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Abstract. In a peer-to-peer file-sharing system, a client desiring a par-
ticular file must choose a source from which to download. The problem
of selecting a good data source is difficult because some peers may not
be encountered more than once, and many peers are on low-bandwidth
connections. Despite these facts, information obtained about peers just
prior to the download can help guide peer selection. A client can gain
additional time savings by aborting bad download attempts until an ac-
ceptable peer is discovered. We denote as peer selection the entire process
of switching among peers and finally settling on one. Our main contribu-
tion is to use the methodology of machine learning for the construction of
good peer selection strategies from past experience. Decision tree learn-
ing is used for rating peers based on low-cost information, and Markov
decision processes are used for deriving a policy for switching among
peers. Preliminary results with the Gnutella network demonstrate the
promise of this approach.

1 Introduction

In a peer-to-peer file-sharing system, data is replicated among the peers par-
ticipating in the system. Replicated data, while providing scalability and fault-
tolerance, introduces the problem of source selection. After determining the lo-
cations of a desired file, a client must decide where to download from in order to
receive the file quickly. We assume that only one peer can send data at a time,
but our work can be extended to multi-source downloading (see the discussion
section).

This problem has been studied mainly in the context of mirrored Web data,
where it is called the server selection problem. Various solutions have been pro-
posed and validated with experiments on the Internet [1-9]. However, many of
the existing techniques rely on assumptions that render them inapplicable in the
dynamic setting of peers. For instance, selection strategies based on experience
with specific hosts do not apply when hosts are not likely to be encountered more
than once. In addition, selection strategies that rely on network-layer assistance
are not feasible.

In this paper, we introduce techniques for efficiently obtaining replicated
content in peer-to-peer networks. We assume that the client has obtained a list
of peers, each possessing a desired file. No assumptions are made about whether



the client has previously encountered any of the peers on the list. The client
has access to limited information about its bandwidth to each of the peers.
In addition, the client can perform partial downloads from peers before finally
settling on one. We define as peer selection the problem of switching among peers
and finally settling on one, while keeping the total time to a minimum.

The novel aspect of our approach to this problem is that it is based on the
machine learning methodology from artificial intelligence. Our approach is not
to introduce a new strategy for peer selection, but rather to introduce techniques
by which a client can automatically derive a selection strategy based on its own
experience. The strategies that are eventually produced are actually adapted to
the client (hence the title).

The two phases of selection strategy execution proceed as follows. First, pas-
sively collected information is used to rate each peer on the list in terms of
expected transfer time. In the Gnutella network, this information includes at-
tributes from the search response messages regarding each peer’s current load,
current bandwidth, and past uploading experience. A decision tree, learned using
data from previous downloads, rates never-before-seen peers based on attribute
values. One benefit of using decision trees as a basis for the rating system is that
they allow us to rate peers based on combinations of attributes. When individual
attributes are unreliable, as is the case in peer-to-peer networks, this becomes
important.

In the second phase of peer selection, the client uses the rating system to sort
its list of peers, and then executes a policy for performing partial file downloads
from the most promising ones and finally settling on a peer. An appropriate
framework for deriving such a policy is the Markov decision process (MDP)
framework. The peer selection process can be modeled as an MDP, the param-
eters of which are obtained from previous experience. The MDP can be solved
for a selection policy that is optimal with respect to the model.

We implemented our ideas using the Gnutella network as our experimental
platform. Downloading data was collected from four different client sites. Using
this data, a different decision tree was learned for each of the clients. The re-
sulting rating systems turned out to be fairly accurate in their predictions. In
addition, we constructed an MDP for each client and solved each MDP for a
complete peer selection strategy. Although mostly the same, the resulting poli-
cies did show some interesting differences across clients. We are in the process
of evaluating the complete selection strategies with respect to other possible
strategies.

As we mentioned, by focusing on peer selection, we address issues not dealt
with in the classical server selection work. In addition, there been little research
on combining attributes to yield better predictions. Two exceptions are [6], in
which prior bandwidth and round-trip latency were combined, and [5], in which
linear regression was used to combine round-trip latency and current available
bandwidth. Finally, our focus on techniques for automatically learning a peer
selection strategy from experience is novel.



2 Data Collection

Our machine learning approach requires that we have a set of training data from
which to learn. To this end, a period of approximately two weeks was set aside
to perform several downloads and record statistics about them. We note that, in
practice, this training data could be produced as a byproduct of actual system
use. This is left for future work and is discussed briefly in the final section of the
paper.

For data collection, we modified a version of Gtk-Gnutella 0.85. The program
was run at four client sites: University of Massachusetts in Amherst, University
of Maryland in College Park, University of California in San Diego, and on an
AT&T Broadband cable modem connection in Boston, Massachusetts. During
this time the clients repeatedly attempted to download the first megabyte of
randomly selected mp3 files from randomly selected peers. For each peer con-
tacted, the following attributes were recorded from its search response message:
an indication of whether all of the peer’s upload slots were currently full (busy
flag), an indication of whether the peer had successfully uploaded at least one file
(uploaded flag), an indication of whether the peer was firewalled (firewall flag),
a number representing the connection speed (speed field), and an indication of
whether the speed field was measured or set by the user (measured flag). Note
that the accuracy of this information is dubious, as different client programs
have different policies for providing it. If the client was able to connect to the
peer, the connection time was recorded, and if the client was able to download
from the peer, the number of bytes received was recorded every 0.5 seconds.

Data was collected separately at each of the four clients. The derivation of
each client’s selection strategy, as described in the following sections, relied only
on that client’s data.

3 Rating Peers

In this section, we describe how to use training data to learn a decision tree
for rating peers. We begin with a brief introduction to decision trees. A more
thorough treatment can be found in [10].

3.1 Decision Trees

The decision trees we consider are used to approximate noisy binary-valued
functions. The input to a decision tree consists of a set of attributes. In order
to compute the output of a decision tree, one traverses down from the root,
following the branches dictated by the attribute values, until a leaf is reached.
Each leaf contains an output value. A decision tree can also be viewed as a
list of if-then rules, one for each leaf. A decision tree is learned using a dataset
of input-output pairs from the function. In our case, the inputs were search
message attributes, and the output was an indication of whether the download
from the corresponding source was fast (above the median speed) or slow (below



the median speed). Figure 1 shows an artificial dataset along with a decision
tree that could have been learned from the dataset.
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Fig. 1. A dataset along with a decision tree that could have been learned from the
dataset.

Given a dataset, one desires a reasonably-sized decision tree that returns
outputs with a high degree of certainty. In other words, for a given leaf, one
would like most of the training instances associated with that leaf to agree on
the output. Notice that in the decision tree in the figure, only one of the leaves
contains a disagreement. One quantitative measure of the confidence of a leaf is
the entropy of the leaf. The entropy of a leaf is defined as

E = —pglog po — p1logpr,

where pg is the fraction of instances with output 0, and p; is the fraction of
instances with output 1.

3.2 Application to Rating Peers

Preliminary experiments revealed that the busy flag is strongly correlated with
connection success. Thus we did not use the busy flag in the decision tree and
decided to assign all instances with the busy flag set the lowest rating, B. Further-
more, we used only training downloads that completed successfully for learning
a decision tree with the remaining four attributes.

We used the ITT decision tree algorithm [11] to learn a decision tree for each
client site. The leaves of the decision trees are rated in the following way. First
the leaves are sorted according to how many instances each contains. The bottom



50% are assigned the rank U (uncertain). These leaves contain too few instances
to provide reliable information. Any of the remaining leaves with £ > 0.918 are
assigned rank U because of the high uncertainty inherent in them. For each of
the remaining leaves, if the majority of the leaf’s instances are above the median
speed, and E > 0.65, then the leaf is assigned LF (likely fast). A similar rule
holds for categorizing leaves as LS (likely slow). For the leaves still remaining, if
the majority of the leaf’s instances are above the median speed, then the leaf
was assigned VLF (very likely fast). A similar rule holds for categorizing leaves
as VLS (very likely slow). This completes the rating system (from least to most
desirable): B, VLS, LS, U, LF, VLF.

Examining the resulting rating systems, we were able to extract some general
rules. For the campus connections, a measured high speed along with a positive
firewall flag were indicative of a fast download. The measured high speed makes
sense, but there is not a clear explanation of why firewalled hosts would be
faster; we speculate that “always on,” high-speed hosts tend to employ firewalls
more often, but we have no data to back this claim. Our cable modem was
behind a firewall, which prevented it from downloading from firewalled peers (the
Gnutella protocol does not allow this), and consequently rendered the firewall
flag irrelevant. The best indicators of a fast download in this case seem to be
previous upload success and a high measured speed. The indicators of a slow
download seem to be that the peer has not successfully uploaded before and has
a low value in its speed field.

Figure 2 provides evidence of the rating system’s utility. It illustrates how
rating correlates with download speed on test data (a small part of the dataset
not used for training). We see that peers rated as VLF give significantly faster
downloads than those with other ratings.

4 Peer Selection

In the preceding section, we showed how to construct a rating system for peers
based on low-cost attributes. After sorting its list according to rating, the client
can perform a sequence of partial downloads, eventually settling on a peer. Since
partial downloads consume time, the client must proceed in an intelligent man-
ner. It basically needs to make a sequence of good decisions, ending with the
decision to commit to a peer.

An elegant framework for addressing this kind of sequential decision-making
problem is the Markov decision process (MDP) framework [12]. An MDP models
an agent acting in a stochastic environment with the aim of minimizing expected
long-term cost. Our agent is the Gnutella client, and its long-term cost is the
total time to obtain the first megabyte of a file, including the time for connection
establishment and aborted downloads. To achieve this goal, it has a policy that
indicates the situations in which it should abort its current download and start
over with the next peer on the list. After describing the MDP framework in more
detail, we show how an MDP can be constructed from training data and solved
to yield a selection strategy.
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Fig. 2. The average download speed corresponding to the ratings for each client, mea-
sured on the test data. Note that the UMass and UMD decision trees had no VLS
leaves.

4.1 Markov Decision Processes

We consider a type of MDP in which the agent tries to minimize the expected
total time to reach a goal. The process proceeds through a sequence of stages
t =0,1,2,3,... At each stage, the agent perceives the state of the process,
s¢ € S, and chooses an action, a; € A. One stage later, the process produces
a numerical cost, ¢;, and a next state, s;y1. This continues until a zero-cost
absorbing state is reached, which indicates the attainment of the goal and the
end of an episode.

Formally, an MDP is a tuple (S, A,T,C), where S is a finite set of states;
A is a finite set of actions; T'(s,a,s’) is a transition function representing the
probability of transitioning from state s to state s’ under action a; and C(s, a, s)
is a cost function giving the cost for executing action a in state s and transitioning
to state s’. Actions are chosen according to a policy,  : S — A. The cost-to-go
function, Js(s), for a policy § gives the expected (discounted) sum of future costs
upon executing 0 from state s. The aim is to find a policy § that minimizes J;s(s)
for all states s. MDPs can be solved efficiently using dynamic programming [13].

4.2 Peer Selection as an MDP

We first provide a high-level description of the MDP model that is constructed
from the training data. This MDP is an idealized model of the peer selection
process, in which the client desires a 1 MB file and has access to an unlimited
list of peers possessing the file. At any given time, it interacts with only one
peer, denoted the active peer. The interaction consists of two phases. First is the



connecting phase, which lasts a maximum of 3 seconds. If no connection is made
during that time, a new peer is randomly drawn from the list. If a connection is
established, the downloading phase begins. After 3 seconds of downloading have
passed, the client automatically commits to downloading the rest of the file from
the currently active peer, and the episode is over. Failures can only occur during
the connecting phase. For the first 3 seconds after a connection is made, the
download speed may fluctuate, but it remains constant from the 3 second point
on. Some aspects of our model may seem unrealistic; however, our objective is
not realism but a model that can be solved quickly to yield an effective policy.

We now describe the model in more detail. The action set contains two ele-
ments. At each stage, the agent may either continue its download attempt with
the active peer or start over with a new peer. In the connecting phase, an action
is chosen every 0.5 seconds, and in the downloading phase, an action is chosen
every 1.0 seconds. The states of the problem are as follows. The pre-connecting
states,

P ={B, VLS, LS, U,LF, VLF },
indicate the rating of the active peer. The connecting states,

N = {B, VLS, LS, U, LF, VLF} X
{0.5,1.0,1.5,2.0,2.5,3.0},

indicate the rating of the active peer and how much time has passed since the
active peer was first contacted. The downloading states,

D = {B, VLS, Ls,U,LF, VLF } x {1.0,2.0,3.0} x
{(0_1)7 (1_2)7 (2_4)7 (4_8)7 (8'16)a
(16-32), (32-64), (64-128), (128-00)},

indicate the rating of the active peer, the time spent downloading so far, and the
(discretized) average speed so far (KB/sec). Finally we have an absorbing state,
a, which is entered at the end of the downloading phase. Thus S = PUNUDU{a},
and |S| = 205.

Since the only cost in our problem is time, our cost function is relatively
straightforward. A transition into a pre-connecting state incurs no cost. For
transitions into connection and download states, the immediate costs are 0.5 and
1.0, respectively. Upon entry into the absorbing state, a final cost is incurred.
This cost is the time that it would take to download the rest of a 1 MB file,
assuming the speed from the first 3 seconds persists. Given this cost function,
the total cost for an episode is equal to the time taken to download a complete
1 MB file, including the overhead for connection establishment and aborted
downloads.

The parameters for the transition dynamics are derived using the training
data. The initial pre-connecting state is drawn from a distribution that matches
the distribution over ratings observed in the data. The rating component of the



state remains fixed until the episode ends or an abort action has been performed.
At any stage, an abort action causes a transition to a new pre-connecting state,
drawn from the distribution mentioned above. For transitions into connecting
states, the probabilities are determined from the distribution over connect times
in the training data. If the 3 second point of the connecting phase is reached,
an automatic transition to a new pre-connecting state occurs on the next step.
The probabilities for transitions into downloading states are determined from
the training data. At the end of the downloading phase, there is a deterministic
transition into the absorbing state.

4.3 The Resulting Policies

We solved each of the clients’ MDPs using a dynamic programming algorithm.
Not surprisingly, the policies are similar. In most cases, the policy aborts if no
connection has been made in 0.5 seconds, or if a connection has been made but
the speed at 1 second is below a threshold. The threshold is usually 32 KB/sec.
For the cable modem connection, there are a few ratings for which the threshold
is lower. This makes intuitive sense. As connection speed decreases, the client’s
connection becomes more of a bottleneck, and it makes less sense for the client
to be choosy about which peer it downloads from. We conjecture that a modem
would have a very low threshold.

There are some exceptions to the aforementioned policy rules. Some are dif-
ficult to explain and could be due to modeling assumptions and noise in the
data. There is however, one apparently meaningful exception. If a peer is highly
rated, policies are sometimes willing to wait longer to establish a connection.
This makes sense, as it is worth investing extra time when the potential payoff
is high.

We performed some preliminary experiments integrating the complete se-
lection strategies into a client and using the client to obtain popular files. Our
strategies are competitive with random strategies and strategies based on round-
trip latency because they often quickly find peers with high bandwidth connec-
tions. A careful assessment of our strategies under a variety of conditions remains
to be done.

5 Discussion

We have presented an approach to peer selection based on the machine learning
methodology. Decision trees were used for learning peer rating systems, and
our experiments showed the resulting rating systems to be accurate. The MDP
framework was used for deriving policies for aborting downloads. These policies
decide whether to continue or abort based on the state of the current download,
so as to minimize the total time to receive the file.

By adding more information to the client’s state, more sophisticated and
better-performing policies should be possible. Information about peers other
than the active peer should be useful—whether or not it is advantageous to



abort sometimes depends on whether other promising peers are available. In
situations where a client will be downloading files of varying sizes, it may also
be useful to base decisions on the size of the desired file. As files get larger, it
is probably worth investing more time in trying to find a well-performing one.
Finally, it may be a good idea to incorporate performance estimators such as
hop count and round-trip latency into the MDP.

One natural question that arises from this work is whether the rating system
and MDP can be updated online, based on data from actual system use. This
is often referred to as reinforcement learning [14] in the artificial intelligence
community. We see no major obstacles to doing this, and it has advantages
over offline training. One advantage is that the time and congestion incurred by
gathering large batches of training data are eliminated. In addition, an online
approach allows for adaptation to changes in the Gnutella network and in local
traffic conditions, which could in turn lead to better overall performance. Also
interesting are model-free online learning techniques, which learn a policy without
first constructing an MDP (see, e.g., [15]). These more direct approaches can
alleviate some the burdensome assumptions implicit in an MDP model, but
usually require more data.

In our study, we restricted the number of concurrent download attempts to
be one. It has been shown, however, that parallel access to multiple sources can
lead to lower transfer times [16, 17]. Indeed, many of today’s peer-to-peer clients
employ multi-source downloads. We believe that our methods can be extended to
provide intelligent management of parallel transfers. A set of promising peers can
be identified before the start of the download, and peers can be switched into and
out of the set during the download. Intelligent parallel transfers should achieve
maximal performance with fewer connections than naive parallel transfers, thus
reducing congestion in the network. Some evidence of this is provided in [18], in
which round-trip latency is used to select a set of servers for a parallel download.
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