
Region-Based Dynamic Programming for Partially
Observable Markov Decision Processes

Zhengzhu Feng ∗ fengzz@cs.umass.edu

Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Abstract

We present a major improvement to the dynamic programming (DP) algorithm for
solving partially observable Markov decision processes (POMDPs). Our technique first
targets the cross-sum pruning step of the DP update, a key source of complexity in POMDP
algorithms. Unlike previous approaches, which reason about the whole belief space, the
algorithms we present divide the belief space into smaller regions and perform independent
pruning in each region. Because the number of useful vectors over each region can be much
smaller than those over the whole belief space, we show that the linear programs used in the
pruning process can be made exponentially smaller. With this exponential improvement to
cross-sum pruning, we shift our attention to the next bottleneck, the maximization pruning
step. Using the same region-based reasoning, we identify two types of structures in the
belief space of a POMDP and show how to exploit them to reduce significantly the number
of constraints in the linear programs used for maximization pruning. We discuss future
research directions on extending these techniques to improve the scalability of POMDP
algorithms.

1. Introduction

A partially observable Markov decision process (POMDP) models an agent acting in an
uncertain environment, equipped with imperfect actuators and noisy sensors. It provides
an elegant and expressive framework for modeling a wide range of problems in decision mak-
ing under uncertainty. However, this expressiveness in modeling comes with a prohibitive
computational cost when it comes to solving a POMDP and obtaining an optimal policy.
Improving the scalability of solution methods for POMDPs is thus a critical research topic
and have received a lot of attentions.

The first exact algorithm for solving general POMDPs was developed by Smallwood and
Sondik (Sondik, 1971; Smallwood & Sondik, 1973; Sondik, 1978), and was subsequently im-
proved by Cheng (Cheng, 1988). More recent work on the witness algorithm (Littman,
1994) and the incremental pruning algorithm (Zhang & Liu, 1996; Cassandra, Littman,
& Zhang, 1997; Cassandra, 1998) provided a major speedup in exact algorithms. In par-
ticular, incremental pruning is currently considered the most efficient exact algorithm for
performing the dynamic programming update for POMDPs. Most recent work on exact
algorithms uses it as a basic building block. This paper further develops this line of work.
There is also an extensive body of work on approximation methods. The earliest approach is
probably the grid-based approach, which continues to be an active area of research (Drake,

*. The author now works for Google Inc. This work was done while the author was at UMass.

1

1962; Lovejoy, 1991; Brafman, 1997; Hauskrecht, 1997; Zhou & Hansen, 2001). Gen-
eral function approximation methods also received significant attention (Hauskrecht, 2000).
Chen (Cheng, 1988) presented some theoretical results on approximating the dynamic pro-
gramming operators used by exact algorithms, and Feng and Hansen extended these results
and applied them to a version of the incremental pruning algorithm that exploits state
abstraction (Feng & Hansen, 2001, 2004). Other heuristic approaches include hierarchical
decomposition (Theocharous & Mahadevan, 2002; Hansen & Zhou, 2003; Pineau, Gordon,
& Thrun, 2003), direct policy search (Ng & Jordan, 2000; Poupart & Boutilier, 2003), and
belief compression methods (Roy & Thrun, 1999; Roy & Gordon, 2003). Despite these
extensive research efforts on both exact and approximate algorithms, the computational
complexity of POMDPs still presents a major barrier that limits their applicability to small
problems.

Many of the above algorithms rely on performing a dynamic programming (DP) update
on the value function, represented by a finite set of linear vectors over the state space. A
key source of complexity is the size of this representation, which in the worst case grows
exponentially with the number of observations and the planning horizon. Fortunately, a
large number of vectors in this representation can be pruned away without affecting the
result. There is a standard linear programming (LP) method for detecting these useless
vectors. Therefore, solving linear programs to prune useless vectors becomes the main
computational component in the DP update.

Consequently, many research efforts have focused on improving the efficiency of pruning
useless vectors. As will be described shortly in Section 3, the pruning happens at three stages
of the DP update, namely the projection stage, the cross-sum stage, and the maximization
stage. During the cross-sum stage, the number of vectors increases exponentially, making
it the major bottleneck in the DP update process. As a result, most research efforts focus
on the cross-sum stage. The incremental pruning algorithm mentioned above, which is
among the state-of-the-art techniques, is designed to address this problem. It interleaves
the cross-sum and the pruning operators, which leads to significantly reduced number of
linear programs to be solved in the cross-sum stage. In this paper, we introduce a major
improvement to the incremental pruning technique. In particular, our work can be seen as
a generalization of the restricted region variant of incremental pruning (Cassandra et al.,
1997; Cassandra, 1998). The restricted region algorithm exploits the special structure in
the cross-sum of two sets of vectors to reduce the number of constraints in the LPs. We
show how this two-set restriction severely limits the applicability of incremental pruning,
especially to problems with a large number of observations. We then show how to overcome
this limitation so that the kind of structure exploited by RR can be extended to the whole
cross-sum process. The resulting algorithm delivers an exponential speedup to the cross-sum
stage.

With this, we shift our attention to the maximization stage. On the surface, the number
of vectors only increases linearly during the maximization stage. However, the input to the
maximization stage is the results of the cross-sum stage, which can be in itself of exponential
size. Therefore the pruning in the maximization stage can often be as expensive as the cross-
sum stage. This is a less noticed bottleneck, since the cross-sum comes before maximization
in the DP update process. In this paper, we identify two types of properties of the projection
and maximization stages and show how they can be exploited to greatly accelerate the DP

2

process. We show that in the maximization stage, only vectors whose witness regions
are close to each other in the belief space are needed for testing dominance. We show
how this closeness information can be obtained during the cross-sum stage at little cost.
Although this method leaves some dominated vectors undetected, we show that typical
reachability and observability structure in a problem allows such dominated vectors to be
pruned efficiently in a subsequent projection pruning stage.

The algorithm presented in this paper preserves the simplicity of the original incremental
pruning technique. Yet, it delivers superb performance improvements. It also preserves the
generality of the original algorithm, and can thus be embedded into the more advanced
algorithms as cited above that make use of the incremental pruning.

2. Partially Observable Markov Decision Processes

We consider a discrete time POMDP defined by the tuple (S, A, P,R, Z, O), where

• S is a finite set of states;

• A is a finite set of actions. For simplicity we assume that all actions are applicable in
all states;

• P is the transition model, P a(s′|s) is the probability of reaching state s′ if action a is
taken in state s;

• R is the reward model, Ra(s) is the expected immediate reward for taking action a
in state s;

• Z is a finite set of observations that the agent can actually sense;

• O is the observation model, Oa(z|s′) is the probability that observation z is seen if
action a is taken and resulted in state s′.

We are interested in maximizing the infinite horizon total discounted reward, where β ∈
[0, 1) is the discount factor. The standard approach to solving a POMDP is to convert it
to a belief-state MDP. A belief state b is a probability distribution over the state space:

b : S → [0, 1],
∑
s∈S

b(s) = 1.0.

Given a belief state b, representing the agent’s current estimate of the underlying state,
the next belief state b′ is the revised estimate as a result of taking action a and receiving
observation z. It can be computed using Bayesian conditioning as follows:

b′(s′) =
1

P a(z|b)
Oa(z|s′)

∑
s∈S

P a(s′|s)b(s),

where P a(z|b) is a normalizing factor:

P a(z|b) =
∑
s′∈S

[
Oa(z|s′)

∑
s∈S

P a(s′|s)b(s)

]

3

We use b′ = T a
z (b) to refer to belief update. It has been shown that a belief state updated

this way is a sufficient statistic that summarizes the entire history of the process. It is the
only information needed to perform optimally. An equivalent, completely observable MDP,
can be defined over this belief state space as the tuple (B, A, T,RB), where

• B is the state space that contains all possible belief states;

• A is the action set as in the POMDP model;

• T is the belief transition function as defined above; and

• RB is the reward model, constructed from the POMDP model:

Ra
B(b) =

∑
s∈S

b(s)Ra(s).

In this form, a POMDP can be solved by iteration of a dynamic programming update
(DP update) that improves a value function V : B → <. For all belief states b ∈ B:

V n(b) = max
a∈A

{
Ra
B(b) + β

∑
z∈Z

P a(z|b)V n−1(T a
z (b))

}
. (1)

Given an arbitrary initial value function V 0, the sequence of value function produced
by the DP update converges to the optimal value function V ∗:

V ∗(b) = lim
n→∞

V n(b),

An optimal policy, π∗ : B → A, which prescribes the optimal action to take in any given
belief state, can be extracted from the optimal value function using a simple one-step
lookahead:

π∗(b) = arg max
a∈A

{
Ra
B(b) + β

∑
z∈Z

P a(z|b)V ∗(T a
z (b))

}
An algorithm that computes the optimal value function directly by repeatedly applying

Equation 1, and then extracting the control policy from the value function, is usually
referred to as value iteration (Sondik, 1971). There is another type of algorithm, generally
referred to as policy iteration, that computes the policy directly (Sondik, 1971; Hansen,
1998). It represents a policy explicitly and interleaves two steps to improve the policy:
the policy evaluation step computes a value function that represents the value of executing
the current policy, and the policy improvement step uses Equation 1 to update the value
function and extract from it an improved policy. For both types of POMDP algorithms,
the DP update is a central computational component which is why it has been the focus of
many research efforts.

Performing the DP update is challenging because the space of belief states is continuous.
However, Smallwood and Sondik (Smallwood & Sondik, 1973) proved that the DP backup
preserves the piecewise linearity and convexity of the value function, leading the way to

4

designing POMDP algorithms. A piecewise linear and convex value function V can be
represented by a finite set of |S|-dimensional vectors of real numbers,

V = {v0, v1, . . . , vk},

such that the value of each belief state b is defined by

V (b) = max
vi∈V

b · vi,

where
b · v :=

∑
s∈S

b(s)v(s)

is the dot product between a belief state and a vector. Moreover, a piecewise linear and
convex value function has a unique minimal-size set of vectors that represents it. This
representation of the value function allows the DP update to be computed exactly. Among
several algorithms that have been developed to perform this DP step, incremental pruning
(IP) is considered the most efficient.

3. Incremental Pruning

Note that the DP update in Equation 1 can be expressed as a combination of simpler
functions (Cassandra et al., 1997):

V a,z(b) =
Ra
B(b)
|Z|

+ βP a(z|b)V n−1(T a
z (b))

V a(b) =
∑
z∈Z

V a,z(b)

V n(b) = max
a∈A

V a(b)

Each of these functions is piecewise linear and convex, and can be represented by a unique
minimum-size set of vectors. We use the symbols Vn, Va, and Va,z to refer to these minimum-
size sets, and use Vn−1 to refer to the set of vectors representing the previous value function
V n−1.

Using the script letters U and W to denote sets of vectors, we adopt the following
notation to refer to operations on sets of vectors. The cross sum of two sets of vectors, U
and W, is defined as:

U ⊕W = {u + w|u ∈ U , w ∈ W}. (2)

Note that
|U ⊕W| = |U| × |W|.

An operator that takes a set of vectors W and reduces it to its unique minimum form is
denoted PR(W). We also use PR(W) to denote the resulting minimum set. Formally,

w ∈ PR(W) ⇐⇒ w ∈ W, and ∃b ∈ B such that ∀w′ 6= w ∈ U , w · b > w′ · b.

5

Using this notation, the minimum-size sets of vectors defined earlier can be computed
as follows:

Va,z = PR
(
{va,z,i|vi ∈ Vn−1}

)
, (3)

Va = PR (⊕z∈ZVa,z) (4)
Vn = PR (∪a∈AVa) (5)

where va,z,i is the vector computed by

va,z,i(s) =
Ra(s)
|Z|

+ β
∑
s′∈S

Oa(z|s′)P a(s′|s)vi(s′).

The three steps are usually referred to as the projection stage (3), cross-sum stage (4) and
maximization stage (5).

Table 1 summarizes an algorithm, described in (White, 1991), that reduces a set of
vectors to a unique, minimal-size set by removing “dominated” vectors, that is, vectors
that can be removed without affecting the value of any belief state. There are two tests
for dominated vectors. The simpler method is to remove any vector u that is pointwise
dominated by another vector w. That is, u(s) ≤ w(s) for all s ∈ S. The procedure
POINTWISE-DOMINATE in Table 1 performs this operation. Although this method of
detecting dominated vectors is fast, it cannot detect all dominated vectors.

There is a linear programming method that can detect all dominated vectors. Given a
vector w and a set of vectors D that does not include w, the linear program in procedure
LP-DOMINATE of Table 1 determines whether adding w to D improves the value function
represented by D for any belief state b. If it does, the variable d optimized by the linear
program is the maximum amount by which the value function is improved, and b is the
belief state that optimizes d. If it does not, that is, if d ≤ 0, then w is dominated by D.

The algorithm summarized in Table 1 uses these two tests for dominated vectors to
prune a set of vectors to its minimum size. The symbol <lex in the pseudo-code denotes
lexicographic ordering. Littman (1994) elucidated its significance in implementing this
algorithm.

Since the linear programming method takes up most of the computation time in the
pruning, to simplify our discussion, we will omit analyzing the point-wise domination test
in the rest of the paper. We can assume either that the point-wise domination test is always
performed before pruning since it takes little computation time, or that we don’t use the
point-wise domination test at all since it can only detect a small number of dominated
vectors.

As we can see from the table, to prune a vector setW, we need to solve a linear program
for each vector inW. In other words, to prune the setW we need to solve |W| LPs. Among
the three pruning steps, Equations (5) and (3) can be carried out relatively efficiently with
respect to their input size. Equation (4) presents a major bottleneck because the size of
the cross-sum is the product of the inputs: |U ⊕W| = |U|× |W|. As a result, it is necessary
to process

∏
z |Va,z| vectors in computing Va. This translates into solving

∏
z |Va,z| LPs.

Incremental pruning (IP) is designed to specifically addresses this problem. It exploits the
fact that the PR and ⊕ operators can be interleaved:

PR(U ⊕ V ⊕W) = PR(U ⊕ PR(V ⊕W)). (6)

6

procedure POINTWISE-DOMINATE(w,D)
1. for each u ∈ D
2. if w(s) ≤ u(s), ∀s ∈ S then return true
3. return false

procedure LP-DOMINATE(w,D)
4. solve the following linear program

variables: d, b(s) ∀s ∈ S
maximize d
subject to the constraints

b · (w − u) ≥ d, ∀u ∈ D∑
s∈S b(s) = 1

5. if d ≥ 0 then return b
6. else return nil

procedure BEST(b,W)
7. max← −∞
8. for each u ∈ W
9. if (b · u > max) or ((b · u = max) and (u <lex w))
10. w ← u
11. max← b · u
12. return w

procedure PR(W)
13. D ← ∅
14. while W 6= ∅
15. w ← any element in W
16. if POINTWISE-DOMINATE(w,D) = true
17. W ←W − {w}
18. else
19. b← LP-DOMINATE(w,D)
20. if b = nil then
21. W ←W − {w}
22. else
23. w ← BEST(b,W)
24. D ← D ∪ {w}
25. W ←W − {w}
26. return D

Table 1: Algorithm for pruning a set of vectors W.

Thus Equation (4) can be computed as follows:

Va=PR(Va,z1⊕ PR(Va,z2⊕ ···PR(Va,zk−1⊕ Va,zk)···)), (7)

which is what the IP algorithm does. The benefit of IP is the reduction of the number of
LPs that need to be solved. This can best be understood when Equation (7) is viewed as
a recursive process: Instead of pruning the cross-sum ⊕z∈ZVa,z directly, IP breaks it down

7

by recursively computing PR(⊕k
i=2Va,zi) first, and then prune the cross-sum

Va,z1 ⊕ PR(⊕k
i=2Va,zi).

Because the size of PR(⊕k
i=2Va,zi) is potentially much smaller than

∏k
i=2 |Va,zi |, the number

of LPs needed to prune ⊕z∈ZVa,z is reduced from
∏

z |Va,z| to

|Va,z1 | × |PR(⊕k
i=2Va,zk)|.

Note that this argument applies equally to the recursive step PR(⊕k
i=2Va,zi). In general, the

total number of LPs used by IP and its variants in computing Equation (4) is asymptotically
|Va|

∑
z |Va,z| (Cassandra, 1998). Note that for typical POMDPs, |Va| is usually smaller

than, but nevertheless on the same order as,
∏

z |Va
z |.

Another bottleneck in computing Equation (4) is caused by the number of constraints in
each of the linear programs that needs to be solved. From the procedure LP-DOMINATE
in Table 1, each linear program solved has |D| inequality constraints, where |D| eventually
approaches |Va| when computing Equation (4). Again, this is exponential in the size of the
previous value function. Although IP can effectively reduce the number of linear programs
that need to be solved, it does not address the issue of the number of constraints. As a result,
when using IP to solve POMDPs, especially those with a large number of observations, the
large number of linear programs is usually not the first obstacle that we encounter. Instead,
what we usually observe is that the program gets stuck solving one of the linear programs,
because it has too large a number of constraints. Our main contribution is to show how the
number of constraints can be reduced dramatically without affecting the solution quality,
while at the same time maintaining the same number of linear programs as IP.

4. Witness region

Recall that the value function of a POMDP is piece-wise linear and convex (PWLC), and
there is a unique and minimal vector representation for a PWLC function. Figure 1 shows an
example of a value function minimally represented by three vectors. In such a representation,
each vector u ∈ U defines a witness region Bu

U over which u dominates all other vectors in
U (Littman, Cassandra, & Kaelbling, 1996):

Bu
U = {b|b · (u− u′) > 0,∀u′ ∈ U − {u}}. (8)

For simplicity of notation, we use BU to refer to a belief region defined by some vector in
U , when the specific vector is irrelevant or understood from the context. We also use B̃ to
refer to some region when the vector and vector set are irrelevant or understood from the
context.

Note that each inequality in Equation (8) can be represented by a vector, (u− u′), over
the state space. We call the inequality associated with such a vector a region constraint, and
use the notation L(Bu

U) := {(u−u′)|u′ ∈ U −{u}} to represent the set of region constraints
defining Bu

U . Note that for any two regions Bu
U and Bw

W ,

L(Bu
U ∩ Bw

W) = L(Bu
U) ∪ L(Bw

W). (9)

8

U
b

u

Figure 1: Witness region

For each value function, there is an associated set of witness-regions that represents a
partition of the belief-state space. Throughout the dynamic programming process, the value
function is always finite, giving us a finite number of regions as well. We call this represen-
tation of the belief-state space a region-based representation. Note that the region-based
representation is always associated with a vector representation of the value function and
no new data structure is required to represent it. Therefore the region-based representation
is more of a change of perspective when looking at the value functions of a POMDP. As I
will show in this chapter, this change in perspective brings a dramatic improvement to the
algorithm.

5. Region-based cross-sum pruning

In this section, we show how the explicit region-based belief-state representation can be ex-
ploited to greatly increase the performance of the cross-sum pruning operation. To simplify
the notation, we drop the a and z superscripts in the cross-sum pruning Equation (4), and
refer to the computation as

V = PR(⊕k
i=1Vi). (10)

Furthermore, we omit specifying the range of i when the range is from 1 to k.
Consider the cross-sum set U ⊕W, where U and W are assumed to be minimal. It has

been observed that (Cassandra, 1998):

Theorem 1 Let u ∈ U and w ∈ W. Then (u+w) ∈ PR(U⊕W) if and only if Bu
U∩Bw

W 6= φ.

Proof If (u + w) ∈ PR(U ⊕W), then ∃b ∈ B such that ∀(u′ + w′) ∈ U ⊕W,

if (u + w) 6= (u′ + w′), then (u + w) · b > (u′ + w′) · b.

It follows that
∀u′ 6= u ∈ U , (u + w) · b > (u′ + w) · b,

9

procedure LP-INTERSECT(Bv1
V1

,Bv2
V2

, . . . ,Bvk
Vk

)
1. construct the following linear program:

variables: b(s) ∀s ∈ S
maximize 0
subject to the constraints

b · (v1 − v) > 0, ∀v ∈ V1 − {v1}
b · (v2 − v) > 0, ∀v ∈ V2 − {v2}

...
b · (vk − v) > 0, ∀v ∈ Vk − {vk}∑

s∈S b(s) = 1
2. if the linear program is feasible, return TRUE
3. else return FALSE

Table 2: Linear programming test for region intersection.

therefore u · b > u′ · b and b ∈ Bu
U . Similarly, b ∈ Bw

W . Thus b ∈ Bu
U ∩ Bw

W which implies
Bu
U ∩ Bw

W 6= φ.

If Bu
U ∩ Bw

W 6= φ, then ∃b ∈ Bu
U ∩ Bw

W , and so b ∈ Bu
U and b ∈ Bw

W . Thus

∀u′ 6= u ∈ U , u · b > u′ · b,

and
∀w′ 6= w ∈ W, u · b > u′ · b.

It follows that

∀(u′′ + w′′) 6= (u + w) ∈ U ⊕W, (u + w) · b > (u′′ + w′′) · b.

Thus (u + w) ∈ PR(U ⊕W). �
This conclusion can be easily generalized to the cross-sum of more than two sets:

Corollary 1 Let Vi, i ∈ [1, k] be sets of vectors. Let vi ∈ Vi. Then
∑k

i=1 vi ∈ PR(⊕k
i=1Vk)

if and only if ∩k
i=1Bvi 6= φ.

With the region-based representation for the belief state space, testing for region in-
tersection can easily be accomplished by solve a linear program to test if the individual
regions share a common belief point. The linear program is listed in the procedure LP-
INTERSECT in Table 2. We call this linear program the intersection LP. The constraints
of the intersection LP is simply the combination of the region constraints of each region,
plus the simplex constraint of the belief state b. In other words, the size of the intersection
LP is

∑k
i=1 |Vi|+ 1.

5.1 Intersection-based incremental pruning

Corollary 1 suggests that the problem of computing PR(⊕iVi) is equivalent to finding all
intersecting regions defined by the different vector sets. We introduce the operator I({Vi})

10

that takes as input a set of vector sets and produces a list of intersecting regions defined by
those vector sets:

I(Vi1 , . . . ,Vit) =
{

(Bv1
Vi1

, . . . ,Bvt
Vit

)| ∩t
j=1 B

vj

Vij
6= φ

}
Pruning of the cross-sums can then be expressed as

PR(⊕iVi) =

{∑
i

vi

∣∣∣∣∣(Bv1
V1

, ...,Bvk
Vk

) ∈ I(V1, ...,Vk)

}
(11)

A naive approach to compute I({Vi}) is to enumerate all possible combinations of {BVi},
and test them for intersection using the intersection LP. This requires a total of

∏
i |Vi| LPs,

but each LP has only
∑

i |Vi| constraints. A better approach would be to use an incremental
process similar to IP: To compute I(V1,V2, . . . ,Vk), we test if

LP-INTERSECT(BV1 ,BV2 , . . . ,BVk
)

is true for all combinations of BV1 and (BV2 , . . . ,BVk
), where

(BV2 , . . . ,BVk
) ∈ I(V2, . . . ,Vk),

and I(V2, . . . ,Vk) is computed recursively in the same manner. The recursion stops at
I(Vk−1,Vk), at which point the naive approach is used to compute the results. We call this
algorithm for computing I and subsequently PR(⊕iVi) the intersection-based incremental
pruning (IBIP).

Surprisingly, IBIP solves the exact same number of LPs as IP (and the RR variants). To
see this, consider the top level of the recursion. The total number of combinations between
BV1 and (BV2 , . . . ,BVk

), and hence the number of LPs needed, is

|V1| × |I(V2, . . . ,Vk)| = |V1| × |PR(⊕k
i=2Vi)|,

which is also the number of LPs needed at the top recursion of IP (see end of Section 3).
Similarly the same numbers of LPs are solved at all recursive steps. It follows that the total
numbers of LPs of the two approaches are the same: |V|

∑
|Vi|.

However, all the LPs used in computing I have at most
∑k

i=1 |Vi| constraints. In partic-
ular, when computing I(Vt, . . . ,Vk), the number of constraints ranges between

∑k
i=t+1 |Vi|

and
∑k

i=t |Vi|. Thus, to compute PR(⊕iVi), the IBIP algorithm requires the same number
of LPs but with possibly an exponential reduction in the number of constraints compared
to IP. The number of constraints does not depend on the size of the output set, as with IP
and RR.

5.2 Region-based incremental pruning

In this section, we show how the number of constraints in IBIP can be further reduced.
To make a direct comparison with the recursion in IBIP, we will start from Vk: To com-
pute I(V1,V2, . . . ,Vk), we first fix a region in Vk, call it BVk

, and find all the elements in
I(V1, . . . ,Vk−1) that intersect with BVk

. We repeat this for all the regions in Vk.

11

procedure I∗(B̃, {Vi|i ∈ [1, t]})
1. K ← φ
2. if t = 1
3. K ← {Bv

V1
|v ∈ PR(B̃,V1)}

4. else
5. for each v ∈ Vt

6. V ′i ← PR(B̃ ∩ Bv
Vt

,Vi), i ∈ [1, t− 1]
7. if ∃i ∈ [1, t− 1] such that V ′i = φ
8. continue
9. D ← I∗(B̃ ∩ Bv

Vt
, {V ′i|i ∈ [1, t− 1]})

10. K ← K ∪ {(BV1 , ...,BVt−1 ,Bv
Vt

)|(BV1 , ...,BVt−1) ∈ D}
11. return K
procedure I(V1,V2, . . . ,Vk)
12. return I∗(B, {Vi|i ∈ [1, k]})

Table 3: Region-based pruning for computing I.

To find all the regions in I(V1, . . . ,Vk−1) that intersect with BVk
, we first find all regions

in each Vi(1 ≤ i ≤ k− 1) that intersect with BVk
. Recall that each such region corresponds

to a vector in the vector set, and the set of intersecting regions corresponds to some subset
of vectors V ′i ⊆ Vi. V ′i can be precisely computed by the region-based pruning, V ′i =
PR(BVk

,Vi). Once all V ′i are computed, we then recursively compute I(V ′1, . . . ,V ′k−1), by
fixing a BV ′k−1

and then find all the elements in I(V ′1, . . . ,V ′k−2) that intersect BVk
∩ BV ′k−1

.
Note that the I operator serves only as a conceptual place-holder in this process; all the
computations are carried out using the region-based pruning operator.

Table 3 shows the algorithm that finds the set of intersecting regions using this process.
We call the algorithm that computes PR(⊕iVi) using Table 3 and Equation (11) the region-
based incremental pruning (RBIP) algorithm.

The main motivation for RBIP is to further reduce the number of constraints. As Ta-
ble 3 shows, all pruning in RBIP is of the form PR(B̃,Vt). In line 3, the pruning corresponds
to testing some BV1 with some (BV2 , . . . ,BVk

) for intersection in IBIP. The number of con-
straints in IBIP is from

∑k
i=2 |Vi| to

∑k
i=1 |Vi|. The number of constraints in RBIP ranges

between
∑k

i=2 |V∗i | and
∑k

i=1 |V∗i |, where V∗i is Vi pruned multiple times previously in line
6. Because of the region-based pruning, |V∗i | could be much smaller than |Vi| and this is
where the savings come from. The analysis of the pruning in line 6 follows similarly.

In addition to reducing the number of constraints, RBIP can also reduce the number
of linear programs. In Table 3, during each recursive call to I∗(), the sizes of input sets
V ′i are already reduced by pruning. Thus each subsequent problem that I∗() solves can be
progressively smaller. However, without assuming any special restriction on the geometric
form of the value function, it is also possible that the region-based pruning in line 6 may
not prune any vector at all. In this case there is no saving in the number of constraints as
compared to IBIP. Further, if every region-based pruning falls in this worst-case scenario,
the total number of LPs solved by RBIP will be |Z||V|

∑
|Vi|, or |Z| times that of IBIP. It

remains an open question whether this happens in realistic POMDPs. In all the experiments

12

we have performed so far, we observed substantial savings in terms of both the number of
LPs and the number of constraints using RBIP (Feng & Zilberstein, 2004).

6. Region-based maximization pruning

The maximization pruning presents yet another bottleneck in the DP process, since it needs
to prune the union of the cross-sum value functions for all actions, and each cross-sum Va

can be exponential in the size of the previous value function V. There has been relatively
little work addressing maximization pruning, partly because the cross-sum pruning was the
major bottle-neck that come before the maximization pruning step. With an exponential
speedup to the cross-sum pruning, we are at a good position to address the maximization
pruning step.

This section presents a simple algorithm for selecting constraints for the linear programs
used in the maximization pruning stage. It exploits the locality structure of the belief state
space. We show how the region-based representation makes it possible to reason explicitly
about these structures.

6.1 Projection pruning

Given the input value function V, the linear programs in the projection pruning (Equation
3) have worst case number of constraints of |Va,z|. In the worst case, |Va,z| = |V|. However,
for many practical domains, Va,z is usually much smaller than V. In particular, a problem
usually exhibits the following local structure:

• Reachability: from state s, only a limited number of states s′ can be reachable
through action a.

• Observability: for observation z, there are only a limited number of states in which
z is observable after action a is taken.

As a result, the belief update for a particular (a, z) pair usually maps the whole belief space
B into a small subset T z

a (B). Effectively, only values of V over this belief subset need to be
backed up in the back projection in Equation 3. The number of vectors needed to represent
V over this subset can be much smaller, and the projection pruning can in fact be seen
as a way of finding the minimal subset of V that represents the same value function over
T z

a (B). We will exploit this property in our algorithm, by shifting some of the pruning in
the maximization stage to the projection stage of the next DP update.

6.2 Locality in belief space

Let
(v1 + · · ·+ vk) ∈ (Va,z1 ⊕ · · · ⊕ Va,zk)

refer to a vector in the cross-sum, implying vi ∈ Va,zi . From Corollary 1,
∑

i vi ∈ Va if
and only if

⋂
i B

vi
Va,zi 6= φ. Note that the witness region of v =

∑
i vi ∈ Va is exactly this

intersection:
Bv
Va =

⋂
i

Bvi
Va,zi .

13

This gives us a way of relating the vectors in the output of the cross-sum stage, Va, to the
regions defined by the vectors in the input vector sets {Va,zi}. For each v ∈ Va, there is
a corresponding list of vectors {v1, v2, . . . , vk}, where vi ∈ Va,zi , such that v =

∑
i vi and

∩iBvi
Va,zi 6= φ. We denote this list parent(v).

Proposition 1 The witness region of v is a subset of the witness region of any parent vi:

Bv
Va ⊆ Bvi

Va,zi ; (12)

Conversely, for each vi ∈ Va,zi , there is a corresponding lists of vectors v1, v2, . . . , vm ∈ Va,
such that vi ∈ parent(vj),∀j. We denote this list child(vi).

Proposition 2 The witness region of vi is the same as the union of its children’s witness
regions:

Bvi
Va,zi = ∪jBvj

Va . (13)

The construction of the parent and child lists only requires some simple bookkeeping during
the cross-sum stage. They will be the main building blocks of our algorithm.

6.3 Region-based maximization

Recall that in the maximization stage, the set W = ∪aVa is pruned, where each Va is
obtained from the cross-sum pruning stage:

Va = PR(⊕iVa,zi).

Let us examine the process of pruning W using procedure PR in Table 1 (Page 7). In
the while loop at line 14, an arbitrary vector w ∈ W is picked to compare with the current
minimal set D. As the size of D increases, the number of constraints in the linear programs
approaches the size of the final result, |V ′|, leading to very large linear programs. However,
to determine if some vector w ∈ W is dominated or not, we do not have to compare it with
D. Let w ∈ Va and v ∈ Va′ for some a and a′.

Theorem 2 If a 6= a′ and Bw
Va ∩ Bv

Va′ = φ, then w is dominated by W if and only if w is
dominated by W − v.

Proof: If w is dominated by W, that is, ∀b ∈ B,∃u ∈ W such that w 6= u and w · b < u · b.
If W − v does not dominate w, then ∃b′ ∈ Bv

Va′ such that ∀v′ ∈ W − v, w · b′ > v′ · b′. Since
a 6= a′, ∀v′′ 6= w ∈ Va, w · b′ > v′′ · b′ and therefore b′ ∈ Bw

Va . This contradicts the premise
that Bw

Va ∩ Bv
Va′ = φ. Therefore w must be dominated by W − v.

If w is dominated by W − v, then trivially it is also dominated by W.�

Corollary 2 If a = a′ and Bw
Va ∩ Bv

Va′−w
= φ, then w is dominated by W if and only if w

is dominated by W − v.

Intuitively, to test dominance for w, we only need to compare it with vectors that have
a witness region overlapping with the witness region of w. (Although we frame the theorem
for the case of maximization pruning, it can be easily generalized to the pruning of any set

14

of vectors.) However, finding these overlapping vectors in general can be just as hard as
the original pruning problem, if not harder. So this result does not translate to a useful
algorithm in general. Fortunately, for maximization pruning, the special setting in which
the union of some previously cross-summed vectors are pruned allows us to perform a close
approximation of this idea efficiently. We present a simple algorithm for doing so next.

6.4 Algorithm

We start by finding vectors in Va − w that have a witness region overlapping with the
witness region of w. From Equation 12, each vector vi ∈ parent(w) has a witness region
Bvi
Va,zi that fully covers the witness region of w. From Equation 13, each witness region
Bvi
Va,zi is composed of witness regions of child(vi). Therefore the set

D(w) = {v|v ∈ child(vi), vi ∈ parent(w)} (14)

most likely contains vectors in Va that have witness regions surrounding that of w, and
their witness regions in the set Va − w will overlap with the witness region of w.

Next we build a set of vectors in Va′ , a 6= a′ that overlaps with the witness region of w.
First, let b(w) be the belief state that proved w is not dominated in Va. This belief state is
obtained from solving the linear program during the cross-sum pruning stage. We can find
in the vector set Va′ a vector va′ that has a witness region containing b(w), using procedure
BEST in Table 1:

va′ = BEST(b(w),Va′).

By construction, va′ and w share at least a common belief state, b(w). Now we use the
same procedure as Equation 14 to build a set of vectors that covers the witness region of
va′ :

D(va′) = {v|v ∈ child(vi), vi ∈ parent(va′)}

Finally, we put together all these vectors:

D′ = D(w) ∪
⋃

a′ 6=a

D(va′),

and use it to replace the set D at line 19 in Table 1 during maximization pruning. As a
simple optimization, we replace D only when |D′| < |D|. The rest of the pruning algorithm
remains the same.

Note that both D(w) and D(va′) are incomplete. For D(w), it contains vectors that
share a common parent with w, but there can be vectors that touch the boundary of the
witness region of w but don’t share the same parent with it. For D(va′), besides the same
problem, the witness region of va′ may only partially overlap with that of w. Therefore
the set D′ constructed above does not guarantee that a dominated vector can be always
detected. This does not affect the correctness of the dynamic programming algorithm,
however, because the resulting value function still accurately represents the true value,
albeit with extra useless vectors. These useless vectors will be included as the input to
the next DP update step, in which their projections will be removed during the projection
pruning stage (Equation 3). At the cross-sum stage (Equation 4), the input vectors become
the same as those produced by a regular DP algorithm that does not use our maximization

15

pruning technique. Therefore the extra computation caused by the inaccurate pruning of
our algorithm in the previous DP step happens at the projection pruning stage only.

7. Discussions

7.1 Cross-sum pruning

For incremental pruning and its variants, the main computational bottleneck is the cross-
sum step. The main cause for this bottleneck is usually not the large number of linear
programs. Rather, one prohibitively large linear program is enough to block the whole
algorithm. We have successfully reduced the size of the linear programs involved in this
process from having an exponential number of constraints to having a linear number of
constraints. This essentially eliminated one source of complexity in POMDP algorithms.

However, the exponential improvement to the cross-sum step does not necessarily trans-
late to exponential improvement to the whole DP algorithm. For hard POMDP problems,
the number of minimum vectors necessary to represent the value function increases expo-
nentially during each cross-sum. With RBIP or IBIP, we are not avoiding this exponential
increase, we merely generate the (exponentially many) vectors exponentially faster in the
cross-sum step.

We envision two research directions to further improve the performance of the cross-sum
pruning step. Firstly, in our previous work, we showed that by pruning vectors that are
not dominated but only contribute marginally to the value function, we can significantly
reduce the number of vectors, while still maintain a reasonable approximation bound (Feng
& Hansen, 2001). This technique can be applied to RBIP and IBIP. Secondly, the region-
based formulation of the cross-sum pruning makes it possible to carry out the computation in
parallel with little overhead. For IBIP (Section 5.1), the intersection test for each individual
combination of vectors can be carried out independently in parallel. For RBIP, the for loop
in line 7 of the algorithm (Table 3) can be unrolled into independent processes and carried
out in parallel. With the right infrastructure, we can significantly scale up the cross-sum
algorithm.

7.2 Maximization pruning

We have shown how to exploit the local structure of the belief space during the maximization
pruning step of the DP algorithm. As we demonstrated in (Feng & Zilberstein, 2005),
the effectiveness of our algorithm relies on two kinds of structures, namely locality and
reachability. With locality, we only need to look at vectors whose witness regions are close
to that of the vector we are testing for dominance. With reachability, we can safely “leak”
vectors to the next projection step without incurring too much penalty. Ideally we would
want to prevent the leaking altogether so that the algorithm can be less dependent on this
structure. One way is to select the vectors more intelligently. Currently when selecting
the vector va′ from Va′ , (Section 6.4), we only looked at one witness point. It is possible
to select the vectors more intelligently and reduce the leaking. A better approach may be
to keep track of the neighboring relations of the witness regions across multiple DP steps,
which would eliminate the reliance on the reachability structure.

16

References

Andersen, E. D., & Andersen, K. D. (1995). Presolving in linear programming. Mathematical
Programming, 71 (2), 221–245.

Brafman, R. (1997). A heuristic variable grid solution method for POMDPs. In Proceedings
of the 14th National Conference on Artificial Intelligence (AAAI-97), Providence, RI.

Brearly, A. L., Mitra, G., & Williams, H. P. (1975). An analysis of mathematical program-
ming problems prior to applying the simplex method. Mathematical Programming, 8,
54–83.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proceedings of
the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 54–61.

Cassandra, A. R. (1998). Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes. Ph.D. thesis, Brown University.

Cheng, H. (1988). Algorithms for Partially Observable Markov Decision Processes. Ph.D.
thesis, University of British Columbia.

Drake, A. (1962). Observation of Markov Process Through a Noisy Channel. Ph.D. thesis,
Electrical Engineering Department, MIT.

Feng, Z., & Hansen, E. A. (2001). Approximate planning for factored POMDPs. In Pro-
ceedings of the 6th European Conference on Planning (ECP-01).

Feng, Z., & Hansen, E. A. (2004). An approach to state aggregation for POMDPs. In
Proceedings of the 2004 AAAI workshop on learning and planning in Markov processes
- Advances and challenges., San Jose, CA.

Feng, Z., & Zilberstein, S. (2004). Region-based incremental pruning for POMDPs. In
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI-
2004).

Feng, Z., & Zilberstein, S. (2005). Efficient maximization in solving pomdps. In Proceed-
ings of the Twentieth of the Nineteenth National Conference on Artificial Intelligence
(AAAI-05), Pittsburgh, PA.

Hansen, E. (1998). Finite-memory control of partially observable systems. Ph.D. thesis,
Department of Computer Science, University of Massachusetts at Amherst.

Hansen, E., & Zhou, R. (2003). Synthesis of hierarchical finite-state controllers for POMDPs.
In Proceedings of the Thirteenth International Conference on Automated Planning and
Scheduling.

Hauskrecht, M. (1997). Incremental methods for computing bounds in partially observ-
able markov decision processes.. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI-97), Providence, RI.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research, 13, 33–94.

Ioslovich, I. (2001). Robust reduction of a class of large-scale linear programs. SIAM Journal
on Optimization, 12 (1), 262–282.

17

Littman, M. L. (1994). The witness algorithm: Solving partially observable markov decision
processes. Tech. rep. CS-94-40, Brown University Department of Computer Science.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1996). Efficient dynamic-programming
updates in partially observable markov decision processes. Tech. rep. CS-95-19, Brown
University, Providence, RI.

Lovejoy, W. (1991). Computationally feasible bounds for partially observed markov decision
processes.. Operations Research, 39, 162–175.

Ng, A. Y., & Jordan, M. I. (2000). PEGASUS: A policy search method for large MDPs
and POMDPs. In Proceedings of the 16th conference on Uncertainty in Artificial
Intelligence.

Pineau, J., Gordon, G., & Thrun, S. (2003). Policy-contingent abstraction for robust robot
control. In UAI-03.

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Proceedings of
Advances in Neural Information Processing Systems 16.

Roy, N., & Gordon, G. (2003). Exponential family PCA for belief compression in POMDPs.
In Advances in Neural Information Processing 15.

Roy, N., & Thrun, S. (1999). Coastal navigation with mobile robots. In Advances in Neural
Information Processing 12.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21 (5), 1071–1088.

Sondik, E. J. (1971). The optimal control of partially observable Markov processes. Ph.D.
thesis, Stanford University.

Sondik, E. J. (1978). The optimal control of partially observable Markov processes over the
infinite horizon: Discounted costs. Operations Research, 26, 282–304.

Theocharous, G., & Mahadevan, S. (2002). Approximate planning with hierarchical partially
observable Markov decision processes for robot navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation, Washington, D.C.

White, C. C. (1991). A survey of solution techniques for the partially observed markov
decision process. Annals of Operations Research, 32, 215–230.

Zhang, N. L., & Liu, W. (1996). Planning in stochastic domains: Problem characteristics
and approximation. Tech. rep. HKUST-CS96-31, Hong Kong University of Science
and Technology.

Zhou, R., & Hansen, E. A. (2001). An improved grid-based approximation algorithm for
POMDPs. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence.

18

