Attribute Measurement Policies for Cost-effective Classification

Andrew Arnt*

Abstract

Many systems with machine learning classifiers as compo-
nents require the ability to function in a realtime, online
setting. Such systems must be able to quickly classify in-
We identify
three components of cost that must be considered: penalties

stances so as to minimize a variety of costs.

incurred due to the misclassification of an instance, costs in-
curred when measuring an attribute of the instance, and a
utility cost related to the time elapsed while measuring at-
tributes. We show how to model this problem as an Markov
Decision Process (MDP), and then use AO* heuristic search
to build a policy given a set of labeled training data. Addi-
tionally, we discuss how to modify this system to cope with
a stream of instances arriving over time, where time taken
to measure attributes in the current instance can influence
time-sensitive costs of waiting instances.

1 Introduction

Machine learning classifiers predict labels for instances
using many attributes measured or computed from the
instance. Some of these attributes may be computa-
tionally intensive to compute or rely on relatively slow
external sources of information. It may be impracti-
cal or even infeasible to measure all possible attributes
for each instance when in a realtime setting. To ad-
dress these issues, we develop a model that allows the
system to quickly decide which attributes to measure,
what order to measure them in, and when to stop at-
tribute measurement and classify the current instance.
We take a decision theoretic approach, where we try to
minimize the expected value of a cost function reflecting
the quality of service of the system.

The next section describes the three types of cost
that can be incurred by a classifier operating in a time
sensitive environment. We note that previous work has
only dealt with two of these costs. A simple greedy, non-
optimal approach to developing attribute measurement
and classifcation policies is described in Section 3. We
show how this problem can be formulated as an MDP
and solved using AO* search in Section 4. Finally, an
approarch to handling a sequence of classification tasks
is discussed in Section 5.

*University of Massachusetts, Amherst
TUniversity of Massachusetts, Amherst

Shlomo Zilberstein®

2 Cost Functions

The cost function C' is designed so that minimizing C
will in turn cause the system to provide the highest
quality of service. As such, there are three components
that reflect desired system properties.

2.1 Misclassification costs In many applications,
not all misclassifications have the same value. There
may be a significant difference between the problems
caused by a false negative versus those caused by a false
positive. We denote this portion of the cost function
which handles misclassification penalties as CL(I,|l,),
which is the cost incurred by classifying an instance
with actual label [, as having a predicated label [,.
Minimizing this component will minimize the severity
and frequency of classification errors.

The relative costs of classification errors are often
represented in a cost matrix. An example cost matrix
for an email filtering program whose task is to detect
and automatically delete ‘spam’ in shown Table 1.
When a false positive occurs, a legitimate email flagged
is spam, and the consequences may be dire: some
possibly important message has been deleted unread.
A false negative is a spam message that slips through
the filter, and is often just an annoyance to the user.
Therefore false positives are deemed 10 times more
costly than false negatives. In medical diagnosis, a false
negative on some tests can cause big problems for the
patient being diagnosed. However a false positive may
result in unnecessary treatment.

The misclassification cost component depends on
the actual label [/, of an instance, which is unknown,
unless the instance is part of a set of labeled training
data. Therefore, in practice we need to use the expected
misclassification cost, given that the classifier predicts
label ,:

ECL(cl()[f) = > CrLlplla)p(lalf)

lo€L

where L is the complete set of labels that an instance
may have. The probability that an instance with the
current measured attribute vector f has the actual label
of I, is p(l4|f), and must be estimated from training

data:

[train(l,,)]
la f = —
Pllalf) = T gin(®)]

where train(f) is the set of all training examples such
that for every measured attribute in f, the training
example has the same value, and train(ly,f) is the
subset of examples in train(f) that have label I,.
These probabilities can be smoothed using a Laplace
correction.

The label [, that is predicted for the current at-
tribute vector f can come from one of two sources. In
the first case, [, is the output corresponding to the input
f by a classification algorithm that has been previously
trained on some training data set. The classification al-
gorithm can be any model: naive Bayes, decision tree,
nearest neighbor, etc. so long as the classification pro-
cedure is robust with respect to missing values in the
attribute vector. There are a variety of methods for
handling missing values as discussed, for example, in
these works: [10, 9, 12]. It may advantageous to use a
training algorithm that is tuned to minimize classifica-
tion costs, instead of one that tries to maximize classi-
fication accuracy.

Alternatively, we can build the choice of [, into the
algorithm itself. That is, the algorithm will choose the
label that incurs the minimum expected misclassifica-
tion cost on a set of training data:

l, = argmin ECf(cl(1)|f)
leL

There has been a significant volume of work on the
problem of minimizing misclassification costs: some
general methods are the weighted boosting algorithm
of [5], and the MetaCost algorithm of [4].

2.2 Attribute Measurement Costs An individual
attribute f; may have a fixed, deterministic cost to mea-
sure: Cpr(m(f;)). For example, this could correspond
to having to pay to retrieve some piece of informa-
tion necessary to compute an attribute. In the field
of medical diagnosis, it is very common for some tests
to have significant financial costs. Research that han-
dles both attribute measurement costs and misclassifica-
tion costs includes the genetic algorithm based decision
tree inducer of [11], the POMDP (Partially Observable
Markov Decision Process)-based decision tree learner of
[2], a dynamic programming algorithm described in [6],
a POMDP for computing attribute measurement poli-
cies with respect to a given Naive Bayes classifier in [7],
and finally an MDP framework with heuristic search to
find good attribute measurement and classification poli-
cies [13].

Table 1: Example cost matrix for an email classification
task

la

Cr(lplla) | ok spam
ok 0 1
P spam 10 0

Cr(H

Figure 1: Example time sensitive component of the cost
function, Cp(t)

2.3 Response Time Costs The cost function
should also reflect the timeliness with which we wish
the classifier to act. In many systems a labeling de-
cision made quickly will be worth more than one that
takes a very long time. In general, any system that
has a component, of human interaction should try to be
fairly responsive and not spend unreasonable amounts
of time ‘thinking’ about the correct label of an instance.
Many embedded or resource limited systems are used in
environments where responsiveness is a key property of
the system.

Therefore the cost function has a final component
Crp(t), which will typically have the form shown in
Figure 1. Note that the cost of a quick result is small
and fairly constant, but as the waiting time increases,
the cost grows at an increasing rate. This is a good
model of user’s perceived utility of a system when they
are forced to wait for a result. In general, however, the
time cost component can take on any form, so long as
the time cost is nondecreasing over time.

It is important to note that none of the research
referenced in Sections 2.1 or 2.2 allowed for costs based
on the time required to classify an instance. Costs in
those models are incurred only by the direct, immediate

cost of measuring an attribute or by misclassifications.

With some constraints, it is possible to represent
time-sensitive classification costs as immediate deter-
ministic measurement costs of individual attributes.
Given these constraints, the above methods are suit-
able. First, the time to measure attributes must be de-
terministic. Secondly, the time-sensitive portion of the
cost function, Cr() must be linear over time. If this is
the case, attribute f; that takes exactly ¢ time units to
compute, can be given an augmented measurement cost
that includes the incremental time cost incurred:

Car () =5 (€20) + Carlan()

instead of using a final time-dependent cost incurred
upon classification. Both of these constraints are im-
practical for real life systems. Any attribute that takes
time to compute or retrieve will rarely have a determin-
istic time to measure. Additionally, a linear time cost
function is a poor representation of a human’s value
of time. A linear function implies that a user loses as
much value per time unit for very short wait time as for
longer wait times. In reality, users typically have some
patience initially, and become increasingly frustrated as
the wait increases. This behavior is best reflected by a
cost function with a derivative that increases over time.

2.4 Combining the cost function components
To combine the three components of the cost function,
it should suffice to perform a simple weighted addition.
The cost of assigning predicted label [, to an instance
f with measured attributes meas(f) and actual label I,
in t time units is:

C(f, t) = wp ECy, (Cl(lp)lf) + ’LUTCT(t)

+wy Y Cu(m(fi)

fi€meas(f)

The variables wy,wr,wy; are system parameters that
are manually tuned to provide a good balance be-
tween the somewhat conflicting goals of low misclassi-
fication costs, attribute measurement costs, and timely
responses.

3 Myopic attribute measurement policies for
single tasks

For the task of classifying a single instance, starting with
no measured attributes, we want to iteratively choose to
measure the single attribute that has the largest value
of information (VOI) [8]. This is equivalent to finding
the attribute that maximizes the one step reduction in
the expected cost (EC) of immediate classification. The
current state of the computation is s = (f, t), where the

current attribute vector for the instance is f and the
current waiting time of the task is . Note that f may
contain unmeasured attributes.

The VOI of measuring an attribute f; is the ex-
pected decrease in cost between when the state f; is not
measured and the state when it is measured.

VOI(m(f)|s) = E(C(s)—C(s))

The state s’ is the new state after f; has been measured,
taking a duration of ¢ time units: s’ = (fUf; = z,t+9),
where f U f; = x refers to f with attribute f; set to x.
We assume the measured value of an attribute and the
time it takes to measure are independent. The expected
difference in cost before and after f; is measured is the
sum of the immediate measurement cost of attribute
fi and the differences between the new and current
expected misclassification costs and time penalties (for
clarity, we omit the cost weight parameters):

E(C(s)=C(s")) = Cr(t) + ECL(cl(l,)|£) — Caar (m(f:)) —
> Cr(t+6)p(T, = 6) -

S€ET;

> ECL(I)[fU f; = x)p(fi = alf)

zTEf;

where T; is the set of all possible durations that at-
tribute f; can take to measure. The probability that
attribute f; will take on value = given the incomplete
attribute vector f is p(f; = z|f) and must be estimated
from training data. The probability of attribute f; hav-
ing value x given the already measured attributes in f
is
of) = |train(f'Ufi = x)]

[train(f)]
These probabilities can also be smoothed with a Laplace
correction.

The probability that attribute f; takes § time units
to measure is denoted as p(T; =). This value must
also be estimated from a set of training data or from
some other source of prior experience. Note that this
probability is not conditional on f, even though the
measurement of previous attributes may affect the time
to measure f;. For example, if an attribute that requires
information to be downloaded from the Internet has
already been measured, then any remaining attributes
that depend on that same information can retrieve it
from a fast local cache. In general, when attributes
i and j depend on the same information source or
computational result and p(7; = 0|f Um(f;)) = 1 (or
vice versa), these attributes should be merged into a
single attribute taking on the value of all pairs (7, j)
when running the attribute selection algorithm.

If none of the measurements reduce the cost
(Vf; VOI(m(f;)|s) < 0), the instance is classified using
the current incomplete attribute vector f to determine
lp. If all attributes have already been measured, then
the next action will be to classify the instance. This
combined attribute measurement and classification pol-
icy can be computed off line and then later be quickly
followed in an on line setting.

Using myopic attribute selection, the system will
greedily try to minimize cost by extracting the single
attribute that provides the largest cost reduction. While
this procedure is non-optimal, this myopic approach
may be enough to give sufficient results, without the
complexity that would be needed to compute an optimal
attribute measurement policy. Optimal methods are
discussed in the next section.

4 Optimal cost sensitive learning

In the above sections, attributes were selected for mea-
surement one at a time, greedily trying to minimize the
expected cost. However, to find the optimal measure-
ment policy, a more sophisticated algorithm than a one
step look-ahead is necessary.

This optimal online attribute measurement problem
is to find the attribute measurement policy that, given
a set of training data, minimizes the expected cost of
classification of future instances, where cost is made up
of the three components discussed in Section 2.

Our strategy for time and cost sensitive learning
builds on the work of Zubek and Dietterich in [13].
We frame the attribute measurement and classification
problem as an MDP (Markov Decision Process). The
“optimal” policy (quoted because it is only optimal with
respect to a set of labeled training data) can then be
found using AO* search, a classical heuristic search
technique. We extend the model in [13] to handle time-
sensitive utility costs.

We will examine both the case where classification
labels are chosen to minimize expected cost within
the search itself (as is the case in [13]), and also
the case where classifications are made by an external
misclassification cost sensitive classifier.

4.1 MDP overview A Markov Decision Process
(MDP) is a popular framework for sequential decision
making problems. An agent in an MDP takes actions
which cause stochastic transitions between states. A
typical formulation (and the one used here) has an agent
with the goal of minimizing the costs incurred while
transitioning to some terminal state. Each state in the
MDP satisfies the Markov property: the state effectively
summarizes all previous activity of the agent in the
environment. The mapping from states to actions that

maximizes reward is called the optimal policy.

4.2 Time and cost sensitive classification as an
MDP The states s € S in the model presented in
[13] are simply the set of all possible attribute vectors
f, including those with unmeasured attributes. To
accommodate time sensitive costs, the state space must
be augmented to include the current waiting time of the
task: therefore the state space is s = {f, t) for all values
of f and ¢ (time is discretized and bounded empirically
to provide good performance at an acceptable level of
computational complexity), in addition to an additional
absorbing termination state F that is transitioned to
when an instance is classified. The starting state of the
MDP is the state with no measured attributes and no
elapsed waiting time:

s=(f=(fi =2/ :?7.-.,f‘f‘ =?),t=0)

The actions in this model are to either measure an
unmeasured attribute f;, denoted ‘m(f;)’, or to classify
the current instance using the label /,,, denoted ‘cl(l,)’.

There are three types of cost related to taking an
action. Cyr(m(f;)) is the cost to measure attribute
fi- This is a deterministic quantity, unrelated to time.
There are also incremental time costs Ca(d]t) which
indicates portion of the end cost Crp(t) incurred by
waiting § additional time units to classify an instance
that has already been waiting ¢ time units. Given a time
cost function Cr(t) such as the one shown in Figure 1,
it is straightforward to compute the incremental time
cost function:

Ca(8|t) = Cr(t +6) — Cp(t)

The expected immediate cost of taking the action m(f;)
is then CM(m(fz)) + ZJGT,; p(Tl = 6)CA(5|t)

We assume the measured value of an attribute and
the time it takes to measure are independent, so the
probability of transitioning from state s = (f,t) to state
s={fUfi=zt+0)is

p(s'|s,m(f;)) = p(fi = = [£)p(T; = 9)

The probability of arriving in terminal state E when the
classification action is taken is always one:

p(Els,cl(lp)) =1

4.3 AO* Search AO* search is an heuristic search
algorithm for searching AND/OR graphs. It is akin to
A* search for standard directed graphs. MDP policies
can be represented as an AND/OR graph: at an OR
node, the agent must choose a single action to take

so as to minimize future cost. However, since the
environment is stochastic, taking an action causes the
agent to transition probabilistically to one of a number
of states. Therefore all these states are successors of the
original state and their costs must be AND-ed together
to compute the best action.

AO* works by iteratively improving upon the cur-
rent best partial solution policy until the optimal policy
is found. Each iteration of the AO* search is composed
of two parts. In the first part, the current best partial
solution is expanded (meaning it’s successors are added
to the search graph) by picking an unexpanded search
state within the current policy. Next, state values and
best action choices are updated in a bottom-up manner,
starting from the newly expanded state. The estimated
value of a state during the search is f(s) and is an op-
timistic estimate of the cost to get from state s to a
terminal state.

Note that AO* search does not have the ability to
find policies containing loops. This is not a problem for
this domain, as the underlying MDP does not allow for
the same state to be visited twice for a single instance.

4.4 Heuristics For AO* search, a heuristic is neces-
sary to guide the search. The heuristic value of a state
is the optimistic estimate of how much cost will be in-
curred before reaching a terminal state. For an optimal
policy to be found, the heuristic must be admissible: it
must never overestimate the cost from a state to the
terminal state. [13] uses an optimistic one-step looka-
head. We use the same heuristic with the inclusion of
incremental time costs. Given an unexpanded state s,
the heuristic value h(s) is the cost of the action (clas-
sifying or measuring an attribute) giving the smallest
immediate cost:

ECL(cl(lp)f)
Cu(m(f)) + Z p(T; = §)Ca(d]t)

0ET;

h(s) =

min
fiZ¢meas(f)

(4.1)

4.5 Evaluation function decomposition and
weighted heuristics Chakrabarti et al [3] show that
the evaluation function in AO* search can be decom-
posed into f(s) = g(s)+ h(s), similar to the decomposi-
tion seen in A* search. However, the meanings of these
functions differ. In A* search, g(s) represents the cost
to arrive at state s from the start state, and h(s) is the
heuristic estimate of how much cost remains to go from
s to a goal state. However, in AO*, g(s) represents the
portion of the solution cost of the policy rooted at s
that is known; That is, the g(s) cost has been explic-
itly computed using just costs incurred on transitions to

generated states, with no h() values being considered.
The h(s) value represents the costs in the policy rooted
at s that are just estimated using the h estimates at
unexpanded nodes.

The functions g and h are both computed in a
bottom-up fashion. Generated but not yet expanded
states s have g(s) =0, and h(s) as defined in Equation
4.1.

If the current best action at expanded state s is
to classify, then the heuristic cost estimate will be zero,
because the only future costs incurred will be the known
expected misclassification cost:

9(s) ECL(cl(y)[f)
h(s) = 0

If the best action at state s is to measure attribute f;
then we have

g(s) = Cu(m(fs))+
> _p(Ti =0) [Caldlt) +_p(fi = 2f) g(s")
§€T; TEf;

h(s) = Y p(Ti=208) Y plfi ==[f)h(s)
€T z€ f;

where s’ = (fU f; = z,t +9).

This decomposition of the value function allows a
weighted version of AO* that gives more emphasis to the
heuristic estimate. Instead of using f(s) = g(s) + h(s),
the estimated cost can be given more weight:f/(s) =
(1 —w)g(s) + wh(s). As w increases from 0.5 to 1.0,
the search becomes increasingly greedy, producing a
policies of decreasing quality. The search space explored
also shrinks, allowing a tradeoff between quality of
results and computability for large search spaces. This
results in a bounded loss of optimality, but also can
significantly reduce the number of search states that
must be evaluated.

4.6 Pruning strategies For classification problems
where instances have a large number of measurable
attributes, each of which can take on many values,
pruning of the search space is essential for efficient
search. A pruning strategy that preserves the optimality
of the policy hinges on the fact that the terminal state £
can be reached by from any state of this MDP by taking
a single classification action [13]. This property, which
is not applicable for general MDP models, allows for
some significant pruning of the search space. An upper
bound h(s) value is computed at each node; this value
represents the expected cost of following the current

best known policy from search state s. Formally, h(s) is

computed as:
3 (s) = 00 s not expanded
= ws) s expanded

hy(m(fi)ls) = Car(m(fi)) +
> p(Ti=8)(Cadlt) +Y_p(fi=alf) h(s'))

SET; T€f;

'(s) = min AEOL(Cl(lpr)
h () - fi¢meas(f) { hf(m(fz)|8)

again with s = (fU f; = x,t + §). Therefore, any
unexpanded search node s’ with parent node s where
h(s) < h(s") can be pruned, as the expansion of s’
cannot lead to an improved policy since we will always
choose the action at s that provides the minimal A(s).

[13] also examines statistical pruning of the search
space due to sparsities of training data. This is an im-
portant consideration, since the amount of training data
that is being used to direct the search gets smaller and
smaller as measurement actions are taken. Eventually,
the search reaches a depth where there is insufficient
training data to justify choosing any one action over any
other. A statistical test can be performed prior to node
expansion to determine if the expansion of the node is
justified by the training data matching that node. This
pruning has two benefits: the search space is reduced,
and more importantly, overfitting of the training data
is avoided.

5 Attribute measurement for sequences of
tasks

The above procedures do not account for other tasks
that need to be classified. Indeed, suppose that instead
of a single classification task to process, the system
has to handle a stream of classification tasks arriving
over time. Therefore, when deciding which attributes
to measure in the current task, we must also consider
the potential for utility loss due to delay in processing of
all other tasks waiting to be classified. Arnt et al refer to
this as the opportunity cost [1], the loss of expected value
due to delay in the starting of work on the remaining
tasks. They show that for a similar problem, the
opportunity cost function can be quickly and effectively
approximated by examining simple attributes of the
queue of waiting tasks, such as number of tasks waiting
and average waiting time of each task. Call this vector
q.

We can factor in opportunity cost to the myopic
attribute measurement strategy discussed in Section 3
by amending the expected different in cost between two
states to include a component Coc(d|q) representing

the cost of delaying computation for § time units given
a queue of waiting classification tasks represented by
attribute vector q.

In the MDP model for optimal policy construction,
the opportunity cost component can be introduced
by augmenting the incremental time cost component
Ca(dt):

Cald]t,q) = Ca(d]t) + Coc(8]q)

This requires that the state space be expanded to
s = (f,t,q). Therefore it may be necessary to severely
limit the possible values of q to avoid an explosion in
the overall size of the state space. For example, the
task queue may be represented with just three states
corresponding to the overall frequency of task arrival:
high, medium, and low.

The MDP transition model must also be augmented
to include q. The probability of transitioning from state
s=(f,t,q) tostate s’ = (fU f; = x,t + §,q’)is

p(s'|s,m(fi)) = p(fi = =|f)p(T; = §)p(d'|q, 9)

where p(q’|q,d) is the probability of the queue going
from state q to q'during a time interval of § time units.
This quantity can be estimated from past experience. If
the arrival rate of tasks in the queue is very steady and
regular, then the probability mass for this distribution
will be tightly concentrated around a single q'. If the
arrival rate is erratic and very unpredictable, then the
probability mass will be more evenly distributed. Note
that if we wished to consider such things as the time
of day, or long term trends in arrival rate, these must
be represented in q. Such a complex representation
of the task queue will cause the overall state space to
be prohibitively large, so we will not consider these
indicators.

6 Conclusions

The challenge of classification under time pressure has
not seen much attention in research, with many algo-
rithms and methods focusingly solely on misclassifica-
tion and attribute measurement costs. Yet for many
systems, good responsiveness is a desirable and some-
times necessary property. The problem of time sensitive
classification is further compounded when dealing with
a stream of instances to be classified. If future instances
are not considered while choosing which attributes to
measure for the current task, there is the risk of large
penalties for the delay in classifying those future tasks.

This research is just underway and thus there are no
experimental results to report. However, given previous
work we are confident of the success of these methods.
Mapping the problem without time costs to an MDP

and solving using AO* search has shown success in [13].
Furthermore the opportunity cost method for processing
streams of tasks has been demonstrated in [1].

Possible future work on this subject includes allow-

ing for the fact that attribute measurement may fail
on occasion, or that the attribute values themselves are
stochastic and repeated measurements may be necessary
to get an accurate value.

References

1]

2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Andrew Arnt, Shlomo Zilberstein, James Allan, and
Abdel Illah Mouaddib. Dynamic composition of in-
formation retrieval techniques. Journal of Intelligent
Information Systems, to appear.

Blai Bonet and Héctor Geffner. Learning sorting
and decision trees with POMDPs. In Proc. 15th
International Conf. on Machine Learning, pages 73—
81. Morgan Kaufmann, San Francisco, CA, 1998.
Partha P. Chakrabarti, Sujoy Ghose, and S.C. De-
Sarkar. Admissibility of AO* when heuristics overesti-
mate. Artificial Intelligence, 139(2):137-174, 2002.
Pedro Domingos. Metacost: A general method for
making classifiers cost-sensitive. In Proc. 5th Interna-
tional Conf. on Knowledge Discovery and Data Mining,
pages 155-164, 1999.

Wei Fan, Salvatore J. Stolfo, Junxin Zhang, and
Philip K. Chan. AdaCost: misclassification cost-
sensitive boosting. In Proc. 16th International Conf.
on Machine Learning, pages 97-105. Morgan Kauf-
mann, San Francisco, CA, 1999.

Russell Greiner, Adam J. Grove, and Dan Roth. Learn-
ing cost-sensitive active classifiers. Artificial Intelli-
gence, 139(2):137-174, 2002.

AnYuan Guo. Decision-theoretic active sensing for
autonomous agents. In Proceedings of the 2nd In-
ternational Conference on Computational Intelligence,
Robotics, and Autonomous Systems, 2003.

Ronald A. Howard. Information value theory. IEEFE
Transactions on Systems Science and Cybernetics,
SSC-2:22-26, 1966.

Wei Zhong Liu, Allan P. White, S. G. Thompson, and
M. A. Bramer. Techniques for dealing with missing
values in classification. Lecture Notes in Computer
Science, 1280:527-536, 1997.

J. Ross Quinlan. Unknown attribute values in induc-
tion. In Proc. 6th International Workshop on Machine
Learning, pages 164-168, 1989.

Peter D. Turney. Cost-sensitive classification: Empiri-
cal evaluation of a hybrid genetic decision tree induc-
tion algorithm. Journal of Artificial Intelligence Re-
search, 2:369-409, 1995.

Zijian Zheng and Boon Toh Low. Classifying un-
seen cases with many missing values. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
pages 370-374, 1999.

[13] Valentina Bayer Zubek and Thomas Dietterich. Prun-

ing improves heuristic search for cost-sensitive learning.
In Proc. 19th International Conf. on Machine Learn-
ing, pages 27-34. Morgan Kaufmann, San Francisco,
CA, 2002.

