations.

The connection to the approximation theory becomes ap-
parent when we note that the latti€e,; of 2-valued inter-
pretations is complete and that the lattice of 4-valued-inte
pretations is isomorphic to the product lattig, of the lat-
tice L 4;. Under this isomorphism, the 4-valued operatpr
can be viewed as an operator on the product lattigeand
turns out to be an approximating operator for the operator
Tp. Moreover, the operatof’, turns out to be the stable
operator for7p. The key point is that properties of seman-

Let us consider this definition from the perspective of nor-
mal logic programs. LeP’ be a program. As we noted
can be represented in algebraic terms by means of the oper-
ator T» and its approximating operat@i-. Strong equiva-
lence of program#> and(@ as defined in (Lifschitz, Pearce,
& Valverde 2001) requires that for every progralfsta-
ble models ofP U R and Q U R be the same. In the
language of operators, that condition can be expressed as
follows: for every programR, St(Tp V Tr,7p V 1)
St(Tg V Tr,Tg V Tg). It is now clear that our definition
of strong equivalence requires more, namely it requiress tha
we consider an arbitrary operatBras an extending operator
and,in addition that we consider an arbitrary approximat-
ing operatotA for R (in the case of logic programming we
only need to consider one approximating operator/z}.
Nevertheless, later in the paper we will show that the defin-
ing condition for the strong equivalence can be weakened,

tics of logic programs become special cases of general alge- and that when applied to logic programs it yield the same

braic results of the approximation theory (Denecker, Marek
& Truszczyhski 2000), concerning with operators on com-
plete lattices, their approximating operators and theezorr

sponding stable operators.

Equivalence of lattice operators
Our goal in this paper is to show that the concept of strong

concept of the strong equivalence as the one defined in (Lif-
schitz, Pearce, & Valverde 2001).

A characterization of strong equivalence

In this section, we extend the characterization of strong
equivalence of logic programs in terms of se-models (Turner
2001; 2003) to the case of operators.

equivalence can be cast in the abstract algebraic setting of A pair (z,y) € L? is anse-pairfor P with respect tod p

the approximation theory.

if

(SEl) z <y
(SE2) P(y) <y
(SE3) Ap(z,y) <=

We will denote the set afe-pairfor P with respect toA p

Let us look at this definition from the logic programming
perspective. LeP be a logic program. We mentioned earlier
that semantics properties Bfare captured by two operators
on the complete lattice of subsets of the Herbrand base (lat-
tice of 2-valued interpretations), with the inclusion as th
lattice ordering relation. The two operators are the oeg-st
provability operatofl’» and its approximating operatdip.
The following two properties are well known: a set of atoms
Y is a model of a prograr® if and only if T»(Y) C Y’; and
a set of atomsX is a model of the prograr®Y” if and only
if 72(X,Y)CY.

We now recall that an se-model of a prograhis a pair
(X,Y) of sets of atoms (interpretations) such thatC Y,
Y is a model ofP and X is a model ofPY (Turner 2001).
Thus, our comments above imply that a pgif,Y) is an
se-model according to (Turner 2001) if and onlyX,Y") is
an se-pair fofl'p with respect td/p. Consequently, se-pairs
generalize se-models.

Theorem 2 Let P and @ be operators on a latticd and
let Ap and Ag be approximating operators foP and @
respectively. IfSE(P, Ap) = SE(Q, Ag) thenP =, Q

mod (Ap, Ag).

The proof of this result depends on two lemmas.
Lemmal If SE(P,Ap) = SE(Q, Ag), thenSt(P, Ap) =
St(Q, Ag)-

Lemma 2 For every operatoiR on a complete latticé and
for every approximating operatot ; for R,

SE(P\/R,AP \/AR) = SE(P,AP) QSE(R,AR)

Proof of Theorem 2.Let R be an operator ofi and letAg
be an approximating operator fét. Since SE(P, Ap) =
SE(Q, Ag), by Lemma 2 it follows thalSE(P V R, Ap V
ARr)=SE(QV R,Ag Vv Ag). Thus, by Lemma 15t(P V
R,AP\/AR):St(Q\/R,AQ\/AR). O

We will now prove the converse statement to Theorem
2. In fact, we will prove a stronger statement by restricting

the class of operators one needs to consider as expanding

operators.
An operatorR on a complete latticd. is simpleif for
somez, y € L such that < y, we have

R(z) = {

for everyz € L.

We note that constant operators are simple. Indeed, if
is the only value taken by an operatBr R is simple with
r=9Yy=w.

Moreover, every simple operatdt is monotone. Indeed,
let z < y be two elements il that defineR (according

if x <z
otherwise

to the formula given above). f; < 2z and R(z1) = «,
thenR(z1) < R(z2). If, on the other handR(z;) = y then
x < z1. Thus,z < z, and so,R(z1) = R(z2). In each case,

In particular,R has thecanonicalapproximating operator
Cr which, we recall, satisfie€'r(z, y) = (R(x), R(y)).

Theorem 3 Let P and(@ be operators on a complete lattice

L and let Ap and Ag be approximating operators foP

and @, respectively. If for every simple operatBron L we

haveSt(PV R,Ap vV Cgr) = St(Q V R, Ag V Cr), then
As before, we need auxiliary results.

Lemma3 If P(y) < y then(y,y) € SE(P,Ap) and
(lfp(A}:’(? y))’ y) € SE(P7 AP)

Lemma 4 If for every constant operatoR on a complete
lattice L we haveSt(PV R, ApV Cgr) = St(QV R, Ag V
Cr), then for every € L, P(y) < yifand only ifQ(y) <
Y.

Proof of Theorem 3.Let (z,y) € SE(P, Ap). It follows
thatz < y andP(y) < y. By Lemma 4Q(y) < y.

If = y then, by Lemma 3(z,y) € SE(Q, Ag). So,
let us assume that < y. Let R be an simple operator ah
given by
if x <z
otherwise.

R(z){z

We observe thatl, (y,y) = Q(y) < y and, ast < y,
thatCx(y,y) = R(y) = y. It follows that

y=A4L(y,y) vV Ch(y.y).

Thatis,y is a fixpoint of the operatad, (-, y) V Ck(-,y).

Let > be an arbitrary fixpoint ofi5, (-, y) V Cg (-,), that
is,

2= Ap(z,y) V Cr(z,y).
It follows that A4, (z,y) < 2. In addition,z < R(z) =
Cr(z,y) < z.
Let us assume that < z. By the definition ofR, R(z) =
y and so,
y=Cr(zy) < 2
Thus,y = Ifp(Ag (- y) Vv Ck(-,y) and, consequently, =

Un(Ab(-y) v Ch(-1)).
SinceAbL(z,y) < x andCk(z,y) = R(z) = z, we have

Ap(z,y) V Cr(z,y) = .

Thus,y < z, a contradiction.
As z < z, it follows thatz = =z. Thus,Aé(m, y) < x
and so,(z,y) € SE(Q, Ag). ConsequentlysE (P, Ap) C
SE(Q, Ag). The converse inclusion follows by the symme-
try argument. O
Theorems 2 and 3 yield a complete characterization of the
strong equivalence of operators.

Corollary 4 Let P and Q be operators on a latticd, and
let Ap and Ag be approximating operators foP and @
respectively. The® =, Q mod (Ap, Ag) if and only if

Theorems 2 and 3 imply also the following result, which
shows that we can substantially weaken the defining con-
dition for the strong equivalence without changing the con-
cept.

Theorem 5 Let P and) be operators on a latticd, and
let Ap and Ag be approximating operators faoP and @
respectively. The® =, Q mod (Ap, Ag) if and only if
for every simple operataR, St(PV R, ApVCr) = St(QV
R,Aq V CRg).

In other words, to determine strong equivalence of oper-
ators it suffices to consider simple operators as extending
operators, and for each simple operator — to consider its
canonical approximating operator only.

In the case of normal logic programs our approach to
strong equivalence generalizes the one developed in (Lifs-
chitz, Pearce, & Valverde 2001).

Theorem 6 Normal logic programsP and @ are strongly
equivalent in the sense of (Lifschitz, Pearce, & Valverde
2001) if and only if the operator$r and T, are strongly
equivalent with respect ttZp, 7g) according to Definition

3.

Discussion

In several places in this paper, we demonstrated that our ap-
proach yields as corollaries results concerning strongvequ
alence of logic programs. In the same way, it can also be
applied to other nonmonotonic logics whose semantics can
be described in algebraic terms of (Denecker, Marek, &
Truszczyiski 2000). Examples of such logics include some
extensions of logic programming with aggregates (Pelov.
2004; Pelov, Denecker, & Bruynooghe 2004), as well as de-
fault and autoepistemic logic (the latter understood as pre
sented in (Denecker, Marek, & Truszéwki 2003)). In a
full version of the paper we will present details of some of
these applications.

On the other hand, there are at present limits to the ap-
plicability of our approach. In particular, it does not appl
to nested logic programs and default theories. The reason
is that these formalisms do not have a satisfactory algebrai
presentation such us their counterparts without nested ex-
pressions. Two key problems are minimality and nondeter-
minism. Some work on ways to develop an algebraic treat-
ment of these two issues in the context of disjunctive logic
programs can be found in (Pelov & Truszézski 2004).
However, more work is needed.

Finally, we note that the algebraic approach to strong

equivalence developed here extends also to the case of uni-

form equivalence (Eiter & Fink 2003), a topic that we will
discuss in detail in a full version of the paper.

Acknowledgments
We acknowledge the support of NSF grant [1S-0325063.

References
Denecker, M.; Marek, V.; and Truszazski, M. 2000. Approxi-
mations, stable operators, well-founded fixpoints and applications
in nonmonotonic reasoning. In Minker, J., eldogic-Based Arti-
ficial Intelligence Kluwer Academic Publishers. 127-144.

Denecker, M.; Marek, V.; and Truszazski, M. 2003. Uniform
semantic treatment of default and autoepistemic logietficial
Intelligence Journall43:79-122.

Eiter, T., and Fink, M. 2003. Uniform equivalence of logic pro-
grams under the stable model semantics.Pioceedings of the
2003 International Conference on Logic Programmirglume
2916 ofLecture Notes in Computer Scien@24-238. Berlin:
Springer.

Fitting, M. C. 1985. A Kripke-Kleene semantics for logic pro-
grams.Journal of Logic Programmin@(4):295-312.

Fitting, M. 1991. Bilattices and the semantics of logic program-
ming. Journal of Logic Programmind1:91-116.

Fitting, M. C. 2002. Fixpoint semantics for logic programming —
a survey.Theoretical Computer Scien@g8:25-51.

Gelfond, M., and Lifschitz, V. 1988. The stable semantics for
logic programs. IrProceedings of the 5th International Confer-
ence on Logic Programming070-1080. MIT Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databaskiew Generation Computing
9:365-385.

Ginsberg, M. 1988. Multivalued logics: a uniform approach to
reasoning in artificial intelligence.Computational Intelligence
4:265-316.

Heyting, A. 1930. Die formalen regeln der intuitionistischen
logik. Sitzungsberichte der Preussischen Akademie von Wis-
senschaften. Physikalisch-mathematische KL48s&6.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly equiva-
lent logic programsACM Transactions on Computational Logic
2(4):526-541.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested expres-
sions in logic programs.Annals of Mathematics and Artificial
Intelligence369-389.

Lin, F. 2002. Reducing strong equivalence of logic programs
to entailment in classical propositional logic. Rrinciples of
Knowledge Representation and Reasoning, Proceedings of the 8th
International Conference (KR2002Wlorgan Kaufmann Publish-
ers.

Pelov, N., and Truszchski, M. 2004. Semantics of disjunc-
tive programs with monotone aggregates — an operator-based
approach. In Delgrande, J., and Schaub, T., &tsgeedings of

the 10th International Workshop on Non-Monotonic Reasoning,
NMR-04 327-334.

Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Partial stable
models for logic programs with aggregates. In Lifschitz, V., and
Niemeh, I., eds. Logic pro%ramming and Nonmonotonic Rea-
soning, Proceedings of tH&" International Conferengesolume
2923, 207-219. Springer.

Pelov., N. 2004. Semantics of logic programs with aggregates.
PhD Thesis. Department of Computer Science, K.U.Leuven, Leu-
ven, Belgium

Przymusinski, T. 1990. The well-founded semantics coincides
with the three-valued stable semantieandamenta Informaticae
13(4):445-464.

Tarski, A. 1955. Lattice-theoretic fixpoint theorem and its appli-
cations.Pacific Journal of Mathematics:285-309.

Turner, H. 2001. Strong equivalence for logic programs and de-
fault theories (made easy). Proceedings of Logic Program-
ming and Nonmonotonic Reasoning Conference, LPNMR,2001
volume 2173, 81-92. Lecture Notes in Atrtificial Intelligence,
Springer.

Turner, H. 2003. Strong equivalence made easy: Nested expres-
sions and weight constraint3heory and Practice of Logic Pro-
gramming3, (4&5):609-622.

van Emden, M., and Kowalski, R. 1976. The semantics of pred-
icate logic as a programming languagdournal of the ACM
23(4):733-742.

Vennekens, J.; Gilis, D.; and Denecker, M. 2004a. Splitting an
operator: An algebraic modularity result and its application to
auto-epistemic logic. In Delgrande, J., and Schaub, T., Bds-,
ceedings of the 10th International Workshop on Non-Monotonic
Reasoning400-408.

Vennekens, J.; Gilis, D.; and Denecker, M. 2004b. Splitting an op-
erator: an algebraic modularity result and its applications to logic
programming. In Lifschitz, V., and Demoen, B., edsogic pro-
gramming, Proceedings of the 20th International Conference on
Logic Programming, ICLP-04195-209.

