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Abstract

Formal treatment of collaborative multi-agent systems has been lagging behind the
rapid progress in sequential decision making by individual agents. Recent work in the area
of decentralized Markov Decision Processes (MDPs) has contributed to closing this gap,
but the computational complexity of these models remains a serious obstacle. To overcome
this complexity barrier, we identify a specific class of decentralized MDPs in which the
agents’ transitions are independent. The class consists of independent collaborating agents
that are tied together through a structured global reward function that depends on all of
their histories of states and actions. We present a novel algorithm for solving this class
of problems and examine its properties, both as an optimal algorithm and as an anytime
algorithm. To the best of our knowledge, this is the first algorithm to optimally solve a
non-trivial subclass of decentralized MDPs. It lays the foundation for further work in this
area on both exact and approximate algorithms.

1. Introduction

There has been a growing interest in recent years in formal models to control collaborative
multi-agent systems. Some of these efforts have focused on extensions of the Markov decision
process (MDP) to multiple agents, following substantial progress with the application of
such models to problems involving single agents. One example of this is the Multi-agent
Markov Decision Process (MMDP) proposed by Boutilier (1999).

The MMDP is a straightforward extension of the MDP to multiple agents by factoring
the action space into actions for each of the agents. The advantage of the centralized
approach is that it is easier to solve optimally than a general decentralized approach. Other
researchers have also used this view of multi-agent systems. Guestrin, Venkataraman, and
Koller (2002) focused on interactions between agents through the reward function, similar
to what we do here, however their observation model more resembles the full observability
of the MMDP than the partial observability of our model. Similarly, Ghavamzadeh and
Mahadevan (2002) developed a reinforcement learning algorithm for the fully observed case.
In contrast, we are interested in situations in which each agent has a partial and different
view of the global state. We are also working with offline planning assuming that the model
is known, not reinforcement learning.
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The disadvantage of the MMDP and related approaches is that it makes an important
assumption that renders it inappropriate for many multi-agent systems. This is that each
agent has the same (complete) world view. Many multi-agent systems have each of the
agents observing a different part of the environment. It is possible to map this into an
MMDP by assuming that each agent communicates its observation with every other agent
at every step with zero cost. Xuan and Lesser (2002) take this a step further by having the
agents communicate only when there is ambiguity. They also introduce transformations of
the policy that address the tradeoff between the expected amount of communication and
the expected value of the final solution.

Ooi and Wornell (1996) studied a variation where all of the agents shared their state
information every K time steps. They developed a dynamic programming algorithm to
derive optimal policies for this case. A downside of this approach is that the state space for
the dynamic programming algorithm grows doubly exponentially with K. A more tractable
algorithm was developed by Hsu and Marcus (1982) under the assumption that the agents
share state information every time step (although it can take a time step for the information
to propagate). The problem we examine, however, assumes that communication has a very
high cost or is not possible.

There are other models that are more of an extension of Partially Observable MDPs
(POMDPs) to multi-agent systems. These models are characterized by each agent only
having a partial and different view of the world state. This includes the Partially Observ-
able Identical Payoff Stochastic Game (POIPSG) proposed by Peshkin, Kim, Meuleau, and
Kaelbling (2000), the Communicative Multiagent Team Decision Problem (COM-MTDP)
proposed by Pynadath and Tambe (2002), the Decentralized Markov Decision Process
(DEC-POMDP and DEC-MDP) proposed by Bernstein, Givan, Immerman, and Zilber-
stein (2002), and the DEC-POMDP with Communication (Dec-POMDP-Com) proposed
by Goldman and Zilberstein (2003, 2004).

A recent complexity study of decentralized control shows that solving such problems
is extremely difficult. The complexity of both DEC-POMDP and DEC-MDP is NEXP-
complete, even when only two agents are involved (Bernstein et al., 2002). This is in con-
trast to the best known bounds for MDPs (P-complete) and POMDPs (PSPACE-complete)
(Papadimitriou & Tsitsiklis, 1987; Mundhenk, Goldsmith, Lusena, & Allender, 2000). The
few recent studies of decentralized control problems (with or without communication be-
tween the agents) confirm that solving even simple problem instances is extremely hard
(Pynadath & Tambe, 2002; Xuan & Lesser, 2002). However, there are certain goal-oriented
DEC-MDPs for which there are optimal, polynomial algorithms (Goldman & Zilberstein,
2004). For the general DEC-POMDP, the only known optimal algorithm is a new dynamic
programming algorithm developed by Hansen, Bernstein, and Zilberstein (2004).

Xuan, Lesser, and Zilberstein (2001) use a model very similar to the one proposed in this
paper with their silent commitment heuristic, in that each of the agents has its own local
problem they are solving. The primary difference is their additional assumption that the
local subproblems are independent given an easily computable optimal goal for the agents
to share. Our approach computes the optimal goal as part of an optimal joint policy.

Wolpert, Wheeler, and Tumer (1999) and Tumer, Agogino, and Wolpert (2002) also
study coordination in a decision-theoretic framework with their work on Collective Intelli-
gence. While the algorithm presented here uses a reward function that fits their subworld-
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factored criteria, we use it in a novel way offline to find a globally optimal solution while
they focus on reinforcement learning online to find high quality but non-optimal solutions.

Other research has approached this complexity barrier through approximations of the
general problem (Goldman & Zilberstein, 2003; Nair, Tambe, Yokoo, Pynadath, & Marsella,
2003; Peshkin et al., 2000; Shen, Lesser, & Carver, 2003). However, the approach taken in
this paper is two-fold. First, we exploit the structure of the domain offered by some special
classes of DEC-MDPs to reduce the complexity of the model. Then we present a novel
algorithm that can solve many large1 problems in a reasonable amount of time. We also
examine the anytime characteristics of this algorithm and show that it performs well as an
approximation algorithm that converges on the optimal solution.

1.1 Problem Description

The class of problems studied in this paper is characterized by two or more cooperative
agents solving (mostly) independent local problems. The actions taken by one agent can
not affect any other agents’ observation or local state. Consequently, an agent can not
observe the other agents’ states and actions and can not communicate with them. The
interaction between the agents happens through a global value function that is not simply
a sum of the values obtained through each of the agents’ local problems. The non-linear
rewards combined with the decentralized view of the agents make the problem more difficult
to solve than the MMDP, while the independence of the local problems make it easier to
solve than the general DEC-MDP. We call this class of problems Transition Independent
DEC-MDPs and we formally define it in Section 2.

We are looking at problems where the value of an activity performed by one agent may
depend on the activities of other agents. One example is information collection, which
includes taking a picture, performing an experiment and performing complex calculations
on data. The information collected may be complementary (e.g., different pictures of the
same area can assist in building a 3D model), or they may be redundant (e.g., computing
the same result wasting valuable time). Both complementary and redundant information
present a problem: the global utility function is no longer additive over the agents. When
experiments provide redundant information there is little additional value to completing
both so the global value is subadditive. When experiments are complementary, completing
just one may have little value so the global value is superadditive. We are generally not
looking at temporal constraints between agents or the information they collect, however,
some temporal constraints can be captured by our model (see Section 2.2.3).

We motivate this class of problems with two examples. The first example is the problem
of controlling the operation of multiple planetary exploration rovers, such as the ones used
by NASA to explore the surface of Mars (Washington, Golden, Bresina, Smith, Anderson,
& Smith, 1999). Periodically, the rovers are in communication with a ground control center.
During that time, the rovers transmit the scientific data they have collected and receive a
new mission for the next period. Each rover has its own area to explore, and a mission
consists of a set of sites at which a rover could take pictures, conduct experiments, and in
general collect data. Some of these sites are overlapping sites (lie on the border between
two or more rovers’ area) and multiple rovers can visit them.

1. Large compared to what state-of-the-art algorithms for DEC-MDPs are able to solve.
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The rovers must operate autonomously (without communication between them) until
communication with the control center is feasible. Because the rovers have limited resources
(computing power, electricity, memory, and time) and because there is uncertainty about
the amount of resources that are consumed at each site, a rover may not be able to complete
all of its objectives. The overall goal is to maximize the value of the information received by
ground control. However, this is not the same as maximizing the value of the information
collected by each rover individually because two rovers performing experiments at overlap-
ping sites produce redundant information. In previous work, we have shown how to model
and solve the single rover control problem by creating a corresponding MDP (Zilberstein,
Washington, Bernstein, & Mouaddib, 2002).

Our second motivating example is UAVs (unmanned aerial vehicles) performing recon-
naissance in a combat environment. Here, communication between the UAVs is too costly
because it would reveal their location to the enemy. The UAVs are sent out to collect infor-
mation from a number of locations and then to return to safety. The information sought by
a UAV may depend on other information that it has collected. For example, if it discovers
something interesting at one location it may spend additional time there collecting more
detailed information and choose to skip other locations.

Independence between the local problems holds true in many domains, and in others it
serves as an approximation. In the Mars rover example the rovers are operating in distinctly
separate areas. For example, NASA’s Mars Exploration Rover mission landed Spirit and
Opportunity on separate sides of the planet2. An “overlapping site” could consist of similar
geographic structures that lie on opposite sides of the planet. Given the rovers distance
from each other there is no possibility of interaction of the local decision problems other
than through the value of the information they collect, nor is direct communication feasible.
The rover example used throughout this paper is an abstraction of this idea.

The UAV example illustrates a different type of situation where the local problems are
independent except for the reward. Here the agents are highly mobile, but the level of
abstraction used to represent this planning problem allows them to coexist in the same
airspace. Essentially, one square of the grid world represents a mile of airspace so there is
no problem with many UAVs traveling through it simultaneously, and the actions of one
agent will not interfere with those of another agent.

The rest of the paper is organized as follows. Section 2 provides a formal description
of the class of problems we consider. Section 3 presents the coverage set algorithm, which
solves this class of problems, and proves that this algorithm is both complete and optimal.
Section 4 illustrates how the algorithm performs on a simple scenario modeled after the
planetary rover example. We conclude with a summary of the contributions of this work.

2. Formal Problem Description

In this section we formalize the n-agent control problem as a transition independent, co-
operative, decentralized decision problem. This formalism is an extension of previous work
(Becker, Zilberstein, Lesser, & Goldman, 2003) to n agents. The domain involves any num-
ber of agents operating in a decentralized manner, choosing actions based upon their own
local and incomplete view of the world. The agents are cooperative in the sense that there is

2. http://marsrovers.jpl.nasa.gov/home/
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one value function for the system as a whole that is being maximized. However, the agents
can only communicate during the planning stage, not during the execution episodes, so they
must derive an optimal joint policy that involves no exchange of information. Goldman and
Zilberstein (2004), and Xuan and Lesser (2002) study decentralized MDPs in which the
agents can communicate during execution.

Definition 1 An n-agent DEC-MDP is defined by a tuple 〈S, A, P,R, Ω, O〉, where

• S is a finite set of world states, with a distinguished initial state s0.

• A = A1 ×A2 × . . .×An is a finite set of joint actions. Ai indicates the set of actions
that can be taken by agent i.

• P : S × A × S → < is the transition function. P (s′|s, (a1...an)) is the probability of
the outcome state s′ when the joint action (a1...an) is taken in state s.

• R : S × A × S → < is the reward function. R(s, (a1...an), s′) is the reward obtained
from taking joint action (a1...an) in state s and transitioning to state s′.

• Ω = Ω1×Ω2×. . .×Ωn is a finite set of joint observations. Ωi is the set of observations
for agent i.

• O : S × A× S × Ω→ < is the observation function. O(s, (a1...an), s′, (o1...on)) is the
probability of agents 1 through n seeing observations o1 through on (agent i sees oi)
after the sequence s, (a1...an), s′ occurs.

• Joint full observability: the n-tuple of observations made by the agents together fully
determine the current state. If O(s, (a1...an), s′, (o1...on)) > 0 then P (s′|(o1...on)) = 1.

Definition 2 A factored, n-agent DEC-MDP is a DEC-MDP such that the world state
can be factored into n + 1 components, S = S0 × S1 × ... × Sn.

Factoring the state space of a DEC-MDP could be done in many ways. The intention of
such a factorization is a separation of features of the world state that belong to one agent
from those of the others and from the external features. This separation is strict, meaning
that no feature of the world state may belong to more than one group. S0 refers to external
features, which are parts of the state that the agents may observe and be affected by but
do not affect themselves, such as weather or time. Si refers to the set of state features for
agent i, which is the part of the world state that an agent observes and affects. This will
be made clearer by the following definitions.

We refer to ŝi ∈ Si×S0 as the local state, ai ∈ Ai as the local action, and oi ∈ Ωi as the
local observation for agent i. Since the agent is affected by the external features its local
state must include them. Just as in a DEC-MDP, a local policy (or just policy) for one
agent is a mapping from sequences of observations to local actions (we will simplify this
later). A joint policy, (π1...πn), is a set of policies, one for each agent.

Let us illustrate this with the rover exploration problem introduced previously. There
are two rovers, each exploring adjacent areas. The global state is composed of each rovers’
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location, the information collected so far (including the agent that collected it), and the
time left in the day. This state can be factored into a local state for each agent containing
that rover’s location, the information collected by that rover, and the time left in the day.
The action each of the rovers can take is a movement action or an information collection
action.

Definition 3 A factored, n-agent DEC-MDP is said to be transition independent if
there exist P0 through Pn such that

P (s′i|(s0...sn), (a1...an), (s′0...s′i−1, s
′
i+1...s′n)) =

{
P0(s′0|s0) i = 0
Pi(s′i|ŝi, ai, s

′
0) 1 ≤ i ≤ n

That is, the new local state of each agent depends only on its previous local
state, the action taken by that agent, and the current external features. The external
features change based only on the previous external features. This implies that
P ((s′0...s′n)|(s0...sn), (a1...an)) =

∏n
i=0 Pi(·).

Our example problem exhibits transition independence because the rovers have no in-
teraction through their state transitions other than time (remember that we allow multiple
rovers to collect information from the same site simultaneously without conflicting). Rover
1’s actions affect its location and the information it has collected, but not any other agents’
location or information collection.

Definition 4 A factored, n-agent DEC-MDP is said to be observation independent if
there exist O1 through On such that ∀oi ∈ Ωi

P (oi|(s0...sn), (a1...an), (s′0...s′n), (o1...oi−1, oi+1...on)) = P (oi|ŝi, ai, ŝ
′
i)

That is, the observation an agent sees depends only on that agent’s current and next
local state and current action.

Definition 5 A factored, n-agent DEC-MDP is said to be locally fully observable if
∀oi ∃ŝi : P (ŝi|oi) = 1.

That is, each agent fully observes its own local state at each step. While local full
observability and observation independence are related, it is possible for one to be true
without the other. However, when both are true then Ω and O in the definition of a
factored n-agent DEC-MDP are redundant and can be removed.

In our rover exploration example, we define the observations of each rover to be its
own local state. When a rover takes an action it fully observes the outcome, which is that
rover’s next local state. By definition, therefore, the problem is locally fully observable. It
is also observation independent because each rover only observes its own local state and
sees nothing related to any other rover. An action by agent i is not allowed to change the
global state in such a way that agent j could detect it. For example, if rover i could leave
a marker on a rock then rover j must not be able to detect it.
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Definition 6 A factored, n-agent DEC-MDP is said to be reward independent if there
exist f and R1 through Rn such that

R
(
(s0...sn), (a1...an), (s′0...s′n)

)
= f

(
R1(ŝ1, a1, ŝ

′
1)...Rn(ŝn, an, ŝ′n)

)
and

Ri(ŝi, ai, ŝ
′
i) ≤ Ri(ŝi, a

′
i, ŝ

′′
i ) ⇔

f
(
R1...Ri(ŝi, ai, ŝ

′
i)...Rn

)
≤ f

(
R1...Ri(ŝi, a

′
i, ŝ

′′
i )...Rn

)
That is, the overall reward is composed of a function of the local reward functions,

each of which depends only on the local state and local action of one of the agents. This
function is such that maximizing each of the local reward functions individually maximizes
the function itself. An example function is f(R1...Rn) =

∑
i Ri.

When Definitions 2 through 6 are satisfied a DEC-MDP (NEXP-complete) decomposes
into n independent local MDPs (P-complete). However, if the problem is missing just one
of these independence relations then it remains a non-trivial subclass of DEC-MDPs. This
paper deals with the general class of factored n-agent DEC-MDPs that exhibit transition
and observation independence, and local full observability, but not reward independence.
Instead, the reward function is divided into two components. The first component is a set
of local reward functions that are reward independent. The second component is a reward
signal the system receives (not any individual agent) that depends on the actions of multiple
agents and is therefore not reward independent. It is defined by the joint reward structure
and is captured in the global value function being maximized.

2.1 Joint Reward Structure

We now introduce further structure into the global reward function. To define it, we need
to introduce the notion of an occurrence of an event during the execution of a local policy.

Definition 7 A history for agent i, Φi = [ŝ0
i , a

0
i , ŝ

1
i , a

1
i , ...] is a valid execution sequence

that records all of the local states and actions for one agent, beginning with the local starting
state for that agent, ŝ0

i .

Definition 8 A primitive event, e = (ŝi, ai, ŝi) is a tuple that includes a local state, an
action, and an outcome state. An event E = {e1, e2, ..., eh} is a set of primitive events.

Definition 9 A primitive event e = (ŝi, ai, ŝ
′
i) occurs in history Φi, denoted Φi |= e iff the

tuple (ŝi, ai, ŝ
′
i) appears as a sub-sequence of Φi. An event E = {e1, e2, ..., eh} occurs in

history Φi, denoted Φi |= E iff
∃e ∈ E : Φi |= e.

Events are used to capture the fact that an agent accomplished some task. In some
cases a single local state may be sufficient to signify the completion of a task. But because
of the uncertainty in the domain and because tasks could be accomplished in many different
ways, we generally need a set of primitive events to capture the completion of a task.
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In the rover example, the events we want to capture represent an agent collecting data
at a particular site. This event will take many primitive events to describe because time is
part of the local state. For example, the event Collect Data at Site 4 can be accomplished
by the primitive event where the agent executes the collect action at site 4 starting at time 6
(and ending at any possible next state). It can also be accomplished by a similar primitive
event where the agent starts collecting at time 8 instead of time 6. More formally, the event
can be described by the following set of primitive events:{ (

〈l, t〉, a, 〈l′, t′〉
)
| 〈l, t〉 = 〈4, ∗〉, a = collect, 〈l′, t′〉 = 〈∗, < t〉

}
,

where the local state is 〈l, t〉; l is the current location and t is the time left in the day.

Definition 10 A primitive event is said to be proper if it can occur at most once in each
possible history of a given MDP. That is:

∀Φi = Φ1
i eΦ

2
i : ¬(Φ1

i |= e) ∧ ¬(Φ2
i |= e)

Definition 11 An event E = {e1, e2, ..., eh} is said to be proper if it consists of mutually
exclusive proper primitive events with respect to some given MDP. Mutually exclusive means:

∀Φi ¬∃x 6= y : ex ∈ E ∧ ey ∈ E ∧ Φi |= ex ∧ Φi |= ey

The event Collect Data at Site 4 described earlier can easily be turned into a proper
event. First, because time is part of the local state, no single primitive event could happen
more than once — time only flows in one direction. Time is not a necessary condition, but
in this example it suffices. Second, it is not difficult to restrict a rover from collecting data
more than once at a particular site, either through additional bits in the state or through
a fixed acyclic ordering for visiting the sites built into the structure of the MDP.

We limit the discussion in this paper to proper events. They are sufficiently expressive
for the rover domain and for the other applications we consider, while simplifying the
discussion. Later we show how some non-proper events can be modeled in this framework.

The joint reward structure can be viewed as a list of x constraints between the agents
that describe how interactions between their local policies affect the global value of the
system. A particular constraint k exists between some subset of agents Gk, where |Gk| ≥ 2.
The semantics of constraint k, (Egk1

k , Egk2
k ...E

gk|Gk|
k , ck), is that each agent involved must

satisfy its part of the constraint for the constraint to be satisfied. Agent gki satisfies its part
of constraint k if event Egki

k occurs in that agent’s history Φgki
. If each agent in a constraint

does this, then the system would receive an additional ck reward. There is no restriction
on the number of the constraints that can be satisfied.

Definition 12 Let Φ1 through Φn be histories for n agents. Let G1 through Gx be subsets
of the n agents. Each set Gk contains |Gk| agents gk1 through gk|Gk|. A joint reward
structure

ρ = [(Eg1,1

1 , E
g1,2

1 ...E
g1|G1|
1 , c1), ...., (Egx1

x , Egx2
x ...E

gx|Gx|
x , cx)],

specifies the reward (or penalty) ck that is added to the global value function if Φgk1
|= Egk1

k

and Φgk2
|= Egk2

k and ... and Φgk|Gk| |= E
gk|Gk|
k .
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In this paper we focus on factored DEC-MDPs that are transition independent, ob-
servation independent with full local observability and whose global reward function R is
composed of a local reward function for each agent R1 through Rn plus a joint reward
structure ρ. This allows us to define n underlying MDPs, 〈Si × S0, Ai, Pi, Ri〉 even though
the problem is not reward independent. These processes are indeed Markov, meaning that
the local policies are mappings from local states to actions instead of histories to actions
as with DEC-MDPs. A local state was proved to be a sufficient statistic for the history of
observations sensed by an agent controlling a decentralized MDP with independent transi-
tions and observations (Goldman & Zilberstein, 2004). Therefore, the optimal local policy
of such an agent can be expressed as a mapping from local states to actions.

Given a local policy, πi, the probability that a particular primitive event e = (ŝi, ai, ŝ
′
i)

will occur during any execution of πi, denoted P (e|πi), can be expressed as:

P (e|πi) = φ
∞∑

v=0

Pv(ŝi|πi)Pi(ŝ′i|ŝi, ai), φ =

{
1 πi(ŝi) = ai

0 otherwise

where Pv(ŝi|πi) is the probability of being in state ŝi at time step v. Pv(ŝi|πi) can be
easily computed for a given MDP from its transition model, and Pi(ŝ′i|ŝi, ai) is simply the
transition probability. φ sets the probability to zero if the primitive event e is inconsistent
with the policy πi. Similarly, the probability that a proper event E = {e1, e2, ..., em} will
occur is:

P (E|πi) =
∑
e∈E

P (e|πi).

We can sum the probabilities over the primitive events in E because they are mutually
exclusive.

Definition 13 Given a joint policy (π1...πn) and a joint reward structure ρ, the joint value
is defined as:

JV (ρ|π1...πn) =
|ρ|∑

k=1

ck

|Gk|∏
i=1

P (Egki
k |πgki

)

Definition 14 The global value function of a transition independent decentralized MDP
with respect to a joint policy (π1...πn) is:

GV (π1...πn) =
n∑

i=1

Vπi(ŝ
0
i ) + JV (ρ|π1...πn)

where Vπi(ŝ
0
i ) is the standard value of the underlying MDP for agent i at starting state ŝ0

i

given policy πi.

While Vπ(s) is generally interpreted to be the value of state s given policy π, we will
sometimes refer to it as the value of π because we are only interested in the value of the
initial state given π. Similarly, the global value function GV is defined over policies and
not states because the interest is in the expected value of the starting state only. The goal
is to find a joint policy that maximizes the global value function.
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Definition 15 An optimal joint policy, denoted (π1...πn)∗, is a set of local policies that
maximize the global value function, that is:

(π1...πn)∗ = argmaxπ′
1... π′

n
GV (π′1...π′n).

To summarize, a problem in our transition independent decentralized MDP framework
is defined by n underlying MDPs, 〈S1 × S0, A1, P1, R1〉 through 〈Sn × S0, An, Pn, Rn〉, and
a joint reward structure ρ.

2.2 Expressiveness of the Model

Transition independent DEC-MDPs with a joint reward structure may seem to represent a
small set of domains, but it turns out that the class of problems we address is quite general.
The joint reward structure ρ is just another way of representing the general reward function
over all of the agents, R((s0...sn)(a1...an)(s′0...s′n)). How efficient a representation the joint
reward structure is of the general reward function depends on the level of independence
in the reward function. Intuitively it is similar to the difference between standard matrix
representations and the representations for sparse matrices.

Often if a problem meets the independence and observability requirements but does not
obviously have a properly structured reward function, it can be represented by adding extra
information (in the form of a bit) to the local state or by modifying the state in some way.
In many cases these bits are already necessary to represent the problem as a DEC-MDP
and do not cause an increase in the size of the state space to represent in the joint reward
structure. Since MDPs suffer from the curse of dimensionality the size of the state space
grows exponentially with the number of bits added.

This section will discuss several properties of the joint reward structure and how prob-
lems can be modified to fit. It will also show how some temporal constraints can be repre-
sented by this class of problems.

2.2.1 Mutual Exclusion

One property that some problems do not naturally adhere to is the mutual exclusion among
primitive events. The mutual exclusion property guarantees that at most one primitive event
within an event set can occur. This section presents three alternatives. For each of them,
the bits mentioned are already present in the DEC-MDP representation of the problem.

At least one primitive event – Suppose that multiple primitive events within an
event set can occur and that an additional reward is added when at least one of them does
occur. In this case the state can be augmented with one bit, initially set to 0. When a
primitive event in the set occurs, the bit is set to 1. If we redefine each primitive event to
include the bit switching from 0 to 1, then the event set is now proper because the bit is
toggled from 0 to 1 only on the first primitive event encountered.

All primitive events – Suppose that an event is composed of x primitive events,
all of which must occur to trigger the extra reward. In this case, each local state must
be augmented with x bits (one per primitive event), which start at 0 and are toggled to 1
when the corresponding primitive event occurs (ordering constraints among primitive events
could reduce the number of bits necessary). The new event set occurs when the last bit still
0 is flipped.
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Counting occurrences – Suppose that an event is based on a primitive event (or
another event set) repeating at least x times. Here, the local state can be augmented with
log x bits to be used as a counter. The extra reward is triggered when the desired number
of occurrences is reached, at which point the counting stops.

2.2.2 All Events

Another property of the joint reward structure is that every event in a constraint must
occur for the system to receive the extra reward. Other useful constraints that one may
wish to express may involve the occurrence of at most x events, exactly x events, or at least
x events. These can be represented by creating new constraints, one for each possible way
of solving the existing constraint. For example, suppose there is a constraint between three
agents (events E1, E2, E3), and the constraint is satisfied (extra reward received) if exactly
two of the three events occur. This constraint can be represented by three new constraints
with the semantics of all events must occur: E1E2¬E3, E1¬E2E3, ¬E1E2E3.

The event ¬Ex represents the original event Ex not occurring. This event can be rep-
resented by adding two additional bits to the state space. One bit represents whether the
original event has occurred and the other represents whether the original event could occur
in the future. The new event ¬Ex occurs when the original event has not occurred and the
cannot-occur-in-the-future bit flips to true.

There is also the possibility that the algorithm presented in Section 3 could be modified
to handle these other constraints more directly and efficiently. This remains the topic of
future work.

2.2.3 Temporal Constraints

So far we have focused on global reward structures that do not impose any temporal con-
straints on the agents. Other types of constraints are soft temporal constraints like facilitates
and hinders (Decker & Lesser, 1993). A facilitates constraint between activities A and B
means that if A is finished before B is started, then execution of B is somehow facilitated.
Facilitation can take many forms like reduced consumption of resources, less time to exe-
cute, higher reward received. The hinders constraint is similar, but instead involves making
the execution of B more costly.

Soft temporal constraints that just involve a change in the expected reward can be repre-
sented in this framework if time is enumerated as part of the local states. For example, sup-
pose that event E1 in agent 1 facilitates/hinders event E2 in agent 2, that is, the occurrence
of E1 before E2 leads to an extra reward c. To properly define ρ, we need to create new events
E1

i and E2
i for all 1 ≤ i ≤ maxTime, and ci = c. E1

i represents E1 occurring at time i and
E2

i represents E2 occurring after i. If both E1
i and E2

i occur, then reward c is gained because
E1 happened before E2. ρ now becomes [(E1

1 , E2
1 , c), (E1

2 , E2
2 , c)... (E1

maxTime, E
2
maxTime, c)].

There are a couple of important limitations for temporal constraints. First is that not
all types of temporal constraints can be handled. The temporal constraints are limited
to affecting the reward and not the duration (or any other characteristic of the facili-
tated/hindered event that the agent observes) because that would violate the transition
independence assumption. Second, representing a temporal constraint is not very practical
because one temporal constraint gets represented as maxTime non-temporal constraints in
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Figure 1: Exponential-sized vs. Polynomial-sized Policies.

ρ. A more compact representation of temporal constraints remains the subject of future
research.

To summarize, there is a wide range of practical problems that can be represented within
our framework. Non-temporal constraints have a more natural, compact representation, but
some temporal constraints can also be captured.

2.3 Complexity Analysis

It is known that solving optimally a general DEC-MDP is NEXP-complete (Bernstein et al.,
2002). The leftmost diagram in Figure 1 illustrates this result by showing that a local policy
of a general DEC-MDP is exponential in the size of the observations. Each local policy is
a mapping from sequences of observations to actions. Therefore, there are |Ai||Ω|

T
policies

for agent i, where T is the horizon. Each agent j needs to build a belief-state MDP for each
one of agent i’s local policies. The number of states in this MDP is exponential in the size
of Ωj . This results in an algorithm that will solve optimally a DEC-MDP problem using a
complete search algorithm in double exponential time3.

The class of DEC-MDPs studied in this paper is characterized by having independent
transitions and observations and being locally fully observable. Because the current local
view of a single agent is a sufficient statistic for the past history of observations of agent
i (see Goldman & Zilberstein, 2004) a local policy for agent i is a mapping from its local
states to its possible actions, i.e., πi : Si×S0 → Ai (see the rightmost diagram in Figure 1).
This results in agents’ policies being of size polynomial in the number of local states (as
opposed to exponential in the size of the observation set as in the general case). Theorem 1

3. Assuming that the finite horizon T is similar in size to the number of global states of the system |S|.
This assumption is necessary for the complexity of the general DEC-MDP, but not for the complexity
of the class of problems dealt with in this paper.
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Figure 2: DTEAM reduces to an MDP of this form.

(adapted from Goldman & Zilberstein, 2004) shows that the complexity of solving optimally
such a DEC-MDP is easier than solving the general case.

Theorem 1 Deciding a DEC-MDP with independent transitions and observations, local
full observability, and joint reward structure ρ is NP-complete.

Proof. Since the current local state of agent i is a sufficient statistic, a local policy for that
agent is of size polynomial in |Si×S0|. There are |Ai||Si×S0| policies (mappings from Si×S0

to Ai). The number of states in each agent i’s belief-state MDP is polynomial in |Si × S0|
(for a fixed and known policy for the other agents). Evaluating one such local policy can
be done in polynomial time (by running dynamic programming on the belief-state MDP),
but there are exponentially many such policies for which this should be done. Therefore,
the upper bound for the decision problem stated in this theorem is NP.

To prove the lower bound we will reduce the NP-complete problem DTEAM (Papadim-
itriou & Tsitsiklis, 1982, 1986) to this problem for two agents, which is sufficient for a
lower bound. DTEAM is a single-step discrete team decision problem. There are two
agents. Agent i, i = 1, 2, observes a random integer ki, 1 ≤ ki ≤ N , and takes an action
γi(ki) ∈ {1, ... ,M}. Their actions incur cost c(k1, k2, γ1(k1), γ2(k2)). The problem is to find
policies γ1 and γ2 that minimize the expected cost:

N∑
k1=1

N∑
k2=1

c(k1, k2, γ1(k1), γ2(k2)).

The reduction is quite straightforward. The local MDP for agent i consists of an initial
state (ŝ0

i ), N intermediate states (ŝ1
i ... ŝN

i ), and a single final state (ŝf
i ), see Figure 2. The

observation is the current state. There is one action (a0) available in the initial state, and
M actions (a1...aM ) in the intermediate states. The local rewards are always 0. The joint
reward ρ includes an entry for every combination of intermediate state and action taken by
the agents:

ρ = [ ( {(ŝ1
1, a

1, ŝf
1)}, {(ŝ1

2, a
1, ŝf

2)}, −c(1, 1, 1, 1) ),

( {(ŝ1
1, a

1, ŝf
1)}, {(ŝ1

2, a
2, ŝf

2)}, −c(1, 1, 1, 2) ),
. . .

( {(ŝN
1 , aM , ŝf

1)}, {(ŝN
2 , aM , ŝf

2)}, −c(N,M,N, M) ) ]

Finding the joint policy that maximizes the expected reward will be the same policy that
minimizes the expected cost in the original problem.
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Site t(x) r(x) Total
x Value
1 10 6 r(1)
2 12 5 3r(2)
3 8 7 r(3)
4 11 9 r(4)
5 13 8 1.5r(5)
6 9 6 r(6)
7 14 7 r(7)

Figure 3: Illustration of the Mars rover example. Each of the rovers can collect data from
sites within their region. Sites 2, 4 and 5 fall on the boundaries and can be visited
by two rovers each. The table entries in bold are the shared tasks.

2.4 Example

This example is an instance of the rover problem presented earlier. There are three rovers,
each with their own region of space to explore, as shown in Figure 3. Each site x has a
value for the data collected there, r(x), and a time to collect the data, t(x) . The local
state for rover 1 is composed of the current location l, the time left in the day t, and the
data to be collected d1, d2, d4 (0 if not collected, 1 if collected). The available actions
are collect and go to site x. The transition on a collect action, when at site x, is from
〈l = x, t, da, db, dx = 0〉 to 〈l = x, t − t(x), da, db, dx = 1〉. The reward received is r(x) if
t − t(x) ≥ 0, otherwise 0. The transition on a go to site x action when at site y is from
〈l = y, t, d1, d2, d4〉 to 〈l = x, t − t(y, x), d1, d2, d4〉 and a reward of 0. t(y, x) is the time it
takes to move from site y to site x. The joint reward structure is:

ρ =
[

(E1
2 , E2

2 , r(2)), (E1
4 , E3

4 ,−r(4)), (E2
5 , E3

5 ,−0.5r(5))
]
.

Event Ei
x is an event that represents agent i collecting data at site x. This event is

composed of primitive events of the form:

{(ŝ, a, ŝ′)|ŝ=〈l=x, t, da, db, dx =0〉, a=collect, ŝ′=〈l=x, t− t(x), da, db, dx =1〉}.

Each agent locally receives r(x) when it collects at site x. The Total Value column in
Figure 3 lists the total reward received by the system for each site. For sites x = {2, 4, 5}
this is the reward received after both agents collect there. The difference between the total
value and 2r(x) is put into ρ as the extra reward the system receives for site x for those
sites that overlap two agents. For example, for x = 5, 1.5r(5) − 2r(5) = −0.5r(5). When
rover 1 collects data at site 5 it receives r(5). When rover 2 collects data there it receives
r(5). The system also receives a penalty of −0.5r(5) because both rovers collected that
data. The net reward received by the system is 1.5r(5).
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3. Coverage Set Algorithm

This section presents a novel algorithm to find optimal joint policies for transition inde-
pendent decentralized MDPs. To the best of our knowledge this is the first algorithm to
tractably and optimally solve a significant subclass of DEC-MDPs. We have also applied
it to a different class of problems in which the agents were reward independent but not
transition independent (Becker, Zilberstein, & Lesser, 2004), which demonstrates that it is
not limited to the class of problems described in this paper. Most other work on distributed
problems have used approximate solutions, such as heuristic policy search and gradient de-
scent (e.g., Peshkin et al., 2000), or assumed complete communication at every step or when
the optimal action is ambiguous (e.g., Boutilier, 1999; Xuan & Lesser, 2002). The former
are not guaranteed to converge on the optimal solution and the latter are not practical
when communication is not possible or very expensive.

While the formal problem description deals with n agents, for clarity the description of
the algorithm will only deal with two agents (i and j). Section 3.5 discusses the n-agent
extension of the algorithm.

The algorithm is divided up into three major parts:

1. Create augmented MDPs. An augmented MDP represents one agent’s underlying
MDP with an augmented reward function.

2. Find the optimal coverage set for the augmented MDPs, which is the set of all optimal
policies for one agent that correspond to any possible policy of the other agent. As
we show below, this set can be represented compactly.

3. Find for each policy in the optimal coverage set the corresponding best policy for the
other agent. Return the best among this set of joint policies, which is the optimal
joint policy.

Pseudo-code for the coverage set algorithm is shown in Figure 4. The main function,
CSA, takes a transition independent DEC-MDP (as described in Section 2) as input, and
returns an optimal joint policy. The remaining functions are described in detail below.

3.1 Creating Augmented MDPs

The first part of the algorithm is to create the augmented MDPs, which are essentially the
underlying MDPs for each agent with an augmented reward function. The new reward is
calculated from the original reward, the joint reward structure and the policy of the other
agent. The influence of the other agent’s policy on the augmented MDP can be captured
by a vector of probabilities, which is a point in the following parameter space.

Definition 16 The parameter space is a |ρ| dimensional space where each dimension
has a range of [0, 1]. Each policy πj has a corresponding point in the parameter space, x̄πj ,
which measures the probabilities that each one of the events in ρ will occur when agent j
follows policy πj:

x̄πj = [P (Ej
1|πj), P (Ej

2|πj), ..., P (Ej
|ρ||πj)].
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function CSA(MDP1, MDP2, ρ)
returns the optimal joint policy
inputs: MDP1, underlying MDP for agent 1

MDP2, underlying MDP for agent 2
ρ, joint reward structure

optset← COVERAGE-SET(MDP1, ρ)
value← −∞
jointpolicy ← {}
/* find best joint optimal policy */
for each policy1 in optset

policy2 ← SOLVE(AUGMENT(MDP2, policy1, ρ))
v ← GV({policy1, policy2},MDP1,MDP2, ρ)
if (v > value)

then value← v
jointpolicy ← {policy1, policy2}

return jointpolicy

function COVERAGE-SET(MDP , ρ)
returns set of all optimal policies with respect to ρ
inputs: MDP , underlying MDP

ρ, joint reward structure

planes← {} /* planes are equivalent to policies */
points← {}
/* initialize boundaries of parameter space */
for n← 1 to |ρ|

boundaries← boundaries ∪ {xn = 0, xn = 1}
/* loop until no new optimal policies found */
do

newplanes← {}
points← INTERSECT(planes ∪ boundaries)
/* get optimal plane at each point */
for each point in points

plane← SOLVE(AUGMENT(MDP , point, ρ)
if plane not in planes

then newplanes← newplanes ∪ {plane}
planes← planes ∪ newplanes

while |newplanes| > 0
return planes

Figure 4: Coverage Set Algorithm
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Given a point in the parameter space, x̄πj , agent i can define a decision problem that
accurately represents the global value instead of just its local value. It can do this because
both the joint reward structure and agent j’s policy are fixed. This new decision problem
is defined as an augmented MDP.

Definition 17 An augmented MDP, MDP
x̄πj

i , is defined as
〈Si × S0, Ai, Pi, R

′
i, x̄πj , ρ〉, where x̄πj is a point in the parameter space computed from the

policy for agent j, ρ is the joint reward structure and R′
i is:

R′
i(e) = Ri(e) +

|ρ|∑
k=1

φkP (Ej
k|πj)ck, φk =

{
1 e ∈ Ei

k

0 otherwise

Note that e = (ŝ, a, ŝ′) so R(e) is the same as R(ŝ, a, ŝ′).
An intuitive way to think about the augmented MDPs is in terms of a credit assignment

problem. The system receives an extra reward if an event occurs for both agents. However,
instead of giving that reward to the system, the reward could be divided up between the
agents. An augmented MDP for agent i represents giving all of the credit (extra expected
reward) to agent i.

Theorem 2 The value of a policy πi over MDP
x̄πj

i is:

V
x̄πj
πi (ŝ0

i ) = Vπi(ŝ
0
i ) + JV (ρ|πi, πj).

Proof. The value of an MDP given a policy can be calculated by summing over all steps v
and all events e, the probability of seeing e after exactly v steps, times the reward gained
from e:

V
x̄πj
πi (ŝ0

i ) =
∞∑

v=0

∑
e

Pv(e|πi)R′(e)

=
∞∑

v=0

∑
e

Pv(e|πi)

Ri(e) +
|ρ|∑

k=1

φkP (Ej
k|πj)ck


=

∞∑
v=0

∑
e

Pv(e|πi)Ri(e) +

∞∑
v=0

∑
e

|ρ|∑
k=1

φkPv(e|πi)P (Ej
k|πj)ck

= Vπi(ŝ
0
i ) +

|ρ|∑
k=1

P (Ej
k|πj)ck

∞∑
v=0

∑
e∈Ei

k

Pv(e|πi)

= Vπi(ŝ
0
i ) +

|ρ|∑
k=1

P (Ej
k|πj)P (Ei

k|πi)ck

= Vπi(ŝ
0
i ) + JV (ρ|πi, πj).
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The function AUGMENT in Figure 4 takes an MDP, a policy and a joint reward struc-
ture and returns an augmented MDP according to Definition 17.

Since the joint value function has been neatly folded into the value of an augmented
MDP, the global value function can be rewritten as:

GV (π1, π2) = V
x̄π2
π1 (ŝ0

1) + Vπ2(ŝ
0
2) = Vπ1(ŝ

0
1) + V

x̄π1
π2 (ŝ0

2) (1)

From this it is easy to show that an optimal joint policy is a Nash equilibrium.

Proposition 1 An optimal joint policy (π1, π2)∗ is a Nash equilibrium over the augmented
MDPs:

V
x̄π2
π1 = max

π′
1

V
x̄π2

π′
1

(ŝ0
1)

V
x̄π1
π2 = max

π′
2

V
x̄π1

π′
2

(ŝ0
2).

Proof. Assume ∃π′1 6= π1 : V
x̄π2

π′
1

(ŝ0
1) > V

x̄π2
π1 (ŝ0

1).
From Equation 1:

GV (π′1, π2) = V
x̄π2

π′
1

(ŝ0
1) + Vπ2(ŝ

0
2)

GV (π1, π2) = V
x̄π2
π1 (ŝ0

1) + Vπ2(ŝ
0
2)

Therefore, GV (π′1, π2) > GV (π1, π2). This contradicts (π1, π2)∗. By symmetry, we can show
the same for π2. Therefore, the optimal joint policy is a Nash equilibrium over augmented
MDPs.

This naturally suggests an iterative hill-climbing algorithm where the policy for one
agent is fixed and the optimal policy for the other agent’s augmented MDP is computed.
Then the new policy is fixed and a new optimal policy for the first agent is computed.
Repeating this process will converge upon a locally optimal solution, and with random
restarts it becomes an attractive approximation algorithm. Nair et al. (2003), and Shen
et al. (2003) study applications of this approximation algorithm to DEC-POMDPs.

The problem is that it provides no guarantees. No matter how long it is run, there
is always the possibility that it will not find the optimal joint policy. We circumvent this
problem by providing an algorithm that finds all of the local maxima. In the problems
we experimented with this is feasible because the number of local maxima is orders of
magnitude fewer than the number of policies (though a problem could probably be crafted
in which this is not the case).

3.2 Finding the Optimal Coverage Set

An augmented MDP is defined over a point in the parameter space, which is a continuous
space. This means that for both agents, there are an infinite number of augmented MDPs,
however, only a finite number of them are potentially meaningful: the ones where the point
in parameter space corresponds to a policy of the other agent. Additionally, most of these
augmented MDPs have the same optimal policies, so the set of all optimal policies for all
of the augmented MDPs for one agent is quite small. This set is what we call the optimal
coverage set.
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Figure 5: Search process in one dimension.

Definition 18 The optimal coverage set, Oi, is the set of optimal policies for MDP x̄
i

given any point in parameter space, x̄:

Oi = {πi | ∃x̄, πi = argmaxπ′
i
V x̄

π′
i
(ŝ0

i )}.

Another way to look at the optimal coverage set is to examine the geometric represen-
tation of a policy over the parameter space. The value of a policy πi, given in Theorem 2,
is a linear equation. If |x̄πj | = 1, then the value function is a line in two dimensions. When
|x̄πj | = 2, the value function is a plane in three dimensions. In general, |x̄πj | = n and the
value function is a hyperplane in n + 1 dimensions.

The optimal coverage set, then, is the set of hyperplanes that are highest in the n + 1
dimension for all points in the parameter space (first n dimensions). The upper surface that
we are interested in is a piecewise-linear and convex function formed by these hyperplanes.
First we examine the one dimensional case (one constraint). Figure 5 shows a graph of
the parameter space (x-axis) versus expected value of a policy. On this graph we plot the
equation shown in Theorem 2 for particular policies. For every point in the parameter
space, the optimal policy of the augmented MDP that corresponds to that point is a policy
in the optimal coverage set.

The algorithm starts by finding the optimal policies in the corners of the parameter
space, which in this example are x = 0.0 and x = 1.0. This yields two optimal policies, π1

for x = 0.0 and π2 for x = 1.0, whose value functions are graphed in Figure 5 (a). Those
two lines intersect at x = 0.5, which is then chosen as the next point. The optimal policy
of that point, π3, is added in Figure 5 (b). New points in the top surface are found by
intersecting the new line with the previous lines, x = 0.4 and x = 0.6. If new policies are
found at either of those points, those lines are added and new intersections selected. This
repeats until all of the intersection points have optimal policies represented in the graph.
That set of policies form the optimal coverage set. In the example no new policies were
found at x = 0.4 or x = 0.6 so Figure 5 (c) shows the piecewise-linear and convex surface
we are searching for, and those three policies form the optimal coverage set for one agent.

The intersection points of the lines are key because that is where the optimal policy
changes from one policy to a different policy. Intuitively, if a policy is optimal at x = 0.6
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Figure 6: Intersecting Planes. (a) The first iteration checks the corners of the parameter
space: (0, 0), (0, 1), (1, 0), (1, 1), which yields three planes. In the second iteration
one of the intersection points in the top surface is chosen (circled), and a new
optimal policy is found and added in (b). This process repeats until all fourteen
of the intersections on the top surface between known optimal policies (circled
in (d) ) have been checked and no new optimal policies found. The six optimal
policies in (d) form the optimal coverage set based on these intersection points.

and x = 1.0 then that same policy is optimal between those two points because we are
working with linear equations.

Figure 6 shows the same algorithm with a two dimensional parameter space (two con-
straints). Here we are looking at planes in three dimensions. Figure 6 (a) shows the three
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planes (optimal policies) found at the four corners of the parameter space. The circled point
is the next one selected and Figure 6 (b) shows the new plane found at that point. If all
of the points circled in Figure 6 (d) have been checked and no new optimal policies found,
then the algorithm terminates.

The next two theorems prove that the underlying idea for this step in the algorithm
is correct. The idea is that if a set of points has the same optimal policy, then any point
enclosed by those points also has that optimal policy because we are working with linear
functions.

Theorem 3 If two points x̄ and ȳ in n-dimensional parameter space have the same cor-
responding optimal policy π, then all points on the line segment between x̄ and ȳ, f(α) =
x̄ + α(ȳ − x̄), 0 ≤ α ≤ 1, have optimal policy π.

Proof. Let π be the optimal policy at x̄ and ȳ, z̄ be a point on the line between x̄ and ȳ,
and π′ be the optimal policy at z̄:

π = argmaxπV x̄
π (ŝ0

i ) = argmaxπV ȳ
π (ŝ0

i ),
z̄ = f(α0), 0 < α0 < 1, and
π′ = argmaxπ′V z̄

π′(ŝ0
i ).

Assume that at z̄ the value of the optimal policy π′ is strictly greater than the value of
π, V z̄

π′(ŝ0
i ) > V z̄

π (ŝ0
i ). We know V x̄

π (ŝ0
i ) ≥ V x̄

π′(ŝ0
i ) because π is optimal at x̄. Since V (·) and

f(·) are linear functions, we can calculate their value at f(1) = ȳ by computing the unit
slope.

V ȳ
π (ŝ0

i ) =
V z̄

π (ŝ0
i )− V x̄

π (ŝ0
i )

α0
+ V x̄

π (ŝ0
i )

=
1
α0

V z̄
π (ŝ0

i )−
(

1− α0

α0

)
V x̄

π (ŝ0
i )

≤ 1
α0

V z̄
π (ŝ0

i )−
(

1− α0

α0

)
V x̄

π′(ŝ0
i )

<
1
α0

V z̄
π′(ŝ0

i )−
(

1− α0

α0

)
V x̄

π′(ŝ0
i )

=
V z̄

π′(ŝ0
i )− V x̄

π′(ŝ0
i )

α0
+ V x̄

π′(ŝ0
i )

< V ȳ
π′(ŝ0

i )

This contradicts the precondition that π is optimal at ȳ, therefore V z̄
π (ŝ0

i ) = V z̄
π′(ŝ0

i ) for any
z̄ between x̄ and ȳ.

A bounded polyhedron in n dimensions is composed of a set of faces, which are bounded
polyhedra in n− 1 dimensions. The corners of a bounded polyhedron are the points (poly-
hedra in 0 dimensions) that the polyhedron recursively reduces to. Theorem 3 shows that
for a line segment (polyhedron in 1 dimension) with endpoints with the same optimal pol-
icy, every point along that line also has the same optimal policy. This can be inductively
extended to higher dimensions because any point in the interior falls on a line segment with
endpoints on the edges of the polyhedron.
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Corollary 1 Given a bounded polyhedron in n dimensions whose corners all have the same
corresponding optimal policy πi, any point on the surface or in the interior of that polyhedron
also has optimal policy πi.

There is some similarity between this step of the algorithm and other algorithms that
are trying to find a piecewise-linear and convex function, like dynamic programming for
POMDPs. In the POMDP case the function represents the optimal actions over the belief
states. In the coverage set algorithm it represents the optimal policies over the parameter
space. The primary difference between these two is that here we can efficiently generate
the optimal policy for a point in the parameter space, while with a POMDP there is no
way to efficiently generate the optimal action for a given belief state. The pruning in
dynamic programming for POMDPs is in response to that inefficiency and is not relevant
to the coverage set algorithm. Kaelbling, Littman, and Cassandra (1998) give a detailed
description of a POMDP and accompanying algorithm.

The part of the algorithm discussed in this section is handled by the function
COVERAGE-SET in Figure 4. It takes an MDP and a joint reward structure and re-
turns the optimal coverage set, based on Theorem 1. To illustrate how this works, we will
step through a small example.

Consider an instance of the Mars 2-rover problem with just two elements in the joint
reward structure: (E1

1 , E2
1 , c1) and (E1

2 , E2
2 , c2). The function CSA calls COVERAGE-SET

on MDP1 and ρ. The first thing that COVERAGE-SET does is to create the boundaries
of the parameter space. These are the hyperplanes that enclose the parameter space. Since
each dimension is a probability, it can range from 0 to 1, so in this case there are 4 boundary
lines: x1 = 0, x1 = 1, x2 = 0, x2 = 1. The algorithm then loops until no new planes are
found.

In each loop, INTERSECT is called on the set of known boundary and policy hyper-
planes. INTERSECT takes a set of hyperplanes and returns a set of points that represent
the intersections of those hyperplanes. The simple implementation would just return every
intersection point, however many of those points are not useful — those that lie outside
the parameter space or lie below a known optimal plane. For example, Figure 6(d) has six
policy planes and the four boundaries of the parameter space. The total number of points
is approximately 84, but only the 14 visible points are necessary to divide up the parameter
space into the set of polygons.

After computing the set of points, the augmented MDP for each of those points is created
and the optimal policy for each of those augmented MDPs is computed by SOLVE, which
can use standard dynamic programming algorithms. The value of a policy and a point in
parameter space is:

V
x̄π2
π1 (ŝ0

1) = P (E1
1 |π1)P (E2

1 |π2)c1 +
P (E1

2 |π1)P (E2
2 |π2)c2 + Vπ1(ŝ

0
1).

For a given π1, the value function is a plane over the parameter space. The plane for each
of the new optimal policies will either be equivalent (different policy but same value) or
equal to a plane already in the coverage set, or it will be better than every other plane in
the coverage set at this point in parameter space. If it is the latter case, this new plane is
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added to the coverage set. If a complete iteration does not find any new planes, then the
loop terminates and the current coverage set is returned.

3.3 Selecting the Optimal Joint Policy

Given an optimal coverage set for agent i (considering the joint reward ρ), finding the
optimal joint policy is straightforward. From Proposition 1 and Definition 18 we know that
one of the policies in the optimal coverage set is a part of an optimal joint policy. Therefore,
finding the optimal joint policy reduces to policy search through the optimal coverage set.
For each policy in agent i’s optimal coverage set, create the corresponding augmented MDP
for agent j and find its optimal policy. The optimal joint policy is the pair with the highest
global value.

The function GV returns the global value as defined in Definition 14.

Theorem 4 The coverage set algorithm always returns the optimal value.

Proof. To prove that the coverage set algorithm always returns the optimal value, we show
that the algorithm terminates, it finds the optimal coverage set, and then it returns the
optimal joint policy.

1. Termination – Three of the four loops in this algorithm iterate over the elements in
finite, unmodified sets. The fourth loop is the do ... while | newplanes |> 0. In every
iteration, policies for the MDP are added to newplanes only if they have not been
added in a previous iteration. Since the set of possible policies is finite, eventually
there will be no policies to add and the loop will terminate.

2. Optimal coverage set is found – All the planes/policies in the returned set are
derived by solving the corresponding MDP using dynamic programming and are there-
fore optimal. All the relevant point intersections between the hyperplanes are found.
This set of points divides the parameter space into a set of polyhedra. From Theo-
rem 1 if no new optimal policies are found from those points, then the set of optimal
policies is the optimal coverage set.

3. The optimal joint policy is returned – The set of joint policies created by taking
an optimal coverage set and finding the corresponding optimal policy for the other
agent includes all Nash equilibria. The algorithm returns the best of those equilibria,
which from Proposition 1 is the optimal joint policy.

3.4 Running Time

An analysis of the algorithm as presented is quite straightforward. Constructing the aug-
mented MDP in the function AUGMENT can be done in polynomial time with efficient
representations of ρ and the MDP. The resulting augmented MDP is the same size as the
original. SOLVE returns an optimal policy for an MDP, which for dynamic programming is
known to be polynomial. INTERSECT finds a set of points. Each point involves solving a
system of linear equations, which is polynomial in |ρ|. However, the number of points, while
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ρ = [ (E1
1 , E2

1 , E4
1 , c1),

(E3
2 , E5

2 , c2),
(E2

3 , E3
3 , c3) ]

(a)
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Figure 7: (a) A joint reward structure ρ over five agents. (b) The constraint graph. (c)
The constraint graph after agents 1, 2, and 5 have found their optimal coverage
set. The remaining agents 3 and 4 are not connected.

polynomial in |OCS|, is exponential in the number of dimensions |ρ|, O(|ocs||ρ|+1/(|ρ|+1)!).
For each point the optimal policy is found, which is polynomial in the size of the state space.

3.5 Extension to n Agents

Extending the coverage set algorithm to n agents is fairly straightforward. The reason is
that the core of the algorithm, finding the optimal coverage set for agent i, does not depend
on any particular behavior for agent j. When there are n agents, agent 1 can compute its
optimal coverage set using the same algorithm by viewing the other n − 1 agents as one
other agent. The only real change is that the notation becomes much more difficult to read.
A point in the parameter space (Definition 16) for agent 1 becomes

x̄π2...πn =

|G1|∏
k=2

P (Eg1k
1 |πg1k

), ...,
|G|ρ||∏
k=2

P (E
g|ρ|k
|ρ| |πg|ρ|k)

 ,

assuming that g∗1 refers to agent 1. With two agents, dimension k represented the probabil-
ity that the other agent would satisfy its part of constraint k. With n agents, dimension k
represents the probability that the other n−1 agents will satisfy their parts of constraint k.
Since the agents are independent, this is simply the product of the probabilities of each of
the other agents satisfying its part of constraint k. The value of each dimension still ranges
between 0 and 1, so this change does not affect the computation of the optimal coverage
set. The dimensionality of the parameter space for agent i is no longer |ρ|, but is only
the number of constraints agent i participates in. For example, if agent i is only involved
in three constraints then the dimensionality of the search for the optimal coverage set for
agent i is three, no matter how many other constraints there are in ρ.

The interesting part of the algorithm that significantly changes is which agents must
compute their optimal coverage set. When there were only two agents, we had to find the
optimal coverage set for only one of the two agents. With n agents, we now have to find the
optimal coverage set for some subset of the agents, possibly though not necessarily n − 1
of them. For each constraint in the problem, at most one agent involved in that constraint
does not have to find its optimal coverage set. This can easily be demonstrated by a simple
reduction to a graph (see Figure 7). Let every agent be represented by a vertex. Add
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an edge between every two vertices that share a constraint (if there is not an edge there
already). For example, for constraint 1, G1 = {1, 2, 4}, add the edges E(1, 2), E(1, 4), and
E(2, 4). The optimal coverage set must be found for a subset of the agents such that when
those vertices and all incident edges are removed from the graph, the remaining vertices are
completely disconnected (no edges remain). Some valid subsets in this example are {1, 2, 5},
{2, 4, 5}, {1, 4, 3}, among others.

Given a valid subset of agents, the final step in the coverage set algorithm becomes a
search process through all combinations of those agents’ optimal policies. Given a policy for
each in the subset of agents, maximizing the global value reduces to solving the correspond-
ing augmented MDP for each of the remaining agents. As a distributed search process it
maps nicely into a DCOP (Distributed Constraint Optimization Problem) (Liu & Sycara,
1995; Yokoo & Durfee, 1991). As a DCOP, each agent has one variable, which represents
the policy that agent adopts. The domain of that variable is the optimal coverage set for
that agent. There is a cost function for each of the agents’ local rewards, and one for each
constraint in ρ. Solving the DCOP finds the variable assignment that maximizes the sum
of the cost functions.

Choosing any subset of agents to find their optimal coverage set is easy, but choosing
the best subset is not. In fact, it is not entirely clear what best means in this case. The
smallest valid subset is not necessarily the one with the lowest worst case complexity, which
is not necessarily the one with the lowest average case complexity, which is not necessarily
the one that is easiest to distribute. The complexity of finding the optimal coverage set is
exponential in the number of constraints involved, so choosing a valid subset of agents that
minimizes the maximum dimensionality is likely to be better than minimizing the number
of agents. However, the complexity also depends polynomially on the number of policies in
the optimal coverage set. If a particular local problem could be characterized in a way that
indicates the expected number of optimal policies, then that could affect which valid subset
should be chosen. Without this information, one possible solution is to work on finding all
of the optimal coverage sets in parallel (possibly distributed, with each agent solving their
own local problem) until a valid subset has been solved. Examining these issues in more
depth remains the topic of future work.

4. Experimental Results

We implemented a general version of this algorithm that works for any number of dimen-
sions. The implementation varied slightly from what is presented in Figure 4 to improve
the efficiency. The primary change is instead of computing all of the intersection points
in the function INTERSECT(), we generate one at a time. Many of the points returned
by INTERSECT() can be discarded without the need to run SOLVE() on the augmented
MDP at that point. This is because many points lie beneath other known optimal policies
or because those points are out of bounds (> 1 or < 0 in some dimension of the parameter
space).

The results were verified by independently checking that every policy in the optimal
coverage set was optimal for some point in the parameter space and by randomly choosing
points in the parameter space and verifying that its optimal policy was in the set.
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Figure 8: (a) The percentage of problems that had fewer than 600 policies in the optimal
coverage set. Those with more than 600 were not solved. (b) The distribution
over the size of the optimal coverage set for 2, 3 and 4 constraints.

4.1 Rover Exploration Problem

We tested this algorithm on problem instances modeled after the Mars rover example used
throughout this paper. There are two rovers, each with an ordered set of sites to visit and
collect data. The state for each rover is composed of their current task and the current time
left in the day. The action for each state is to skip the current site or to collect data at the
current site. If the rover chooses skip, then it moves on to the next site without wasting any
time. The uncertainty in the problem is the length of time it takes to execute the tasks.

The problem instances generated had a total time of 10 units, and 5 sites for each rover.
The original DEC-MDP had 250 world states (10× 5× 5), and both rovers’ local decision
problem had 50 states (10× 5). On average, each rover was able to collect data at only half
of its sites.

Some of the sites were shared between the two agents. These sites were assumed to
be half redundant, which means that if both rovers collect at that site then the reward
received by the system is 1.5 times that received if only one rover does. For example, if
rover 1 collects then it receives local reward r. Similarly, if rover 2 collects it receives local
reward r. Now if both rover 1 and rover 2 collect at that site, then they each receive r and
the system receives a penalty of −0.5r for a net total global reward of 1.5r.

Data was collected from 200 randomly generated problems. Each problem was solved
three times, once with sites 3 and 4 shared between the agents, once with 2, 3 and 4, and also
with 1, 2, 3 and 4. Problems that had more than 600 policies in their optimal coverage set
were considered hard problems and skipped. Figure 8(a) shows the percentage of problems
that were solved for the given number of constraints. Figure 8(b) shows the distribution
of the size of the optimal coverage set. Of the problems solved, the average number of
optimal policies in the optimal coverage set was 59, 217 and 230 for 2, 3 and 4 constraints
respectively. While only 76% of the problems with four constraints were solved in the
available time, this should be viewed in the context that complete policy search would not
have been able to solve a single one of these problems in that time.
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Figure 9: The amount of work measured by the number of intersections increases polyno-
mially with the size of the optimal coverage set, |OCS|.

To get a general idea about the length of time to solve these problems, with four con-
straints the fastest problem had 23 optimal policies in the optimal coverage set and took
about 1.5 seconds on a 2.8GHz Pentium 4. The longest one took about 4 hours and had
597 optimal policies.

There are two measures of work that we use to evaluate the performance. First is the
number of times the planes are intersected. Each intersection represents solving a system
of linear equations. The second measure is the number of times dynamic programming was
used to solve an augmented MDP. The graphs were essentially the same regardless which
measure we used, so most will be presented with the number of intersections as the measure
of work. Figure 9 shows how the amount of work required to solve a problem relates to the
size of the optimal coverage set.

The difficulty in solving a particular instance depends on many characteristics of the
problem. The characteristic that we focus on here is the magnitude of the constant rewards
in ρ, c1...cx, as compared to the other rewards in the system. Intuitively, if the value of a
shared task is much greater or much less than the other tasks available to an agent, then
the difficulty to decide whether to do the shared task decreases. This idea can be seen in
Figure 10. When looking along either the x or y dimension, the density of optimal policies
is greatest around the middle, and much less at either extreme.

Previously, we collected data on problems that were half redundant. The value of the
shared sites ranged from r to 0.5r, i.e., r + P × (−0.5r) where P is the probability of the
other agent collecting at that site. Instead consider a problem in which the shared tasks
were complementary. If either agent collects data it receives 0.5r, and if they both collect
data then the system receives an extra 0.5r for a total of 1.5r. The values in this example
range from 0.5r to r. The complexity of these two problems is identical because the policies
in the optimal coverage set are identical. However, the optimal joint policy will be different
because the problems are not identical but mirror images of each other. Similarly, if we
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Figure 10: Illustration of the upper surface of the optimal coverage set for a 2 constraint
problem. Each bounded region corresponds to one policy and the area over which
it is optimal. (a) Both constraints have a local reward of 0 and an additional
reward of 6. (b) Local reward is 1.5 and additional reward is 3. Notice how this
set of policies is equal to the middle area of (a). Problem (b) is a subset of (a).

increase c then the new optimal coverage set is a superset of the original and therefore more
difficult to solve. Figure 10 illustrates this relation.

The focus of the experimental results is primarily on step two of the algorithm (finding
the optimal coverage set) because that is where most of the computational complexity lies.
That changes, however, as the number of agents increases. Finding the optimal coverage set
is internal to each agent and depends on the number of constraints that agent has, not the
number of agents in the system. Therefore, as the number of agents increase, the complexity
of the third step (searching through the optimal coverage sets for the optimal joint policy)
becomes more important. The third step is a distributed constraint optimization problem
(DCOP), the evaluation of which is out of the scope of this paper. Mailler and Lesser
(2004), and Modi, Shen, Tambe, and Yokoo (2003) present state-of-the-art algorithms for
solving DCOPs.

4.2 Approximation

While the complexity of transition independent decentralized MDPs is significantly lower
than models like the DEC-MDP, it is still intractable for large problems and certain hard
instances of small problems. Fortunately, it turns out that the coverage set algorithm is
naturally an anytime algorithm with some very nice characteristics.

Figure 11 shows the anytime performance profile over the same set of problems discussed
earlier. The very first solution generated by the algorithm was better than 90% of optimal
in nearly every problem. After only 1000 intersections, 88% of the 4-constraint problems
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Figure 11: The value of the best known joint policy (as a percentage of the optimal policy)
as a function of the total work done.

had already found the optimal solution and the others were within 99% of optimal. 1000
intersections is only a small fraction of the total work done to solve one of those problems
(average was 18 million).

There are several reasons for the excellent performance. First, each solution generated by
the algorithm is a locally optimal solution. This means that agent 1 has a belief about what
agent 2 will do and generates its optimal corresponding policy. Agent 2 then generates its
optimal policy given agent 1’s policy. This pair of policies is not a Nash equilibrium because
Agent 1’s belief about Agent 2 and Agent 2’s actual policy may be different. However, in
these randomly generated problems it is usually quite good.

A second reason is that the amount of work required to discover the policies in the opti-
mal coverage set is significantly less than that required to prove that the set is complete, as
shown in Figure 12(a). As the number of constraints grows, the gap between the discovery
work and the proof work increases. In addition, the discovery is front-loaded as seen in Fig-
ure 12(b). Finally, the more area over which a policy is optimal, the more likely that policy
will be discovered earlier and the more likely that policy will be in the optimal joint policy
(for randomly generated problems). Taken together, this explains why the optimal joint
policy was usually discovered after only 1000 intersections. For the 4-constraint problems,
this is less than one hundredth of one percent of the total work to solve the problem.

5. Conclusion

The framework of decentralized MDPs has been proposed to model cooperative multi-agent
systems in which agents receive only partial information about the world. Computing the
optimal solution to the general class is NEXP-complete, and the only general algorithm for
solving this problem optimally (Hansen et al., 2004) requires further development before it
can be applied to the kind of problems we target in this paper. We have identified an inter-
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Figure 12: (a) As the number of constraints increase, the gap between the work to discover
new optimal policies and the work to prove the set is complete increases. (b)
The discovery of the optimal planes happens primarily in the beginning.

esting subset of problems called transition independent decentralized MDPs, and designed
and implemented an algorithm that returns an optimal joint policy for these problems.

This algorithm is the first optimal algorithm we are aware of able to solve (in a reasonable
amount of time) a non-trivial subclass of DEC-MDPs. Of the randomly generated problems
that we tested with four constraints, we solved 76% of them in the available time. Viewed
in the context that none of these problems were solvable using other existing methods, we
feel that this success rate is significant. In the future, we also plan to test this algorithm
with other domains besides the rover one presented here. For example, another problem
that seems to fit the framework involves a pair of agents acting with some shared resources.
If together they use more than the total available amount of one of the resources, they incur
a penalty representing the cost of acquiring additional units of that resource.

We do acknowledge, however, that even with the coverage set algorithm, problems can
quickly become very difficult to solve. To address this issue we examined the anytime
performance of the algorithm. Discovering the optimal policies in the optimal coverage set
is a small fraction of the work involved in proving that the optimal coverage set is complete.
In addition, most of the discovery happens early on and as the number of dimensions scales
up the discovery is increasingly front-loaded. This is a very nice anytime characteristic that
leads to good anytime performance. How much this performance is due to the algorithm
and how much is due to the problem domain is an area we plan to explore as we test new
domains with this algorithm.

Finally, the optimal coverage set is an efficient representation of the changes in the
environment that would cause an agent to adopt a different policy. Using it, we can quickly
determine how much the other agents’ probabilities must change before this agent would
change its policy. This information could be extremely useful in deciding when and what
to communicate or negotiate with the other agents. In future work, we will explore ways
to use this representation in order to develop communication protocols that are sensitive to
the cost of communication.
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