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Abstract

Anytime algorithms offer a tradeoff between computa-
tion time and the quality of the result returned. They
can be divided into two classes: contract algorithms, for
which the total run time must be specified in advance,
and interruptible algorithms, which can be queried at
any time for a solution. An interruptible algorithm can
be constructed from a contract algorithm by repeatedly
activating the contract algorithm with increasing run
times. The acceleration ratio of a run-time schedule is
a worst-case measure of how inefficient the constructed
interruptible algorithm is compared to the contract al-
gorithm. The smallest acceleration ratio achievable on
a single processor is known. Using multiple processors,
smaller acceleration ratios are possible. In this paper,
we provide a schedule for m processors and prove that it
is optimal for all m. Our results provide general guide-
lines for the use of parallel processors in the design of
real-time systems.

Introduction
The complex reasoning problems faced by both natural and
artificial agents can rarely be solved exactly in time for the
solution to be useful. Game-playing programs, trading/e-
commerce agents, information retrieval systems, and medi-
cal diagnosis systems must all act under time pressure from
their environments, from other agents, or from users with
limited patience. A successful AI system must be able to
use whatever time is available for deliberation to maximum
advantage, and not miss opportunities or incur costs or dis-
favor through slow action.

Algorithms that produce solutions of different qualities
depending on available computation time are called any-
time algorithms (Horvitz 1987; Dean & Boddy 1988; Rus-
sell & Wefald 1991). A distinction can be made between two
types of anytime algorithms. Interruptible algorithms, once
started, can be interrupted at any time and queried for a solu-
tion. For example, local search approaches to optimization
such as hill climbing and simulated annealing are interrupt-
ible algorithms. Contract algorithms need to be given the
query time as input. These algorithms set internal parame-
ters so that they produce a solution before the query time.
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A contract algorithm need not produce any solution before
the query time arrives, and may have trouble utilizing spare
time if it finds a solution quickly or if the query time is de-
layed. All other things being equal, interruptible algorithms
are more convenient to use and more widely applicable than
contract algorithms. But contract algorithms are often more
intuitive to design, and typically use simpler data structures
and control structures, making them easier to implement and
maintain.

An interruptible algorithm can be formed from a contract
algorithm by running a sequence of contracts of increasing
lengths, returning the last solution produced when an inter-
ruption occurs. This sequencing problem has been solved
informally in various domains. For example, Dechter and
Rish (1998) develop the mini-bucket algorithm for approxi-
mate automated reasoning tasks, such as Bayesian inference.
Their algorithm allows the user to specify bounds on the
number of variables in any dependency that arises during
execution (larger bounds lead to better solutions, at the ex-
pense of computation time), and they propose a method for
scheduling a sequence of bounds so that solutions of im-
proving quality are produced over time. In a similar vein,
Munos and Moore (1999) propose various heuristics for in-
crementally refining discretizations of continuous-state opti-
mal control problems. The incremental refinements produce
a sequence of finite-state approximations which are increas-
ingly complex to solve, but which provide solutions of in-
creasing quality for the original, continuous-state problem.

We are interested in developing general contract sched-
ules and providing formal justification for their use. In the
case of serial execution of contracts, Russell and Zilberstein
(1991) suggest the following sequence of contract lengths:
1, 2, 4, 8, . . . They show that for any interruption time t > 1,
the last contract completed is always of length at least t/4.
This factor of four is the acceleration ratio of the sched-
ule, a worst-case measure of the loss due to the transfor-
mation from contract algorithm to interruptible algorithm.
Zilberstein, Charpillet, and Chassaing (1999) show that no
sequence of contracts on a single processor has an acceler-
ation ratio of less than four. Only with multiple processors
can a more efficient transformation be made.

In this paper, we propose a simple strategy for produc-
ing an interruptible algorithm by scheduling a contract al-
gorithm on m processors in parallel. We analyze the strat-



egy, deriving an explicit formula for its acceleration ratio as
a function of m. Furthermore, we show that no schedule
yields a better acceleration ratio for any m, thus the strategy
is optimal. These results provide general guidelines for the
use of parallel processors in the design of real-time systems.
Finally, we discuss extensions to this work and a connec-
tion to a formally similar problem involving multiple robots
searching multiple rays for a goal.

Scheduling a Contract Algorithm
An anytime algorithm A, when applied to an optimization
problem instance for time t, produces a solution of some
real-valued quality QA(t). QA is called A’s performance
profile on the instance. Performance profiles are defined for
both interruptible and contract algorithms. If A is interrupt-
ible, then QA(t) is the quality of the solution returned by A
upon interruption at time t. If A is contract, then QA(t) is
the quality of the solution returned by A after time t, given
that t was specified in advance. In general, one does not
know an algorithm’s performance profile on a problem in-
stance. Nevertheless the concept of a performance profile is
useful in reasoning about anytime algorithms. We assume
that the performance profile of an anytime algorithm on any
problem instance is defined for all t ≥ 0 and is a nonde-
creasing function of t.

An interruptible algorithm can be constructed from a con-
tract algorithm by scheduling a sequence of contracts on
m processors in parallel. A schedule is a function X :
{1, . . . ,m} × N → R, where X(i, j) is the length of the
jth contract run on processor i. We assume, without loss of
generality, that X(1, 1) = 1 and that X(i, j) ≥ 1 for all i
and j.

We use B to denote the interruptible algorithm formed
from the contract algorithm A and schedule X . When B
is interrupted, it returns the best solution found by any of
the contracts that have completed. Since we assume per-
formance profiles are nondecreasing, this is equivalent to
returning the solution of the longest contract that has com-
pleted. This is illustrated in Figure 1.

The interruptible algorithm’s performance profile, QB ,
depends on A’s profile and the schedule X . When B is in-
terrupted, it has spent some time running contracts that are
superseded by later results. Also, when contracts are inter-
rupted, the time spent on them does not contribute to the
final solution. In general, QB(t) ≤ QA(t), and often the
inequality is strict.

We wish to find the schedule that is optimal for any given
number of processors, with no assumptions about the query
time or the contract algorithm’s performance profile. The
metric that we use to compare schedules is the acceleration
ratio, which is a measure similar to the competitive ratio for
on-line algorithms (Sleator & Tarjan 1985). The accelera-
tion ratio tells us how much faster the interruptible algorithm
would need to run in order to ensure the same quality as the
contract algorithm for any interruption time.

Before formally defining acceleration ratio, we establish a
formula for B’s performance profile in terms of A’s perfor-
mance profile and the schedule X . We define the total time

spent by processor i executing its first j contracts as

GX(i, j) =

j
∑

k=1

X(i, k).

For all times t, we define a function that specifies which
contracts finish before t by

ΦX(t) = {(i, j)|GX(i, j) < t}.

We take the view that when a contract completes at time t, its
solution is available to be returned upon interruption at any
time τ > t. The length of the longest contract to complete
before time t is

LX(t) =

{

max(i,j)∈ΦX(t) X(i, j) if ΦX(t) 6= ∅
0 if ΦX(t) = ∅

.

Thus the performance profile for the interruptible algorithm
B is

QB(t) = QA(LX(t)).

We can now give a precise definition of acceleration ratio.
Definition 1 The acceleration ratio, R(X), for a given
schedule X on m processors is the smallest constant r for
which QB(t) ≥ QA(t/r) for all t > 1 and any contract
algorithm A.

Although acceleration ratio is defined in terms of a prop-
erty of solution quality, the following lemma allows us to
formulate it without reference to Q.

Lemma 1 For all X , R(X) = supt>1 t/LX(t).

Proof: From the definitions given above, we have QB(t) =
QA(LX(t)) ≥ QA(t/R(X)) for all t > 1. Since this holds
for any algorithm A, we can suppose an algorithm A with
performance profile QA(t) = t. Thus LX(t) ≥ t/R(X) ⇒
R(X) ≥ t/LX(t) for all t > 1. This implies R(X) ≥
supt>1 t/LX(t). To show that equality holds, assume the
contrary and derive a contradiction with the fact that R(X)
is defined as the smallest constant enforcing the inequality
between QB and QA. �

Intuitively, the worst time to interrupt a schedule is just
before a contract ends, because the contract time has been
spent, but the solution is not yet available. The following
lemma formalizes this notion and consequently enables us
to consider only finishing times from here on.

Lemma 2 For all X ,

sup
t>1

t

LX(t)
= sup

(i,j)6=(1,1)

GX(i, j)

LX(GX(i, j))
.

Proof: LX(t) is left-continuous everywhere and piece-
wise constant, with the pieces delimited by the time points
GX(i, j). For t > 1, t/LX(t) is left-continuous and piece-
wise linear and increasing. Thus, the local maxima of
t/LX(t) occur at the points GX(i, j), (i, j) 6= (1, 1); no
other times may play a role in the supremum. �

We define the minimal acceleration ratio for m processors
to be

R∗
m = inf

X
R(X).

Zilberstein, Charpillet, and Chassaing (1999) prove that
R∗

1 = 4. In the following sections, we derive an expression
for R∗

m for general m and provide a schedule that achieves
this ratio.
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Figure 1: Constructing an interruptible algorithm by scheduling a contract algorithm on three processors.

An Exponential Schedule
A simple approach to scheduling a contract algorithm is
to have the contract lengths increase exponentially. Rus-
sell and Zilberstein (1991) study the one-processor sched-
ule X(1, j) = 2j−1. We consider a generalization of
this schedule to m processors in which contracts are as-
signed to processors in a round-robin fashion, with each
contract being (m + 1)1/m times longer than the previ-
ous one. Formally, the schedule is expressed as E(i, j) =
(m + 1)(i−1+m(j−1))/m.

Theorem 1 R(E) = (m+1)
m+1

m

m .

Proof: It is straightforward to show that for (i, j) 6= (1, 1)

LE(GE(i, j)) =

{

E(i − 1, j) if i 6= 1
E(m, j − 1) if i = 1

.

Also, the following is true for all (i, j) 6= (1, 1):

GE(i, j) =

j
∑

k=1

E(i, k)

=

j
∑

k=1

(m + 1)
i−1+m(k−1)

m

= (m + 1)
i−1−m

m

j
∑

k=1

(m + 1)k

= (m + 1)
i−1−m

m

(

(m + 1)j+1 − (m + 1)

m

)

.

So, for all i, j such that i 6= 1,
GE(i, j)

LE(GE(i, j))
=

GE(i, j)

E(i − 1, j)

=
(m + 1)

i−1+mj

m

m(m + 1)
i−2+mj−m

m

−
(m + 1)

i−1
m

m(m + 1)
i−2+mj−m

m

=
(m + 1)

m+1
m

m
−

(m + 1)
m−mj+1

m

m
,

and for all i, j such that i = 1 and j 6= 1,

GE(i, j)

LE(GE(i, j))
=

GE(i, j)

E(m, j − 1)

=
(m + 1)j

m(m + 1)
mj−m−1

m

−
1

m(m + 1)
mj−m−1

m

=
(m + 1)

m+1
m

m
−

(m + 1)
m−mj+1

m

m
.

We see that the same expression is derived in each case.
Note also that the expression is independent of i and in-
creases with j. Thus,

R(E) = sup
(i,j)6=(1,1)

GE(i, j)

LE(GE(i, j))

= lim
j→∞

(m + 1)
m+1

m

m
−

(m + 1)
m−mj+1

m

m

=
(m + 1)

m+1
m

m
.

�

Optimality of the Exponential Schedule
In this section, we show that the exponential schedule is op-
timal by proving that no schedule can achieve a smaller ac-
celeration ratio. It is convenient to index contracts by their
relative finishing times. The following function counts how
many contracts finish no later than the jth contract on the ith
processor finishes. For a schedule X , let

ΨX(i, j) = |{(i′, j′)|GX(i′, j′) ≤ GX(i, j)}|.

We assume without loss of generality that no two con-
tracts finish at exactly the same time. It is straightforward to
show that any schedule that doesn’t satisfy this condition is
dominated by a schedule that does. This assumption guar-
antees that ΨX is one-to-one; it is also onto and thus a bi-
jection. We refer to ΨX(i, j) as the global index of the jth
contract run on processor i.



We introduce a contract length function that takes as input
a global index. For all i, j, let

YX(ΨX(i, j)) = X(i, j).

We further define a finishing-time function that takes as in-
put a global index:

HX(ΨX(i, j)) = GX(i, j).

Without loss of generality, we can assume that YX(k) <
YX(k+1) for all k ≥ 1. Any schedule that doesn’t have this
property is dominated by one that does.

Lemma 3 For all X and all k ≥ 1,

HX(k + 1) ≤ R(X)YX(k).

Proof: This follows directly from the assumption above and
the definition of acceleration ratio. �

Finally, we define a function to represent the sum of the
lengths of all the contracts finishing no later than contract k
finishes:

H ′
X(k) =

k
∑

l=1

YX(l).

The following lemma expresses a property of this function.

Lemma 4 For all X and all k ≥ 1,

H ′
X(k + m + 1) ≤ R(X)(H ′

X(k + m) − H ′
X(k)).

Proof: Consider the contract with global index k + m + 1.
We define the set S such that s ∈ S if and only if s is the
global index of the last contract on some processor to finish
no later than contract k + m + 1 finishes. It follows that
H ′

X(k + m + 1) =
∑

s∈S HX(s). Note that S contains at
most m distinct integers, each between 1 and k + m + 1.
Since HX is increasing,

∑

s∈S

HX(s) ≤
m

∑

l=1

HX(k + l + 1).

Using Lemma 3, we get
m

∑

l=1

HX(k + l + 1) ≤ R(X)

m
∑

l=1

YX(k + l)

= R(X) (H ′
X(k + m) − H ′

X(k)) .

�

Theorem 2 R∗
m = (m+1)

m+1
m

m .

Proof: Let us define P (k) = H′
X(k + 1)/H ′

X(k) for all
k ≥ 1. From Lemma 4, we have

H ′
X(k + m + 1) ≤ R(X)(H ′

X(k + m) − H ′
X(k)),

and thus

R(X)

(

1 −
H ′

X(k)

H ′
X(k + m)

)

≥
H ′

X(k + m + 1)

H ′
X(k + m)

,

so

R(X)

(

1 −
1

P (k) · · ·P (k + m − 1)

)

≥ P (k + m). (1)

We let

P ∗(k) = max{P (k), . . . , P (k + m)}.

There are two cases to consider. In the first case, there exists
some k′ ≥ 1 such that P ∗(k′) = P (k′ + m). Then we have
P (k′) · · ·P (k′ + m − 1) ≤ P (k′ + m)m, and

R(X)

(

1 −
1

P (k′ + m)m

)

≥ P (k′ + m).

Thus

R(X) ≥
P (k′ + m)m+1

P (k′ + m)m − 1
. (2)

We are interested in how small R(X) can be. Let c =
P (k′ + m). Suppose we minimize the right-hand side with
respect to the only free variable, c, over the region c > 1.
Setting the derivative to zero, we find

d

dc

cm+1

cm − 1
=

(m + 1)cm

cm − 1
−

cm+1mcm−1

(cm − 1)2
= 0

⇒ (m + 1)cm(cm − 1) − mc2m = 0

⇒ c2m − (m + 1)cm = 0.

The only solution is c = (m + 1)1/m. At the boundaries
c = 1 and c = ∞, the value goes to infinity, so this solution
is the one and only minimum. Substituting into inequality
(2), we find

R(X) ≥
(m + 1)

m+1
m

(m + 1)
m
m − 1

=
(m + 1)

m+1
m

m
.

In the second case, we have P ∗(k) 6= P (k + m) for all
k ≥ 1. Thus

P ∗(k + 1)

= max{P (k + 1), . . . , P (k + m), P (k + m + 1)}

= max{P (k + 1), . . . , P (k + m)}

≤ P ∗(k),

which means that the P ∗(k) form a nonincreasing sequence.
Since P ∗(k) ≥ 1 for all k, the sequence must have a limit.
We use d to denote this limit. By the definition of P∗(k), it
follows that lim supk→∞ P (k) = d. Applying lim supk→∞

to both sides of inequality (1), we get

R(X)

(

1 −
1

lim supk→∞ P (k) · · ·P (k + m − 1)

)

≥ lim sup
k→∞

P (k + m).

Thus

R(X)

(

1 −
1

dm

)

≥ d.

Using the same analysis as in the previous case, we have that

R(X) ≥
(m + 1)

m+1
m

m
.

Combining this with Theorem 1, we get the desired result.
�



Discussion
We studied the problem of constructing an interruptible al-
gorithm by scheduling a contract algorithm to run on mul-
tiple processors. Our proposed schedule was shown to be
optimal for any number of processors. As the number of pro-
cessors increases, the optimal acceleration ratio approaches
one and thus the distinction between contract and interrupt-
ible algorithms becomes less important. These results pro-
vide insight into the role of parallelism in the design of real-
time systems.

In this work, we assumed no knowledge of the deadline
or of the contract algorithm’s performance profile. With
problem-specific knowledge, more sophisticated scheduling
strategies become appropriate. Zilberstein, Charpillet, and
Chassaing (1999) consider the case where the performance
profile is known and the deadline is drawn from a known dis-
tribution. In this case, the problem of scheduling a contract
algorithm on a single processor to maximize the expected
quality of results at the deadline can be framed as a Markov
decision process. It remains to extend this work to the mul-
tiple processor case.

Another avenue for future research is to extend the con-
tract algorithm model to include a broader class of algo-
rithms. A number of algorithms have time complexity that
scales with the values of input parameters, but in a fairly un-
predictable way. For example, the worst-case time complex-
ity of depth-bounded search scales with the depth bound and
the maximum branching factor. However, the actual search
time can be much less than the upper bound. Also, some
contract-like algorithms are able to save information from
one instantiation and use the information to accelerate the
next instantiation. Finally, it may be interesting to consider
contract algorithms that are themselves parallelizable, rather
than just scheduling inherently sequential contracts on dif-
ferent processors. One challenge is to produce a contract
algorithm model that takes these characteristics into account
while still allowing for insightful analysis.

Finally, we note that the results presented in this paper
may shed light on an abstract robotics problem involving
multiple robots searching for a goal. In this problem, m
robots start at the intersection of m+1 rays and move along
the rays until the goal is found. An optimal search strat-
egy is defined to be one that minimizes the competitive ra-
tio, which is the worst-case ratio of the time spent searching
to the time that would have been spent if the goal location
was known initially. The problem with m = 1 is consid-
ered in (Baeza-Yates, Culberson, & Rawlins 1993), where
it is shown that the optimal competitive ratio is 9. It turns
out that this problem is nearly identical to that of scheduling
contracts on a single processor (Zilberstein, Charpillet, &
Chassaing 1999). A contract schedule corresponds to a se-
quence of search extents for the robot, where a search extent
is the distance the robot goes out on a ray before returning
to the origin. If we let r denote the acceleration ratio for a
schedule, then 1 + 2r is the competitive ratio for the corre-
sponding sequence of search extents. In the multiprocessor
case, each processor corresponds to a different robot. We
conjecture that the same relationship between acceleration
ratio and competitive ratio holds in this case.
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