
Strong equivalence of nonmonotonic theories — an algebraic approach
(abstract)

Mirosław Truszczyński
Department of Computer Science

University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract

We show that the concept of strong equivalence of logic pro-
grams can be generalized to an abstract algebraic setting of
operators on complete lattices. Our results imply characteri-
zations of strong equivalence for several nonmonotonic logics
including logic programming with aggregates, default logic
and a version of autoepistemic logic.

Introduction
The concept of strong equivalence of logic programs was
introduced in (Lifschitz, Pearce, & Valverde 2001). Two
logic programsP andQ arestrongly equivalentif for ev-
ery logic programR, programsP ∪ R andQ ∪ R have the
same stable models. It follows that ifP is strongly equiva-
lent toQ andS is an arbitrary program containingP , then
P can be replaced inS with Q and the stable models of
the resulting program will remain the same as those ofS.
Thus, strong equivalence is fundamental to program rewrit-
ing and optimization and so, it received much attention in
the literature (Lifschitz, Pearce, & Valverde 2001; Lin 2002;
Turner 2003).

Characterizing the property of the “equivalence for sub-
stitution” is straightforward in the case of classical (mono-
tone) logics. For nonmonotonic logics the situation is more
complex. For instance, in logic programming with the se-
mantics of stable models (Gelfond & Lifschitz 1988), hav-
ing the same models, stable models or both (these are natural
generalizations of the condition of having the same models,
which works in the classical logic case) is too weak to guar-
antee the equivalence for substitution. Indeed, the following
two logic programs

P = {p} and Q = {p← not(q)}

have the same stable models (each program has{p} as its
only stable model). However,P ∪ {q} andQ ∪ {q} have
differentstable models. The only stable model ofP ∪ {q} is
{p, q} and the only stable model ofQ ∪ {q} is {q}.

(Lifschitz, Pearce, & Valverde 2001) studied the problem
of strong equivalence in the setting oflogic programs with
nested expressions, also referred to asnested logic programs
(Lifschitz, Tang, & Turner 1999). To interpret nested logic
programs (Lifschitz, Tang, & Turner 1999) introduced the
notion of ananswer set. Nested logic programming with the

semantics of answer sets generalizes disjunctive logic pro-
gramming with the semantics of answer sets (Gelfond & Lif-
schitz 1991) and, therefore, also normal logic programming
with the semantics of stable models.

(Lifschitz, Pearce, & Valverde 2001) presented a charac-
terization of strong equivalence of nested logic programs
by exploiting properties of the logichere-and-there(Heyt-
ing 1930). (Turner 2001; Lin 2002; Turner 2003) continued
these studies. In particular, (Turner 2001; 2003) introduced
the notion of anse-model, defined as a certain pair of sets
of literals, and proved that two nested logic programs are
strongly equivalent if and only if they have the same se-
models. In addition, (Turner 2001) demonstrated that the ap-
proach of se-models extends to the case of default theories.

Results and proofs in (Lifschitz, Pearce, & Valverde 2001;
Turner 2001; Lin 2002; Turner 2003) show common themes
and similarities. To a large degree, it is due to the fact that
all characterizations of strong equivalence developed there,
are rooted, if not directly then at least implicitly, in the logic
here-and-there. In this paper we show that there are addi-
tional reasons behind these similarities, related to the fact
that semantics of many nonmonotonic logics can be intro-
duced in abstract algebraic terms. The study of an algebraic
account of strong and uniform equivalence is the main ob-
jective of our paper.

Our tool is the approximation theory, which deals with
properties of fixpoints of operators on complete lattices (De-
necker, Marek, & Truszczýnski 2000). It provides an al-
gebraic account of several nonmonotonic logics including
(normal) logic programming, default logic and autoepis-
temic logic, and allows one to state and prove properties
of these logic in a uniform, general and abstract way (De-
necker, Marek, & Truszczýnski 2003). Other applications
of the approximation theory include the development of se-
mantics of logic programs with aggregates (Pelov. 2004;
Pelov, Denecker, & Bruynooghe 2004) and an abstract ac-
count of splitting theorems (Vennekens, Gilis, & Denecker
2004b; 2004a).

In this paper, we show that the concept of strong equiva-
lence can be extended to the case of operators on complete
lattices and can be given a purely algebraic account. Our
results yield as corollaries characterizations of strong and
uniform equivalence for every nonmonotonic logic whose
semantics can be defined in terms of fixpoints of operators



on lattices.

An overview of the approximation theory
We start with a brief overview of the approximation theory
(Denecker, Marek, & Truszczyński 2000), which establishes
properties of fixpoints of certain types of operators on com-
plete lattices. The theory yields a uniform abstract treatment
of semantics of major nonmonotonic logics.

A lattice is a partially ordered set〈L,≤〉 such that every
two element set{x, y} ⊆ L has aleast upper bound, x ∨ y,
and agreatest lower bound, x ∧ y. It is common to omit
the explicit mention of the lattice ordering relation from the
notation and we follow this convention here.

A latticeL is completeif every subset ofL has both least
upper and greatest lower bounds. In particular, a complete
lattice has a least element, denoted by⊥, and a greatest ele-
ment, denoted by⊤.

An operatoron a latticeL is any function fromL toL. An
operatorO onL is monotoneif for everyx, y ∈ L such that
x ≤ y we haveO(x) ≤ O(y). Similarly, an operatorO on
L is antimonotoneif for everyx, y ∈ L such thatx ≤ y we
haveO(y) ≤ O(x). Constantoperators are both monotone
and antimonotone.

Let L be an operator on a latticeL. An elementx ∈ L
is a prefixpoint(a fixpoint, respectively) ofO if O(x) ≤ x
(O(x) = x, respectively). If an operatorO has a least
fixpoint, we denote this fixpoint bylfp(O). The following
theorem by Tarski and Knaster establishes a fundamental
property of monotone operators on complete lattices (Tarski
1955).

Theorem 1 Let O be a monotone operator on a complete
latticeL. Then,O has a least fixpoint and this least fixpoint
is also the least prefixpoint ofO.

Let L be a lattice. The key intuition of the approxima-
tion theory from (Denecker, Marek, & Truszczyński 2000)
is to view elements of the cartesian productL2 of L asap-
proximationsand order them according to their “precision”.
Namely, if x, y, z ∈ L andx ≤ z ≤ y, then(x, y) ∈ L2

approximatesz ∈ L. Moreover, if for somex′, y′ ∈ L,
x′ ≤ z ≤ y′, x ≤ x′ andy′ ≤ y, then(x′, y′) is a “tighter”
or “more precise” approximation toz.

An element(x, y) ∈ L2 is a “proper” approximation only
if x ≤ y. Otherwise, there is nothing that the pair(x, y) ap-
proximates. Nevertheless, it is useful to extend the intuition
of approximation to all elements inL2 and define thepreci-
sionordering onL2,≤p in symbols, as follows:

(x, y) ≤p (x′, y′) if x ≤ x′ and y′ ≤ y.

One can check that ifL is a complete lattice thenL2

with the ordering≤p is also a complete lattice. We call this
lattice theproduct latticeof L. Product lattices, as well as
closely related algebraic structures calledbilattices, were
thoroughly studied in (Ginsberg 1988; Fitting 2002).

Let A be an operator on the product latticeL2. We denote
by A1 andA2 the correspondingprojectionfunctions from
L2 to L, that is, the unique functions such that

A(x, y) = (A1(x, y), A2(x, y)).

We say thatA is symmetricif A1(x, y) = A2(y, x). It fol-
lows directly from the definition that if an operatorA :
L2 → L2 is symmetric then for everyx ∈ L, A1(x, x) =
A2(x, x).

Let A be a≤p-monotone operator onL2 andx, x′, y ∈ L.
If x < x′ then(x, y) ≤p (x′, y). By the≤p-monotonicity
of A, A(x, y) ≤p A(x′, y) and so,A1(x, y) ≤ A2(x′, y). It
follows thatA1(·, y), which is an operator onL, is mono-
tone. Similarly, for everyx ∈ L, the operatorA2(y, ·) is
monotone, too.

We are ready now to introduce the key concepts of the ap-
proximation theory from (Denecker, Marek, & Truszczyński
2000).

Definition 1 An operatorA of L2 is approximatingif it is
symmetric and≤p-monotone. IfA is an approximating op-
erator onL2, then the correspondingA-stableoperatorSA

is defined by

SA(x, y) = (lfp(A1(·, y), lfp(A1(·, x)).

(By the symmetry ofA, an equivalent definition ofSA is
SA(x, y) = (lfp(A2(y, ·), lfp(A2(x, ·)).)

LetO be an operator on a latticeL. An operatorA of L2 is
anapproximatingoperator forO if A is approximating and
if for every x ∈ L, A(x, x) = (O(x), O(x)). In this case,
we also say thatSA is anA-stable operatorfor O.

Every operatorO on a latticeL has an approximating op-
erator. LetA be an operator on the product latticeL2 defined
by:

A1(x, y) =

{

⊥ if x < y
O(x) if x = y
⊤ otherwise

andA2(x, y) = A1(y, x). The symmetry ofA is guaranteed
by the second part of the definition. Due to the symmetry
of A, to prove thatA is ≤p monotone, it suffices to show
that if (x, y) ≤p (x′, y′) thenA1(x, y) ≤ A1(x′, y′). It is,
however, straightforward. Ifx < y, A1(x, y) = ⊥. If it is not
the case thatx′ ≤ y′, thenA2(x′, y′) = ⊤. Otherwise,x =
y = x′ = y′ andA1(x, y) = O(x) = O(x′) = A1(x′, y′).

In general, approximating operators are not unique. For
monotone and antimonotone operators we distinguish par-
ticular approximating operators. Namely, ifO is mono-
tone, we define the operatorCO by settingCO(x, y) =
(O(x), O(y)). If O is antimonotone, we defineCO by set-
ting CO(x, y) = (O(y), O(x)). In each case, one can verify
that CO is an approximating operator forO — we call it
canonical.

Definition 2 ((Denecker, Marek, & Truszczyński 2000))
Let O be an operator onL and letA be an approximating
operator forO. An elementx ∈ L is anA-stable fixpoint of
O if x = S1

A(x, x). We denote the set ofA-stable fixpoints
of O bySt(O,AO).

It follows directly from the definition thatx is anA-stable
fixpoint of O if and only if

x = lfp(A1(·, x)).



We note that the concept of a stable fixpoint of an operator
on a complete lattice is parameterized with an approximat-
ing operator. Thus, later in the paper, when generalizing the
concept of strong equivalence, we will need to make it clear
which “version” of stability we have in mind, that is, which
approximating operators we use to define it.

We will now discuss the relevance of the approximation
theory to studies of nonmonotonic logics, specifically on
the case of logic programming. We will discuss other for-
malisms in a full version of the paper. We focus on the
propositional case and assume an underlying language gen-
erated by a setAt of propositional variables.

Each logic programP determines two operators: the one-
step provability operatorTP of van Emden and Kowalski
(van Emden & Kowalski 1976) and thestableoperatorGLP

of Gelfond and Lifschitz (Gelfond & Lifschitz 1988). Both
operators are defined on the latticeLAt of all 2-valued in-
terpretations of the setAt . They are fundamental to logic
programming since:

1. prefixpoints and fixpoints of the operatorTP are precisely
models and supported models ofP , respectively; and

2. fixpoints of the operatorGLP are precisely stable models
of P .

These operators extend to the lattice of 4-valued interpreta-
tions of the Herbrand base of a logic programP , which use
elements of the Belnap algebra as truth values. The resulting
operators are the 4-valued one-step provability operatorTP

(Fitting 1985; 1991) and the 4-valued stable operatorΨ′

P

(Przymusinski 1990). Prefixpoints and fixpoints ofTP are
precisely 4-valued models and 4-valued supported models of
P . Moreover,TP has the least fixpoint, which corresponds
to the Kripke-Kleene (4-valued) model ofP . Similarly, fix-
points ofΨ′

P are precisely 4-valued stable models ofP and
the least fixpoint ofΨ′

P , which is guaranteed to exist, cor-
responds to the well-founded model ofP . In other words,
all major semantics of logic programs can be described by
means of fixpoints and prefixpoints of operators on lattices
of interpretations.

The connection to the approximation theory becomes ap-
parent when we note that the latticeLAt of 2-valued inter-
pretations is complete and that the lattice of 4-valued inter-
pretations is isomorphic to the product latticeL2

At
of the lat-

ticeLAt . Under this isomorphism, the 4-valued operatorTP

can be viewed as an operator on the product latticeL2

At
and

turns out to be an approximating operator for the operator
TP . Moreover, the operatorΨ′

P turns out to be the stable
operator forTP . The key point is that properties of seman-
tics of logic programs become special cases of general alge-
braic results of the approximation theory (Denecker, Marek,
& Truszczýnski 2000), concerning with operators on com-
plete lattices, their approximating operators and the corre-
sponding stable operators.

Equivalence of lattice operators
Our goal in this paper is to show that the concept of strong
equivalence can be cast in the abstract algebraic setting of
the approximation theory.

We start by defining the concept of anextensionof an op-
erator. LetP andQ be operators on a latticeL. An extension
of P with R is an operatorP ∨R defined onL by setting

(P ∨R)(x) = P (x) ∨R(x),

for everyx ∈ L. If we consider programs in terms of their
one-step provability operators, this definition is a directgen-
eralization of the concept of the union of two logic pro-
grams. Indeed, ifP andR are logic programs, then one can
show thatTP∪R = TP ∨ TR. We callR anextendingopera-
tor andP ∨R anextensionof P with R.

Next, we note that ifAP andAR are approximating oper-
ators forP andR respectively, then the operatorAP ∨ AR

is an approximating operator forP ∨R. That leads us to the
following definition.

Definition 3 LetP andQ be operators on a latticeL and let
AP andAQ be their approximating operators, respectively.
ProgramsP and Q are strongly equivalentwith respect to
(AP , AQ) if for every operatorR and for every approximat-
ing operatorAR of R,

St(P ∨R,AP ∨AR) = St(Q ∨R,AQ ∨AR).

In such case, we writeP ≡s Q mod (AP , AQ).

Thus, givenP andQ and their approximating operators
AP andAQ, P andQ are strongly equivalent with respect to
(AP , AQ) if extensions ofP andQ with an operatorR have
the same stable fixpoints ((AP ∨ AR)-fixpoints on the one
side and(AQ ∨ AR)-fixpoints on the other) for an arbitrary
operatorR and for an arbitrary approximating operator for
R.

Let us consider this definition from the perspective of nor-
mal logic programs. LetP be a program. As we noted,P
can be represented in algebraic terms by means of the oper-
atorTP and its approximating operatorTP . Strong equiva-
lence of programsP andQ as defined in (Lifschitz, Pearce,
& Valverde 2001) requires that for every programR sta-
ble models ofP ∪ R and Q ∪ R be the same. In the
language of operators, that condition can be expressed as
follows: for every programR, St(TP ∨ TR, TP ∨ TR) =
St(TQ ∨ TR, TQ ∨ TR). It is now clear that our definition
of strong equivalence requires more, namely it requires that
we consider an arbitrary operatorR as an extending operator
and, in addition, that we consider an arbitrary approximat-
ing operatorAR for R (in the case of logic programming we
only need to consider one approximating operator —TP ).
Nevertheless, later in the paper we will show that the defin-
ing condition for the strong equivalence can be weakened,
and that when applied to logic programs it yield the same
concept of the strong equivalence as the one defined in (Lif-
schitz, Pearce, & Valverde 2001).

A characterization of strong equivalence
In this section, we extend the characterization of strong
equivalence of logic programs in terms of se-models (Turner
2001; 2003) to the case of operators.

A pair (x, y) ∈ L2 is anse-pairfor P with respect toAP

if



(SE1) x ≤ y

(SE2) P (y) ≤ y

(SE3) A1

P (x, y) ≤ x

We will denote the set ofse-pairfor P with respect toAP

by SE (P,AP ).
Let us look at this definition from the logic programming

perspective. LetP be a logic program. We mentioned earlier
that semantics properties ofP are captured by two operators
on the complete lattice of subsets of the Herbrand base (lat-
tice of 2-valued interpretations), with the inclusion as the
lattice ordering relation. The two operators are the one-step
provability operatorTP and its approximating operatorTP .
The following two properties are well known: a set of atoms
Y is a model of a programP if and only if TP (Y ) ⊆ Y ; and
a set of atomsX is a model of the programPY if and only
if T 1

P (X,Y ) ⊆ Y .
We now recall that an se-model of a programP is a pair

(X,Y ) of sets of atoms (interpretations) such thatX ⊆ Y ,
Y is a model ofP andX is a model ofPY (Turner 2001).
Thus, our comments above imply that a pair(X,Y ) is an
se-model according to (Turner 2001) if and only if(X,Y ) is
an se-pair forTP with respect toTP . Consequently, se-pairs
generalize se-models.

Theorem 2 Let P and Q be operators on a latticeL and
let AP and AQ be approximating operators forP and Q
respectively. IfSE (P,AP ) = SE (Q,AQ) thenP ≡s Q
mod (AP , AQ).

The proof of this result depends on two lemmas.

Lemma 1 If SE (P,AP ) = SE (Q,AQ), thenSt(P,AP ) =
St(Q,AQ).

Lemma 2 For every operatorR on a complete latticeL and
for every approximating operatorAR for R,

SE (P ∨R,AP ∨AR) = SE (P,AP ) ∩ SE (R,AR)

Proof of Theorem 2.Let R be an operator onL and letAR

be an approximating operator forR. SinceSE (P,AP ) =
SE (Q,AQ), by Lemma 2 it follows thatSE (P ∨ R,AP ∨
AR) = SE (Q ∨R,AQ ∨AR). Thus, by Lemma 1,St(P ∨
R,AP ∨AR) = St(Q ∨R,AQ ∨AR). 2

We will now prove the converse statement to Theorem
2. In fact, we will prove a stronger statement by restricting
the class of operators one needs to consider as expanding
operators.

An operatorR on a complete latticeL is simple if for
somex, y ∈ L such thatx ≤ y, we have

R(z) =

{

y if x < z
x otherwise

for everyz ∈ L.
We note that constant operators are simple. Indeed, ifw

is the only value taken by an operatorR, R is simple with
x = y = w.

Moreover, every simple operatorR is monotone. Indeed,
let x ≤ y be two elements inL that defineR (according

to the formula given above). Ifz1 ≤ z2 andR(z1) = x,
thenR(z1) ≤ R(z2). If, on the other hand,R(z1) = y then
x < z1. Thus,x < z2 and so,R(z1) = R(z2). In each case,
R(z1) ≤ R(z2).

In particular,R has thecanonicalapproximating operator
CR which, we recall, satisfiesCR(x, y) = (R(x), R(y)).

Theorem 3 LetP andQ be operators on a complete lattice
L and let AP and AQ be approximating operators forP
andQ, respectively. If for every simple operatorR onL we
haveSt(P ∨ R,AP ∨ CR) = St(Q ∨ R,AQ ∨ CR), then
SE (P,AP ) = SE (Q,AQ).

As before, we need auxiliary results.

Lemma 3 If P (y) ≤ y then (y, y) ∈ SE (P,AP ) and
(lfp(A1

P (·, y)), y) ∈ SE (P,AP ).

Lemma 4 If for every constant operatorR on a complete
latticeL we haveSt(P ∨R,AP ∨CR) = St(Q ∨R,AQ ∨
CR), then for everyy ∈ L, P (y) ≤ y if and only ifQ(y) ≤
y.

Proof of Theorem 3. Let (x, y) ∈ SE (P,AP ). It follows
thatx ≤ y andP (y) ≤ y. By Lemma 4,Q(y) ≤ y.

If x = y then, by Lemma 3,(x, y) ∈ SE (Q,AQ). So,
let us assume thatx < y. Let R be an simple operator onL
given by

R(z) =

{

y if x < z
x otherwise.

We observe thatA1

Q(y, y) = Q(y) ≤ y and, asx < y,
thatC1

R(y, y) = R(y) = y. It follows that

y = A1

Q(y, y) ∨ C1

R(y, y).

That is,y is a fixpoint of the operatorA1

Q(·, y) ∨ C1

R(·, y).
Let z be an arbitrary fixpoint ofA1

Q(·, y) ∨ C1

R(·, y), that
is,

z = A1

Q(z, y) ∨ C1

R(z, y).

It follows that A1

Q(z, y) ≤ z. In addition,x ≤ R(z) =

C1

R(z, y) ≤ z.
Let us assume thatx < z. By the definition ofR, R(z) =

y and so,
y = C1

R(z, y) ≤ z.

Thus,y = lfp(A1

Q(·, y) ∨ C1

R(·, y) and, consequently,y =

lfp(A1

P (·, y) ∨ C1

R(·, y)).
SinceA1

P (x, y) ≤ x andC1

R(x, y) = R(x) = x, we have

A1

P (x, y) ∨ C1

R(x, y) = x.

Thus,y ≤ x, a contradiction.
As x ≤ z, it follows that x = z. Thus,A1

Q(x, y) ≤ x

and so,(x, y) ∈ SE (Q,AQ). Consequently,SE (P,AP ) ⊆
SE (Q,AQ). The converse inclusion follows by the symme-
try argument. 2

Theorems 2 and 3 yield a complete characterization of the
strong equivalence of operators.

Corollary 4 Let P and Q be operators on a latticeL and
let AP and AQ be approximating operators forP and Q
respectively. ThenP ≡s Q mod (AP , AQ) if and only if
SE (P,AP ) = SE (Q,AQ).



Theorems 2 and 3 imply also the following result, which
shows that we can substantially weaken the defining con-
dition for the strong equivalence without changing the con-
cept.

Theorem 5 Let P and Q be operators on a latticeL and
let AP and AQ be approximating operators forP and Q
respectively. ThenP ≡s Q mod (AP , AQ) if and only if
for every simple operatorR, St(P ∨R,AP ∨CR) = St(Q∨
R,AQ ∨ CR).

In other words, to determine strong equivalence of oper-
ators it suffices to consider simple operators as extending
operators, and for each simple operator — to consider its
canonical approximating operator only.

In the case of normal logic programs our approach to
strong equivalence generalizes the one developed in (Lifs-
chitz, Pearce, & Valverde 2001).

Theorem 6 Normal logic programsP and Q are strongly
equivalent in the sense of (Lifschitz, Pearce, & Valverde
2001) if and only if the operatorsTP and TQ are strongly
equivalent with respect to(TP , TQ) according to Definition
3.

Discussion
In several places in this paper, we demonstrated that our ap-
proach yields as corollaries results concerning strong equiv-
alence of logic programs. In the same way, it can also be
applied to other nonmonotonic logics whose semantics can
be described in algebraic terms of (Denecker, Marek, &
Truszczýnski 2000). Examples of such logics include some
extensions of logic programming with aggregates (Pelov.
2004; Pelov, Denecker, & Bruynooghe 2004), as well as de-
fault and autoepistemic logic (the latter understood as pre-
sented in (Denecker, Marek, & Truszczyński 2003)). In a
full version of the paper we will present details of some of
these applications.

On the other hand, there are at present limits to the ap-
plicability of our approach. In particular, it does not apply
to nested logic programs and default theories. The reason
is that these formalisms do not have a satisfactory algebraic
presentation such us their counterparts without nested ex-
pressions. Two key problems are minimality and nondeter-
minism. Some work on ways to develop an algebraic treat-
ment of these two issues in the context of disjunctive logic
programs can be found in (Pelov & Truszczyński 2004).
However, more work is needed.

Finally, we note that the algebraic approach to strong
equivalence developed here extends also to the case of uni-
form equivalence (Eiter & Fink 2003), a topic that we will
discuss in detail in a full version of the paper.

Acknowledgments
We acknowledge the support of NSF grant IIS-0325063.

References
Denecker, M.; Marek, V.; and Truszczyński, M. 2000. Approxi-
mations, stable operators, well-founded fixpoints and applications
in nonmonotonic reasoning. In Minker, J., ed.,Logic-Based Arti-
ficial Intelligence. Kluwer Academic Publishers. 127–144.

Denecker, M.; Marek, V.; and Truszczyński, M. 2003. Uniform
semantic treatment of default and autoepistemic logics.Artificial
Intelligence Journal143:79–122.

Eiter, T., and Fink, M. 2003. Uniform equivalence of logic pro-
grams under the stable model semantics. InProceedings of the
2003 International Conference on Logic Programming, volume
2916 of Lecture Notes in Computer Science, 224–238. Berlin:
Springer.

Fitting, M. C. 1985. A Kripke-Kleene semantics for logic pro-
grams.Journal of Logic Programming2(4):295–312.

Fitting, M. 1991. Bilattices and the semantics of logic program-
ming. Journal of Logic Programming11:91–116.

Fitting, M. C. 2002. Fixpoint semantics for logic programming –
a survey.Theoretical Computer Science278:25–51.

Gelfond, M., and Lifschitz, V. 1988. The stable semantics for
logic programs. InProceedings of the 5th International Confer-
ence on Logic Programming, 1070–1080. MIT Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databases.New Generation Computing
9:365–385.

Ginsberg, M. 1988. Multivalued logics: a uniform approach to
reasoning in artificial intelligence.Computational Intelligence
4:265–316.

Heyting, A. 1930. Die formalen regeln der intuitionistischen
logik. Sitzungsberichte der Preussischen Akademie von Wis-
senschaften. Physikalisch-mathematische KLasse42–56.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly equiva-
lent logic programs.ACM Transactions on Computational Logic
2(4):526–541.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested expres-
sions in logic programs.Annals of Mathematics and Artificial
Intelligence369–389.

Lin, F. 2002. Reducing strong equivalence of logic programs
to entailment in classical propositional logic. InPrinciples of
Knowledge Representation and Reasoning, Proceedings of the 8th
International Conference (KR2002). Morgan Kaufmann Publish-
ers.

Pelov, N., and Truszczyński, M. 2004. Semantics of disjunc-
tive programs with monotone aggregates — an operator-based
approach. In Delgrande, J., and Schaub, T., eds.,Proceedings of
the 10th International Workshop on Non-Monotonic Reasoning,
NMR-04, 327–334.

Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Partial stable
models for logic programs with aggregates. In Lifschitz, V., and
Niemel̈a, I., eds.,Logic programming and Nonmonotonic Rea-
soning, Proceedings of the7th International Conference, volume
2923, 207–219. Springer.

Pelov., N. 2004. Semantics of logic programs with aggregates.
PhD Thesis. Department of Computer Science, K.U.Leuven, Leu-
ven, Belgium.

Przymusinski, T. 1990. The well-founded semantics coincides
with the three-valued stable semantics.Fundamenta Informaticae
13(4):445–464.

Tarski, A. 1955. Lattice-theoretic fixpoint theorem and its appli-
cations.Pacific Journal of Mathematics5:285–309.

Turner, H. 2001. Strong equivalence for logic programs and de-
fault theories (made easy). InProceedings of Logic Program-
ming and Nonmonotonic Reasoning Conference, LPNMR 2001,
volume 2173, 81–92. Lecture Notes in Artificial Intelligence,
Springer.



Turner, H. 2003. Strong equivalence made easy: Nested expres-
sions and weight constraints.Theory and Practice of Logic Pro-
gramming3, (4&5):609–622.

van Emden, M., and Kowalski, R. 1976. The semantics of pred-
icate logic as a programming language.Journal of the ACM
23(4):733–742.

Vennekens, J.; Gilis, D.; and Denecker, M. 2004a. Splitting an
operator: An algebraic modularity result and its application to
auto-epistemic logic. In Delgrande, J., and Schaub, T., eds.,Pro-
ceedings of the 10th International Workshop on Non-Monotonic
Reasoning, 400–408.

Vennekens, J.; Gilis, D.; and Denecker, M. 2004b. Splitting an op-
erator: an algebraic modularity result and its applications to logic
programming. In Lifschitz, V., and Demoen, B., eds.,Logic pro-
gramming, Proceedings of the 20th International Conference on
Logic Programming, ICLP-04, 195–209.


