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Abstract

Choosing when to communicate is a fundamental prob-
lem in multi-agent systems. This problem becomes partic-
ularly hard when communication is constrained and each
agent has different partial information about the overall sit-
uation. Although computing the exact value of communica-
tion is intractable, it has been estimated using a standard
myopic assumption. However, this assumption—that com-
munication is only possible at the present time—introduces
error that can lead to poor agent behavior. We examine
specific situations in which the myopic approach performs
poorly and demonstrate an alternate approach that relaxes
the assumption to improve the performance. The results
provide an effective method for value-driven communica-
tion policies in multi-agent systems.

1. Introduction

Deciding when to communicate is a fundamental chal-
lenge in multi-agent systems. Finding the optimal commu-
nication policy is usually intractable in decentralized prob-
lems when communication has a cost, ranging from NP-
complete to NEXP-complete [7, 11]. This decision can be
formulated as a value of information problem. The value
of the information collected and disseminated can be mea-
sured by the difference between the improvement in the
agents’ performance and the costs associated with commu-
nication, regardless whether communication takes the form
of state information, intentions or commitments. The op-
timal communication policy involves the agents choosing
the communicative act at each step that maximizes the ex-
pected future utility, much like choosing an optimal action
in an MDP.

Information value theory [9] is an important component
of decision making, and it has been used to calculate the
value of information in different settings, for example the
expected value of computation [8]. However, even in the
single-agent contexts where information value theory has

been extensively used, finding the exact value is very diffi-
cult. The typical approach to dealing with this complexity
is to approximate it with two myopic assumptions: each
source of information is evaluated in isolation and they are
evaluated with a 1-step horizon [10].

Others [5, 6, 13] have extended these myopic assump-
tions to multiple agents in order to generate communication
policies. Frequently, however, the exact assumptions being
made are not clearly stated. Additionally, a careful analysis
of the impact of these assumptions on the quality of the re-
sulting communication policy has not been made. While the
myopic assumptions may be an appropriate way to approx-
imate the value of information in the single-agent case, it is
not obvious that they remain so for the multi-agent case.

This work attempts to improve the understanding of
communication in multi-agent systems by examining the
implications of the myopic assumptions. First, we clearly
state the basic myopic assumptions and formally show how
to compute the optimal communication policy given these
assumptions. We then identify and describe two facets of
the assumptions that introduce error, and we provide an im-
proved way to compute the communication policy that com-
pensates for this bias.

We perform our analysis of communication using the
Transition Independent Decentralized MDP [1] as the un-
derlying multi-agent framework extended to allow commu-
nication between the agents. We chose this model for sev-
eral reasons. First, decision-theoretic models are a formal
way of describing a problem and have natural definitions of
optimality. Second, in this framework each agent has a dif-
ferent, local view of the world. Their actions are based on
their own local views, so an agent does not know the ac-
tions of the other agents even if it knows the other agents’
policies. Centralized models, like the MMDP [3], are not
capable of (naturally) representing this decentralized view.
Third, this model also has a known algorithm to find the
optimal joint policy assuming zero communication. This
guarantees that the results of the analysis are not due to in-
teractions between two heuristics.



This model also isolates the effect communication has on
the expected value of a problem by imposing a strict separa-
tion between domain-level actions and communicative acts.
Most other decision-theoretic, multi-agent models allow
domain-level actions to include implicit forms of commu-
nication [2, 6, 11], which make analysis difficult. Implicit
communication occurs when one agent gains information
about another agent’s state through a non-communicative
act. This communication is often represented within the
transition function and is difficult to quantify. For exam-
ple, a robot attempts to move forward and fails. The failure
could be caused by the wheels spinning in place or by an-
other robot sitting in front of it. Therefore, its failure to
move forward changes its belief about the location of the
other robot.

Many other researchers have studied different aspects of
communication. Some have worked with algorithms not
based on myopic assumptions, like Reinforcement Learn-
ing [4]. The advantage of using RL is that they do not
need a complete model of the problem, but they do their
learning online and potentially make very bad decisions un-
til they learn better ones. Others have addressed different
questions, like what the agents should communicate [12]
instead of when.

Xuan and Lesser [14] have worked toward understanding
communication as a way to reduce uncertainty. This work
compliments and builds on their understanding of commu-
nication by using the value of information as a quantitative
measure of the benefit of reducing uncertainty.

2. Problem Description

A myopic strategy for communication is a generic ap-
proach that can be applied to any multi-agent domain. We
have chosen to illustrate this work using the Transition In-
dependent DEC-MDP [1] extended to include communica-
tion.

The model is composed of n cooperative agents. Each
agent ¢ works on its own local subproblem that is described
by an MDP, (S;, A;, P;, R;). The local subproblem for
agent ¢ is completely independent of the local subproblems
for the other agents, and completely observable only by
agent ¢. This means that at each step agent i takes action
a; € A; and transitions from state s; € S; to s; € S; with
probability P;(s}|s;,a;) and receives reward R;(s}). The
state of the world is just the collective local states of all of
the agents.

At each time step each agent first performs a domain-
level action (one that affects its local MDP) and then a com-
munication action. The communication actions are simply
communicate or not communicate. If at least one agent
chooses to communicate, then every agent broadcasts its lo-
cal state to every other agent. This synchronizes the world

view of the agents, providing each agent complete informa-
tion about the current world state. The cost of communica-
tion is C if at least one agent initiates it, and it is treated as a
negative reward. Goldman and Zilberstein [7] show that for
a fixed communication cost no other communication proto-
col can lead to a higher expected reward.

An optimal joint policy for this problem is composed of
a local policy for each agent. Each local policy is a mapping
from the current local state s; € S;, the last synchronized
world state (s1...$,,) € (S1...Sn), and the time T since the
last synchronization to a domain-level action and a commu-
nication action, 7; : S; X {S1...5,) x T — A; x {yes, no}.
We will occasionally refer to domain-level policies and
communication policies as separate entities, which is just
a mapping to A; and {yes, no} respectively.

In addition to the individual agents accruing rewards
from their local subproblems, the system also receives re-
ward based on the joint states of the agents. This is cap-
tured in the global reward function R : S1 x ... S,, — R. To
the extent that the global reward function depends on past
history it must be included in the local states of the agents
just like the local rewards. The goal is to find a joint pol-
icy (my...m,) that maximizes the global value function V,
which is the sum of the expected rewards from the local
subproblems and the expected reward the system receives
from the global reward function.

Definition 1 The global value function V (s1...sp) =

Z HPi(sﬂsi,ai) ZRZ(9;)+R(S/19;)+V(S/19/H)
i=1

=
sp...st =1

To summarize, the class of problems we are dealing with
can be defined by n MDPs, a global reward function R,
and synchronizing communication between the agents with
a fixed cost C.

The complexity of the related decision problem to this
class is NP-complete [7], which is low for a problem with
communication. The key structure in the model that reduces
the complexity to NP-complete is the synchronizing com-
munication protocol. When any information is transferred
between the agents it is complete information so only the
last communication must be remembered. Without this, the
agents must remember the entire history of communication
to make correct decisions, which results in an exponential
increase in the size of the policies and a doubly-exponential
increase in the solution time.

2.1. Example Application
We illustrate this class of problems with the following

multi-agent data collection example. This example can be
viewed as an abstraction of many different types of data



Figure 1. Graphical depiction of an example
decision problem. (left) A partially ordered
list of 5 sites. (right) A decision problem for
one site with three potential classes.

collection problems, though we will present it as a rover
exploration problem. Consider n rovers exploring a land-
scape and collecting data. Each rover has its own partially
ordered list of sites it can visit, see Figure 1 (left). Each site
contains a particular class of information. This class is not
known a priori, instead the rover has a distribution over the
classes for each site. See Figure 1 (right) for an example
decision problem of a site with three classes of information.
Each site has a similar decision problem associated with it.
For example, the site could be an interesting rock forma-
tion. With 70% probability it could be (A) a sedimentary
rock, 256% (B) an igneous rock, and 5% (C) a fossil. The
value of discovering and collecting data from a fossil may
be significantly higher than collecting data from yet another
sedimentary rock.

When a rover arrives at a site it has two choices. First,
it can gather the information through a Detailed Analysis
(DA) without knowing what class of information it is col-
lecting. Alternatively, the rover can perform a Quick Anal-
ysis (QA) to determine the class of information available at
the site before choosing whether to collect the information.
The rover is restricted from collecting information at every
site due to limited resources, like time and battery power.

The value of a DA comes from the information collected.
The value of a QA is that it consumes fewer resources than a
DA and allows the rover to make a more informed decision.
The system receives reward based on the total information
collected by all of the rovers. Each class of information has
abase value. If the information in a particular class is redun-
dant then the total value for collecting that class more than
once may be only slightly higher than the base value. Al-
ternatively, a class could be complementary, in which case
the value for two pieces of information may be greater than
twice the base value. The values of the information are cap-
tured in the global reward function.

3. Basic Myopic Approach

Using a myopic algorithm is a common way of dealing
with the complexity inherent in finding an optimal solution.
We present an algorithm for determining when the agents
should communicate. This algorithm is optimal assuming
that it must be initiated by the current agent (agent ¢ in the
following description) and that the current step is the only
time communication is possible. For clarity the equations
are presented for two agents 7 and 7, but the approach easily
extends to n agents. The complexity results still include all
n agents.

While the problems we are solving are distributed in na-
ture (each agent chooses an action based on its own local
view) the algorithm we present here computes offline the
policies for each agent in a centralized location with a fully
specified model of the problem, and the individual policies
are given to the agents to follow. This does not trivialize
the problem, nor does it reduce it to a single MDP since the
solution found is still a decentralized solution. We chose
this approach for two reasons. First, individual agents of-
ten lack the computational resources necessary to generate
high quality solutions. Second, individual agents often lack
a global view of the problem, which while not strictly nec-
essary does simplify the solution process and reduces the
communication between the agents (which has a cost).

The basic idea is that each agent follows the optimal pol-
icy assuming no future communication, which is obtained
using the Coverage Set Algorithm (CSA) [1]. At each state,
the agent chooses whether to communicate by computing
the Value of Communication (VoC). If the VoC > 0 then
the agent initiates communication causing all of the agents
to broadcast their local state. This synchronizes the local
views of all of the agents to the world state. The agents then
compute a new optimal policy assuming no future commu-
nication, using their synchronized world state as the starting
state. The domain-level actions the agents take always come
from this zero-communication policy.

The VoC from agent i’s perspective depends on i’s cur-
rent local state s;, the previous synchronized world state
(or original starting state) (s?,s?), and the time since the
last synchronization . It also implicitly depends on the
optimal joint policy assuming zero communication that the
agents have been following since the previous synchroniza-
tion, (m), 7).

Definition 2 The Value of Communication (VoC) is the
difference between the expected value when communicating
and the expected value for remaining silent.

VoC (s,i, (s9, s?},t) = ZP(sj\sg,t,W?) V*(siy85) —C—V(ss,85)],

where P(sﬂs?,t,w?) is agent i’s belief about agent j’s
current local state, V(s;,s;) is the expected value for



following the current local policy, and V*(s;, s;) — C is the
expected value if the agents communicate now and follow a
new zero communication policy after synchronizing.

The complexity of the VoC depends on the size of the
local state space as well as the number of agents.

Theorem 1 Computing the Value of Communication can be
done in time polynomial in the number of local states and
exponential in the number of agents.

Proof. There are four components to computing the VoC
that add to the complexity:

o P(s;|s9,t,7) is the t-step transition function for
agent j. Given the assumption that j will never initiate
communication,

P(sj|s9,t,m5) = > P(s}ls),t — 1,79) P(s;]s;,79).
s’
J

This takes O(|S;|) if the values from ¢t — 1 were cached
from a previous call to VoC and O(|S;|?) to compute
from scratch.

e V(s;,s;)and V*(s;, s;) are both expected values (see
Definition 1). The only difference is that they assume
different domain-level policies. With dynamic pro-
gramming they can be solved in time polynomial in
the number of world states, which is exponential in the
number of agents, O(|S;|™).

e The difficult part of computing the VoC is finding the
new optimal joint policy with no communication for
the different possible world states. We observed that
the CSA does not need to be run in its entirety each
time. Instead, most of the computation can be cached
and only the final step of the algorithm must be re-
run for each world state. That step involves searching
through a small set of policies for each agent for the
optimal joint policy. This step takes time exponential
in the number of agents.

e When there are n > 2 agents the summation in the
VoC is over all possible local states of the other agents.
The loop, therefore, must be repeated O(]S;|"™1)
times. However, it is useful to note that V*(s;,s;) —
V(si,8;) > 0 and therefore the summation can termi-
nate as soon as it becomes greater than C instead of
looping through all possible next states.

The net result is a complexity polynomial in the number
of local states for the agents and exponential in the number
of agents. OJ

A final point about the complexity is the number of times
VoC must be executed to generate the joint communica-
tion policy. While the worst case appears to be quite large,

Agent 1
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Figure 2. A simple example that illustrates
how a simple model for the other agent in-
troduces error.

O(n]S|™*2), in practice it is not nearly that bad. The rea-
son is that many of the combinations of variables are not
reachable. For example, if communication is frequent, then
the time since the last communication, ¢, will remain low. If
communication is infrequent then the number of reachable
synchronized world states (s?, 59) remains low because the
world state is only synchronized through communicating.
Additionally, there will be substantial overlap in computa-
tion between calls to VoC and caching can greatly reduce

the running time in practice.

4. Implications of the Myopic Assumption

The myopic assumption allows a simple, straightforward
computation of the value of communication. While this
may be a good assumption for the single agent case, there
are additional implications that may not be readily apparent
in a multi-agent setting. We examine these implications by
identifying and analyzing two sources of error in the basic
myopic approach, and for each we illustrate it with a simple
example.

4.1. Modelling the Other Agents

The Basic myopic approach (Definition 2) assumes the
simplest of models for the other agents—they never initiate
communication. However, since every agent is following
a communication policy based on computing the value of
communication this is an inaccurate model. The first im-
plication of an accurate model of the other agents is that
not communicating itself becomes a form of communica-
tion. The distribution of states agent j can be in after ¢
steps, P(s;|s9,t,7}), changes because j is known to not
have passed through states in which it would have commu-
nicated.

The second implication is that at the current step, agent ¢
may not need to initiate communication to acquire valuable
information from agent j if j is already planning to initiate
if it has the information. Figure 2 illustrates this with a sim-
ple example where agent 1 collects information valuable to



Modeling Example

AN

N
N

—i-Basic Value
—e—Model Value ||
—-Basic Comm
—0—Model Comm ||

N

N
o

Expected Value
©o

©
L

~

Expected Comm.

Cost of Communication

Figure 3. Performance comparison of the Ba-
sic and Model approaches.

agent 2. At site 1, agent 1 has an equal chance of collecting
an A or a B. If both agents collect A’s or B’s the system
receives reward 10. The system also receives a reward of
1 every time class C is collected. o is the communication
point of interest.

The initial zero-communication policy is for agent 2 to
collect data from site 2. The only reason to communicate
is if agent 1 collects a B, agent 2 needs to change its pol-
icy to go to site 3. Based on the initial policy, 50% of the
time the agents will receive the maximum reward of 12 and
50% the minimum reward of 2. When agent 1 collects a
B, its VoC = —C + 1.0[12 — 2] = —C + 10. As long
as the cost C < 10, agent 1 will initiate communication.
Agent 2 does not know what agent 1 has collected, so its
VoC = —C +0.5[12 — 12] + 0.5[12 — 2] = —C + 5. When
the cost of communication C < 5 agent 2 will communicate
because its VoC > 0. Half of the time this communication
is unnecessary because agent 1 had collected an A. When
C > 5itis no longer valuable for agent 2 to initiate the com-
munication and their communication policies are optimal.

The Basic line in Figure 3 shows the performance of the
basic myopic strategy. As the cost of communication in-
creases from 4.5 to 5 it exhibits a jump in value. This unde-
sirable behavior is caused by error introduced into the VoC
by not accounting for the other agent’s communication pol-
icy. This error can be removed from the approximation by
computing an optimal joint communication policy for each
step (assuming no future communication) instead of an op-
timal local communication policy.

To compute the optimal joint communication policy for
the current step, the agents must maximize the expected
value over all possible world states they could be in. They
do this by creating a table M with rows representing the
possible states of agent 1 and columns representing states

S, 855 T
s 1|0 | -1 no
Agent S]z 4 1 1 yes
s |21 no

vec [T [2 1]

Figure 4. A Table M showing the expected
gain in value for communicating for each
world state.

of agent 2 for the current step (see Figure 4).! The elements
in the table are the value of communicating in that world
state weighted by the probability that it is the current world
state,

P(S'ﬂs(l)vtvﬂ'?)P(Sg“sg?tvﬂ-g) [V* (S:fvsg) —C—V(ST,Sg)]

The Basic approach (1. and 7. in Figure 4) represents
building a communication policy for each agent by check-
ing if the sum of a row or column is greater than 0. This
strategy double counts certain elements in the table and can
result in choosing a communication policy worse than not
communicating at all! The expected value of a joint com-
munication policy for one step is the sum of all entries in
the table where communication happens (an entry is only
counted once, even if both agents initiate communication).
In the example table, the Basic policy given has a value of
-1 (sum of the bold entries) because the valuable state M 4
was counted twice for determining the policies (once for
each policy), but only once for determining the value of the
table. If agent 2 did not communicate in s; then the value
would be 2. Never communicating (7;. = {no,no,no})
will always have a value of 0.

The optimal joint communication policy is the joint pol-
icy that maximizes the value of this table. Finding the opti-
mal joint policy is exponential in the size of the table, while
a simple hill-climbing algorithm can find a Nash equilib-
rium in polynomial time. The line labeled Model in Figure
3 optimizes this table to eliminate the error, resulting in the
optimal policy for this example.

Creating the table costs no more than the original ap-
proach since each entry represents a reachable world state.

I'This table does not correspond to the problem in Figures 2 and 3.
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Figure 5. A simple example that illustrates
how delaying communication can improve
the expected value.

4.2. Myopic View of the Future

The second facet of the myopic assumption is that no
agent will communicate in the future. This approximates
the true value of communication by introducing error in
two ways. The first is due to the greedy nature of the al-
gorithm. When communicating immediately has a positive
value, VoC > 0, the agent communicates without consid-
ering whether the expected value would be even higher if it
waited to communicate until a future step. To compensate,
the agents can compute the value of (possibly) communi-
cating after a 1-step delay:

VOCdelay (Si7 <SO 50>’t) =

7]

ZP(SH&;,TI’?) x max (0, VoC (s}, (s, s?),tJr 1)).

8
The agent will initiate communication when its VoC >
VoCgelay. This does not imply that the agent really will
initiate communication in the next step because the same
comparison will be made at that time to later steps. As long
as the expected value for delaying one step is greater than
the value of communicating immediately, the agent will de-
lay communication.

Figure 5 illustrates this with a simple example. If agent
1 collects A at site 1 then agent 2 should go to site 3, oth-
erwise agent 2 should go to site 4. Similarly with agent 2
collecting B at site 2. Like the previous example, two A’s
or two B’s have a reward of 10, and each C adds a reward
of 1. «; and ay are the two communication points. The
Basic approach will always communicate at both o and
for low communication cost (See Figure 6). When the cost
increases to 0.5, the agents will only communicate when
they have valuable information. Agent 1 will initiate com-
munication 50% of the time at «; and agent 2 will 50%
of the time at ay, for a total expected communication of
0.5 4+ 0.5 = 1.0. The Delay policy, on the other hand, rec-
ognizes that waiting a step is beneficial and will only com-
municate at co, which reduces the communication without
decreasing the expected reward, yielding a higher expected
value.
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Figure 6. The expected value and expected
amount of communication as a function of
cost.

When the cost goes above 1, the Model approach real-
izes that it is more efficient to have only one agent initiate
communication when it has valuable information. This il-
lustrates that the Model and Delay approaches address dif-
ferent sources of error and neither dominates the other.

A second source of error in the assumption of no future
communication is built in to the policies generated by the
CSA. These policies may avoid situations which are valu-
able only when close coordination is possible. The optimal
solution can exploit the possibility of future communica-
tion, while the domain-level policies generated here always
assume no future communication. When the cost of com-
munication is high enough, this solution is optimal. It is our
belief that as the cost decreases, the solutions generated by
this approach decline in quality compared to optimal. This
source of error can also be partially compensated for by ex-
tending the 1-step delay to consider h-steps into the future.

5. Model-Lookahead Approach

This section demonstrates how the Model approach of
4.1 and the Delay approach of 4.2 can be merged together
and extended to consider further into the future. The basic
idea is an algorithm that makes optimal communication de-
cisions within a horizon h given fixed domain-level policies
based on zero communication.

To start we introduce two new value functions.
Vh(si,s;) is the expected value of not communicating in
the current step, following an optimal communication pol-
icy for the next h steps, and then not communicating again
after h steps. V*"*(s;, s;)—C is similar but starts with an im-
mediate communication. When the horizon is O these value
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Figure 7. Performance of the Model-Lookahead
Approach with horizon 2.

functions are equivalent to the single-step value functions
from Definition 2, VO(-) = V (), V*0(.) = V*().

V' (si,85) = 2)

Z P(s;\si,w?)P(sHsj,W?) [R(s;,sg) + Vs, s;) — C]

s’i,s'jGC()mm

30 P(stlsi m)P(s5 s, 70) [R(sh 5) + VI (s, 5))]

i1 95
s;,s;e—\COmm

where R is the sum of the reward functions, R (s}, s) =

Ri(s;) + R;(s}) + R(s}, s}). Comm is the set of states in
which communication will take place. How it is computed

is not clear until we transform the equation:

V"(si,85) = V(si,s5) A3)

+ Z P(s|si, m:) P(s}]s5,m5) [Vh=1(sh, s5)—C— V=18, s%)]

s ,s; €Comm

+ ) P(silsi i) Ps)lsg,my) [V (sh, 85) = Vst )]

The agents must find the set of communication states for
the next step that maximizes V" (s;, s;). The next step com-
munication policy only affects the second line of Equation
(3), which bears a remarkable similarity to Equation (1),
except that this is a recursive function. The same table al-
gorithm can be applied to generate optimal communication
policies over the horizon.

Figure 7 illustrates the performance of this approach on
a larger problem. The two agents each had a local deci-
sion problem with 6 steps and more than 10,000 states. The
Model-Lookahead approach performs significantly better
than the original Basic approach and demonstrates a smooth
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Figure 8. Comparison of the time to compute
the policy for the Basic approach versus the
Model-Lookahead approach of various depths.

reduction of the expected value as the cost for communica-
tion increases.

Figure 8 shows the running time of Model-Lookahead
compared to Basic. The Basic approach took about 11 sec-
onds to generate the entire policy while Model-Lookahead
took 50% longer with a horizon of 0 due to the added cost
of finding the optimal communication policies of the tables.
The worst case complexity of Model-Lookahead is expo-
nential in the size of the horizon, but due to caching and
the structure of the problem, in practice this is not always
the case. In this example, the running time started out with
an exponential curve but that changed as the horizon ap-
proached the number of steps in the problem.

This approach does have its limitations. Even when the
horizon is equal to the number of steps in the decision prob-
lem, the policy generated is not the optimal joint policy.
This is because the domain-level actions taken by the agents
are generated assuming no future communication. This is
effectively a horizon of 0 for choosing domain-level actions.
Future work will include extending this algorithm to a larger
domain-level action horizon.

6. Conclusion

This paper addresses the problem of choosing when to
communicate in a multi-agent system. We formulate a con-
dition for communication based on the value of information.
The standard assumption used to efficiently generate com-
munication policies is that communication is only possible
at the present time. This is based on the myopic assumption
from information value theory.

We show how to generate optimal joint policies under
the myopic communication assumption. We also examine
the implications of the assumption and show that it can lead



to poor agent behavior. We identify two sources of error and
provide modifications to the original algorithm to address
these problems. Together, these modifications result in an
improved algorithm for generating a decentralized joint pol-
icy. Moreover, the computational overhead of our modifica-
tions is small compared to the original algorithm.

While the sources of error that we identify and the gen-
eral approach to addressing them are common to many
multi-agent systems, the equations and specific algorithms
we present do rely on certain structure being present in the
problem. The key structure in the model that reduces the
complexity to NP-complete is the synchronizing communi-
cation protocol. Without this, the agents must remember the
entire history of communication to make correct decisions,
which results in an exponential increase in the size of the
policies and a doubly-exponential increase in the solution
time.

There are two components that together allow the use
of synchronizing communication as an exact model. First
is the fixed cost of communication. If the agents can send
partial state information at a reduced cost then the optimal
solution may include communication that does not synchro-
nize the agents’ view of the world. Second is the tran-
sition and observation independence between the domain-
level actions. If the agents are able to take domain-level
actions that affect the observations or transitions of another
agent then the agents have a form of implicit communica-
tion and must memorize the history to make correct deci-
sions.

If a problem does not have synchronizing communica-
tion it can be added and the algorithm presented here can
be used as an approximation. We also hope that identifying
the sources of error common to many myopic approaches
and the general approach we took to address them will help
others design better communication algorithms.
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