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Abstract

Decentralized MDPs provide a powerful formal frame-
work for planning in multi-agent systems, but the complex-
ity of the model limits its usefulness. We study in this pa-
per a class of DEC-MDPs that restricts the interactions be-
tween the agents to a structured, event-driven dependency.
These dependencies can model locking a shared resource
or temporal enabling constraints, both of which arise fre-
quently in practice. The complexity of this class of problems
is shown to be no harder than exponential in the number
of states and doubly exponential in the number of depen-
dencies. Since the number of dependencies is much smaller
than the number of states for many problems, this is signifi-
cantly better than the doubly exponential (in the state space)
complexity of DEC-MDPs. We also demonstrate how an al-
gorithm we previously developed can be used to solve prob-
lems in this class both optimally and approximately. Exper-
imental work indicates that this solution technique is signif-
icantly faster than a naive policy search approach.

1. Introduction

Markov decision processes (MDPs) provide a foun-
dation for much of the work on stochastic planning.
The rapid progress in this area has led researchers to
study extensions of the basic model that are suitable for
multi-agent systems. Examples of such extensions in-
clude the Multi-agent Markov Decision Process (MMDP)
proposed by Boutilier [3], the Partially Observable Iden-
tical Payoff Stochastic Game (POIPSG) proposed by
Peshkin et al. [10], the multi-agent decision process pro-
posed by Xuan and Lesser [15], the Communicative Multi-
agent Team Decision Problem (COM-MTDP) proposed by
Pynadath and Tambe [11], the Decentralized Markov De-
cision Process (DEC-POMDP and DEC-MDP) proposed
by Bernstein et al. [2], and the DEC-POMDP with Com-
munication (DecPomdpCom) proposed by Goldman and
Zilberstein [5].

Recent studies show that decentralizing knowl-
edge and control among multiple agents has a large impact
on the complexity of planning. Specifically, the com-
plexity of both DEC-POMDP and DEC-MDP has been
shown to be NEXP-complete, even when only two
agents are involved [2]. This is in contrast to the best
known bounds for MDPs (P-complete) and POMDPs
(PSPACE-complete) [9, 8]. Recent studies of decentral-
ized control problems (with or without communication
between the agents) have confirmed that solving even sim-
ple problem instances is extremely hard [11, 14]. And
while a general dynamic programming algorithm for solv-
ing DEC-POMDPs has been recently developed [6], it
is unclear whether the algorithm can solve large realis-
tic problems.

The complexity of the general problem of solving DEC-
POMDPs has generated a growing interest in special classes
that arise in practice and have properties that reduce the
overall complexity and facilitate the design of algorithms.
One aspect of decentralized control that makes it so diffi-
cult is the partial transfer of information between the agents
via their observations or explicit communication. When the
agents can fully share their observations every step, the
problem resembles an MMDP [3] and can be reduced to
an MDP, which has polynomial complexity. In previous
work [1], we have identified a class of problems in which
the agents gained no information about each other while ex-
ecuting a plan. The interaction between the agents occurred
through a component of the reward function, which neither
agent could observe. We showed that the complexity of that
model is exponential.

Interesting practical problems typically allow for some
interaction between the agents while executing their plans.
This work identifies a model that allows for a structured
form of information transfer between the agents. The com-
plexity of this class of problems is doubly exponential in the
level of interaction between two agents, and exponential in
the non-interacting parts of the decision process. The class
of problems we focus on in this paper involve two cooper-



ating agents, each having its own local set of tasks to per-
form, with a specific structured interaction between them.
This interaction allows the outcome of actions performed
by one agent to depend on the completion of certain tasks
by the other agent. This form of interaction has been stud-
ied extensively within the multi-agent community [7, 12].
Some instances of this type of interaction that have been
previously studied are enables/facilitates interrelationships,
whereby one agent executing a task enables the other agent
to execute another task, or it may increase the likelihood
of success. Another example is a non-consumable resource,
which one agent can lock and thus prevent the other agent
from using.

In addition to the naive approach (complete pol-
icy search) to solving a problem like this, we introduce
a mapping that allows the optimal policy to be found us-
ing our previously developed Coverage Set Algorithm [1].
The key idea is that given a policy for one agent we can con-
struct an MDP to find the corresponding optimal policy
for the other agent. This newaugmentedMDP is con-
structed based on a set of parameters computed from the
fixed policy. The Coverage Set Algorithm takes this aug-
mented MDP and finds the set of optimal policies for
all possible parameter values. This set includes the opti-
mal joint policy. Our experimental results show that this
solution technique performs much better than the naive al-
gorithm.

Section 2 provides a formal description of the problem,
illustrated with an example in the TAEMS task description
language. In section 3, we identify an upper-bound on the
complexity of this class of problems by examining the run-
ning time of the complete policy search. Complete policy
search is not a good way to solve problems of this type,
however, and in section 4 we discuss an alternative algo-
rithm. Section 5 demonstrates the performance of this algo-
rithm on a problem modelled in TAEMS. The contributions
of this work and directions for further work are summarized
in section 6.

2. Formal Definition of the Model

Intuitively, the special class of problems we focus on in-
volves two agents, each having a “local” decision problem
or task that can be modeled as a standard MDP. This lo-
cal decision problem is fully observable by the agent. The
agents interact with each other via a set of structured transi-
tion dependencies. That is, some actions taken by one agent
may affect the transition function of the other agent.

To illustrate this concretely, we present a problem in
TAEMS [4]. TAEMS is a hierarchical task modeling lan-
guage that has been used successfully in a number of real
systems [13]. Figure 1 is an example task structure. In it,
the two agents each have one task:T1 for agent 1 andT2 for
agent 2. Both of those tasks can be decomposed into two
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Figure 1. An example TAEMS task structure

subtasks, i.e.T1 → T 1
1 andT 2

1 . Each of the subtasks is de-
composed into two methods, i.e.T 1

1 → M1
1 andM2

1 . Meth-
ods are the atomic units of a task and the agents can ex-
ecute them. Executing a method takestime and produces
quality, over some distribution. A quality of 0 represents a
method that has not been successfully executed. Tasks accu-
mulate quality from their children in many different ways.
Two are shown in the example: sum and max. The quality
of T 1

1 is the sum of the qualities of its children, and the qual-
ity of T1 is the max quality of its children. The goal of the
system is to maximize the sum of the qualities of the high-
est level tasks in both agents before the deadline.

The two agents do not operate independently, however.
TAEMS has three different types of interrelationships be-
tween agents, only one of which is used in this example:
facilitates/enables. This type of interrelation is a temporal
constraint:M4

1 must be executed successfullybeforeM4
2

is executed forM4
2 to produce a nonzero quality. Facilitates

is similar though less severe. IfM3
2 is successfully executed

beforeM2
1 , thenM2

1 is more likelyto produce a higher qual-
ity than if it was not facilitated. These are examples of the
type of dependencies allowed between agents in our model,
though it is not limited to interrelations of this nature.

To define these kind of dependencies more formally, we
need to first introduce the general model of decentralized
MDPs [2].

Definition 1 A 2-agentDEC-MDP is defined by a tuple
〈S, A, P,R, Ω, O〉, where

• S is a finite set of world states, with a distinguished ini-
tial states0.

• A = A1×A2 is a finite set of actions.Ai indicates the
set of actions taken by agenti.

• P is a transition function.P (s′|s, a1, a2) is the prob-
ability of the outcome states′ when the action pair
a1, a2 is taken in states.



• R is a reward function.R(s, a1, a2, s
′) is the reward

obtained from taking actionsa1, a2 in states and tran-
sitioning to states′.

• Ω is the set of all observations for each of the agents.

• O is the observation function.O(s, a1, a2, s
′, o1, o2) is

the probability of agents 1 and 2 seeing observations
o1, o2 respectively after the sequences, a1, a2, s′ oc-
curs.

• Joint full observability: the pair of observations made
by the agents together fully determine the current state.
If O(s, a1, a2, s

′, o1, o2) > 0 thenP (s′|o1, o2) = 1.

Definition 2 A factored, 2-agent DEC-MDP is a DEC-
MDP such that the world state can be factored into two
components,S = S1 × S2.

Factoring the state space of a DEC-MDP could be done
in many ways. The intention of such a factorization is a sep-
aration of components of the world state that belong to one
agent versus the other. This separation does not have to be
strict, meaning that some components of the world state
may not belong to either agent and could be included in
both. For example, time could be a component ofS1 and
S2.

We refer tosi, ai and oi–the components of the fac-
tored DEC-MDP that apply to just one agent–as thelocal
states, actions, and observations for agenti. Just as in a
DEC-MDP, a local policy (or just policy) for one agent is
a mapping from sequences of observations to local actions
(we will simplify this later). A joint policy is a set of poli-
cies, one for each agent.

Our TAEMS example can be represented by a factored
DEC-MDP:

• The local state of each of the agents is composed of the
current time and the qualities of each of the methods.

• The actions for the agents are to execute one of their
methods.

• The transition function is based on the time/quality
distribution for the methods the agents choose to ex-
ecute, taking into account the facilitates/enables inter-
relationships.

• The reward is only received in a terminal state, and it
represents the sum of the qualities of the highest level
tasks at that time.

• Each agent fully observes is own local state. In addi-
tion, when an agent attempts to execute a constrained
method it learns whether the interrelationship was sat-
isfied.

What is interesting about factoring a DEC-MDP is not
that the world state can be factored but the properties that a
particular factorization have. In this problem we are looking
for a factorization that minimizes the interaction between

the two agents. The next two definitions introduce some in-
teresting properties that the factored, 2-agent DEC-MDPs
we are working with have.

Definition 3 A factored, 2-agent DEC-MDP is said to be
locally fully observable if ∀oi ∃si : P (si|oi) = 1.

That is, each agent fully observes its own local state at
each step. Note thatΩ andO are now redundant in the def-
inition of a factored 2-agent DEC-MDP with local full ob-
servability and can be removed.

Definition 4 A factored, 2-agent DEC-MDP is said to be
reward independent if there existR1 andR2 such that

R((s1,s2),(a1,a2),(s′
1,s

′
2)) = R1(s1,a1,s

′
1)+R2(s2,a2,s

′
2)

That is, the overall reward is composed of the sum of
the local reward functions, each of which depends only on
the local state and action of one of the agents. In the exam-
ple, the reward is received only in the terminal states and it
is additive between tasks and across agents, therefore the re-
ward function for this factorization is reward independent.

Next we define the interaction between the two agents as
event-driven, meaning that an event in one agent influences
an event in the other agent.

2.1. Event-Driven Interactions

In this section we will fully define the transition func-
tion. The basic idea is that transitions can take two forms.
First, many local transitions for one agent are independent
of the other agent, which means that they depend only on
the local state and action. However, the interrelationships
between the agents mean that some transitions depend on
the other agent. This interaction is described by a depen-
dency and the change in transitions that result when the de-
pendency is satisfied. We start by defining events, which
form the basis of the dependency.

Definition 5 A primitive event, e = (si, ai, s
′
i) is a triplet

that includes a state, an action, and an outcome state. An
eventE = {e1, e2, ..., eh} is a set of primitive events.

The history for agenti, Φi = [s0
i , a

0
i , s

1
i , a

1
i , ...] is a valid

execution sequence that records all of the local states and
actions for one agent, beginning with the local starting state
for that agent. A primitive evente = (si, ai, s

′
i) occurs in

historyΦi, denotedΦi |= e, iff the triplet(si, ai, s
′
i) appears

as a subsequence ofΦi. An eventE = {e1, e2, ..., eh} oc-
curs in historyΦi, denotedΦi |= E iff ∃e ∈ E : Φi |= e.

Events are used to capture the fact that an agent did some
specific activity like execute a method that enables a remote
task. In some cases a single local state may be sufficient,
but because of the uncertainty in the domain that method
could be executed from many different states (different cur-
rent times, different current qualities for the other methods)



we generally need a set of primitive events to capture an ac-
tivity.

An example of an event would be successfully execut-
ing M4

1 before time10. It would be composed of primitive
events of the form(time < 10, q1

1 , q2
1 , q3

1 , q4
1 = 0), execute

M4
1 , (time < 10, q1

1 , q2
1 , q3

1 , q4
1 > 0), whereqk

i is the cur-
rent quality of methodMk

i .

Definition 6 A primitive event is said to beproper if it can
occur at most once in any possible history of a given MDP.
That is∀Φ = Φ1eΦ2 : ¬(Φ1 |= e) ∧ ¬(Φ2 |= e). An
eventE = {e1, e2, ..., eh} is said to beproper if it con-
sists of mutually exclusive proper primitive events with re-
spect to some given MDP. That is:

∀Φ ¬∃i 6= j : (ei ∈ E ∧ ej ∈ E ∧ Φ |= ei ∧ Φ |= ej)

We limit the discussion in this paper to proper events be-
cause they are sufficient to express the desired behavior and
because they simplify discussion. For a discussion on how
non-proper events can be made proper see [1].

The eventexecutingM4
1 before time10 is proper because

the primitive events that compose the event include the tran-
sition fromq4

1 = 0 to q4
1 > 0. Since the quality of a task is

always nondecreasing, this transition can never occur twice.
The interaction between the agents takes the form of a

triggering event in agenti and a set of state-action pairs for
agentj that is affected. This interaction is called a depen-
dency.

Definition 7 A dependencydk
ij = 〈Ek

i , Dk
j 〉, whereEk

i is
a proper event defined over primitive events for agenti, and
Dk

j is a set of unique state-action pairs for agentj. Unique

means¬∃k, k′, sj , aj s.t.〈sj , aj〉 ∈ Dk
j ∧ 〈sj , aj〉 ∈ Dk′

j ∧
k 6= k′.

Definition 8 A dependencydk
ij is satisfiedwhenΦi |= Ek

i .
Boolean variablebsjaj is true if the related dependency is
satisfied andfalse if it is not satisfied or there is not a re-
lated dependency:

bsjaj
=

{
true ∃k, s.t. 〈sj , aj〉 ∈ Dk

j ∧ Φi |= Ek
i

false otherwise

Definition 9 A transition function for event driven inter-
actions is divided into two functions,Pi andPj . They define
the distributionPi(s′

i|si, ai, bsiai).

When an agent takes an action that could be influenced
by a dependency it learns the status of that dependency,
whether or not it was satisfied (i.e. whether the task was fa-
cilitated). The idea is that an agent knows why things hap-
pened after they do. For example, if an agent attempts to ex-
ecute a task that has not been enabled, it realizes that it does
not have the data necessary for the task when it fails. An ar-
gument can be made that the agent should be able to check

whether it has the available data before it attempts to exe-
cute the task. This can be accomplished by a ‘free’ action
that reveals the status of the dependency. Essentially, the de-
pendency modifies the transition for the free action in addi-
tion to facilitating the task.

Dependencyd10
1,2 is the dependency that represents

method M4
2 having been enabled when agent 2 at-

tempts to execute it at time 10. The eventE10
1 is the event

described earlier where the enabling methodM4
1 has fin-

ished executing successfully before time 10.D10
2 contains

state-action pairs representing agent 2 attempting to exe-
cute M4

2 at time 10. There is exactly one dependency of
this type for each time that agent 2 could attempt to execute
methodM4

2 . If agent 1 successfully executesM4
1 at time 6,

then all of the dependenciesdt
1,2 wheret > 6 will be sat-

isfied (by the same primitive event in agent 1), but each of
those satisfied dependencies modify a different set of prob-
abilities in agent 2. Agent 2 can attemptM4

2 at time 10 and
again at time 14, and both times the method will be en-
abled but through different dependencies (d10

1,2 and d14
1,2

respectively).

2.2. Defining the Policy

While we have defined a local state space, action space,
transition function and reward function for each agent, this
unfortunately does not define a local MDP for each agent.
The reason is because the local state is not Markov. When
an agent learns the status of a dependency, it changes its be-
lief about the state of the other agent and the impact of fu-
ture dependencies. This information is contained within the
history of an agent, but not in the previously defined local
state. Therefore, the local stateSi of agenti must be mod-
ified to include the dependency history (i.e. at timet de-
pendencydk

ij was satisfied). This modified local state isS′
i.

〈S′
i, Ai, Pi, Ri〉 does define a local MDP, and the local pol-

icy for agenti is πi : S′
i → Ai.

When one of the TAEMS agents attempts a task with an
incoming dependency, its next observation includes whether
that dependency was satisfied (i.e. was that task enabled).
That information is not stored in the local state of the agent
that we defined earlier because it was not necessary in
the DEC-MDP (transitions in the DEC-MDP are defined
over world states not local states). However, that knowl-
edge changes this agent’s belief about the other agent’s lo-
cal state, and that could influence a future expectation of a
method being enabled.

In the general case the state will need to include a vari-
able for each dependency, which encodes all of the informa-
tion gained about that dependency. For specific problems,
however, that information is often redundant. For example,
in TAEMS the state needs to include the time the outgoing
interrelations are enabled, the last time an incoming inter-
relation was not enabled and the first time it was enabled.



This information completely encodes everything an agent
knows about the dependencies. It is important to notice that
in the TAEMS case information is recorded per interrela-
tionship, not per dependency. This is because each interre-
lationship has multiple dependencies associated with it.

2.3. Evaluating a Joint Policy

The value function that we are trying to maximize is the
original value function for the DEC-MDP. However, evalu-
ating a pair of policies is much easier on a new DEC-MDP
constructed from the expanded local states and new transi-
tion function because the policies are not defined over the
same state space as the original DEC-MDP.

• The statesS′ = S′
1 × S′

2.

• The actionsA = A1 ×A2.

• The transition functionP = P1 × P2.

• The reward functionR = R1 + R2.

• The observations for each agent are its local compo-
nent of the state.

The expected reward the system will receive given a pair
of policies can be found by running policy evaluation as if
this was an MDP because there is a direct mapping from
world state to joint action.

3. Problem Complexity

An upper bound on the complexity of the DEC-MDP
with event driven interactions can be derived from the com-
plexity of complete policy search.

Theorem 1 A DEC-MDP with event driven interactions
has complexity exponential in|S| and doubly exponential
in the number of dependencies.

Proof In a DEC-MDP with event driven interactions, the
number of joint policies is exponential in the number of
states because the policy is a mapping from states to ac-
tions (unlike the DEC-MDP which is a mapping from se-
quences of observations to actions). However, the number
of states in the new DEC-MDP is exponentially larger in
the number of dependencies than the original state space.
Therefore, the number of joint policies is exponential in the
original state space and doubly exponential in the number
of dependencies.

Evaluating a policy can be done with standard policy
evaluation for MDPs because in the new DEC-MDP, the
joint policy is a direct mapping from world states to joint
actions. Policy evaluation for MDPs is polynomial in the
number of states, so this does not raise the complexity.

Therefore, the DEC-MDP with event driven interactions
has complexity exponential in|S| and doubly exponential
in the number of dependencies.

The reason this class of problems is easier to solve than
DEC-MDPs is because the size of the policy space has been
reduced. It was reduced by separating the part of the history
that is necessary to be memorized (interactions between the
agents) from the part that is not necessary (local state). Spe-
cific problems may have additional structure that further re-
duces the complexity. For example, in TAEMS the com-
plete interaction history is not necessary to remember so
the complexity is doubly exponential in the number of facil-
itates/enables, not the number of dependencies. If the prob-
lem is such that there is an ordering over the interactions and
only the most recent interaction must be memorized then the
complexity drops to exponential.

4. Solving the Problem

Solving an exponential (or worse) problem using com-
plete policy search is intractable for all problems of mod-
erate or larger size. The reason is that for complete policy
search, the worst case complexity is also the best case com-
plexity. That means for every problem every policy must
be evaluated, regardless whether it has characteristics that
make it a simple problem. Some problems, however, are
structured such that many policies are clearly worse than
other policies. For example, supposeM4

1 and M4
2 have

quality outcomes significantly higher than the other meth-
ods. A simple analysis of the problem would indicate that
nearly any policy that attempts bothM4

1 and M4
2 has a

higher value than any policy that does not. This significantly
reduces the number of policies that must be searched.

While the worst case complexity of the Coverage Set Al-
gorithm may be similar to complete policy search, the best
case is only polynomial in the state space and exponential
in the number of dependencies. The reason the Coverage
Set Algorithm has such a variance in complexity is that it
is essentially performing a general analysis of the problem.
The more obvious a solution, the faster the algorithm runs.
However, in the worst case, no useful information is gained
through the analysis and it will perform slower than com-
plete policy search due to extra overhead.

4.1. Coverage Set Algorithm (CSA)

The algorithm can be divided into three steps: create
the augmented MDP, find the optimal coverage set, search
through the set for the optimal joint policy. Each of the three
steps is summarized below. For a detailed explanation of the
CSA including pseudo-code, see [1].

4.1.1. Augmented MDPThe first step is a domain spe-
cific step involving translating the problem into a form the
CSA works with. This is done by creating anaugmented
MDP. An augmented MDP is a decision problem for agent
i that maximizes the global value given a fixed policy for
agentj. This may not be the optimaljoint policy, but it is
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Figure 2. Illustration of the search process in
a one dimensional parameter space.

the absolute best policy agenti could choose given the fixed
policy for agentj.

An augmented MDP has three properties. First, an aug-
mented MDP is an MDP defined over the states and actions
for agenti given a policyπj for agentj. The transition func-
tion and reward function can depend onπj .

Second, the augmented MDP maximizes the global value
of the system for a given policy for agentj. This means that
the policy for agentj can be evaluated independently of the
policy agenti adopts, and the global value is equal to the
independent expected value of agentj’s policy plus the ex-
pected value of the augmented MDP given both policies:
GV (πi, πj) = Vπj (s

0
j ) + V

πj
πi (s0

i ).
The third and final property of the augmented MDP is

that the value function of the augmented MDP,V
πj
πi (s0

i ),
must be a linear combination of a set of parameters com-
puted from the policy for agentj. Note that any nonlinear
function can be made linear by adding additional parame-
ters.

If an augmented MDP can be created for a problem, then
the CSA can find the optimal joint policy for that problem.

4.1.2. Optimal Coverage SetThe second step of the al-
gorithm corresponds to the analysis of the problem. Each
policy for agentj is reducible to a set of parameters with
agenti. Each augmented MDP has an optimal policy. That
set of optimal policies is the optimal coverage set for agent
i. An ‘easy’ problem is one in which agenti has the same
optimal policy for many different agentj policies, and the
size of its optimal coverage set is small.

The optimal coverage set can be viewed geometrically as
a piecewise-linear and convex surface over the parameters
taken from agentj’s policies. The pieces of the surface are
composed of the value functions of the augmented MDPs
with their corresponding optimal policies. They are found
through a search process, illustrated in Figure 2.

First, optimal policies at the boundaries of the parame-
ter space are found using dynamic programming on the aug-
mented MDPs instantiated byx = 0, (π1), andx = 1, (π2),
Figure 2(a). Next, those lines are intersected and a new op-
timal policy π3 is found forx = 0.5, Figure 2(b). The in-

tersections between those three lines yield two new points,
0.4 and 0.6. Since no new optimal policies are discovered
at those two points, the search is finished and the three op-
timal policies found form the optimal coverage set.

4.1.3. Optimal Joint Policy The final step in the algo-
rithm is to find an optimal joint policy. One of the policies in
the optimal coverage set is part of an optimal joint policy.
To find it, the algorithm performs a policy search through
the relatively small set. For each policy in the set it finds the
corresponding optimal policy for agentj and evaluates the
joint policy. The best pair is the optimal joint policy.

4.2. Constructing the Augmented MDP

To show that the CSA can be used for this problem, we
must define an augmented MDP.

Let MDPi = 〈S′
i, Ai, Pi, Ri〉 represent the lo-

cal MDP for agenti as defined earlier. LetMDP
πj

i =
〈S′

i, Ai, P
′
i , R

′
i〉 represent the augmented MDP for a given

πj . The states and actions do not change in the aug-
mented MDP, but the transition function and reward func-
tion do. The transition function changes to take into account
the incoming dependencies,dk

ji. It is modified by the likeli-
hood that an incoming dependency is satisfied in the other
agent and the change in probability that dependency in-
curs.

Definition 10 P ′
i (s

′
i|si, ai) is the transition function for the

augmented MDP. For the probabilities not altered by an in-
coming dependency,P ′

i (s
′
i|si, ai) = Pi(s′

i|si, ai, false).
For the others,

∀k, 〈si, ai〉 ∈ Dk
i , P ′

i (s
′
i|si, ai) = Pi(s′

i|si, ai, false)+

P (dk
ji|si) [Pi(s′

i|si, ai, true)− Pi(s′
i|si, ai, false)] ,

whereP (dk
ji|si) is the probability that dependencydk

ji is
satisfied given that agenti is in statesi.

The reward function is modified to incorporate the
changes in expected value the other agent receives when
outgoing dependencies are satisfied.

Definition 11 R′
i(si, ai, s

′
i) is the reward function for

the augmented MDP. For each primitive evente =
〈si, ai, s

′
i〉 that does not satisfy an outgoing depen-

dency,R′
i(si, ai, s

′
i) = Ri(si, ai, s

′
i). For the others,

∀k, 〈si, ai, s
′
i〉 ∈ Ek

i , R′
i(si, ai, s

′
i) =

Ri(si, ai, s
′
i) + V

s′
i

πj (s0
j )− V si

πj
(s0

j ),

whereV si
πj

(s0
j ) is the expected value of the start state of

agentj’s local MDP given the policyπj and the depen-
dency history contained insi.

The parameters from agentj’s policy and MDP take two
forms,P (dk

ji|si) andV si
πj

(s0
j ). Neither of these is difficult
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Figure 3. The TAEMS problem structure for
the experiments.

to compute, and they can be derived at the same time. The
valueV can be obtained by running policy evaluation on
the MDP obtained by applying the dependencies satisfied
in si. At the same time, the probability of reaching each
state can be computed.P (dk

ji|si) is the sum of the proba-
bilities of all primitive events inEk

j that have a consistent
dependency history withsi.

A value function for an MDP can be represented as
the sum over all primitive events in the MDP, the prob-
ability of that primitive event occurring times the re-
ward received at that primitive event. This function can
be converted to the formV = c0 + c1x1 + c2x2 + ...
wherexn is the product of one or more parameters (i.e.
P (d3

ji|s6)P (d5
ji|s13)P (d5

ji|s16)). Partially symbolic pol-
icy evaluation would generate a value function with this
form. While this function is not linear in the parame-
ters, it is linear in these combinations of parameters.
Having a linear value function allows the use of the Cover-
age Set Algorithm.

5. Experimental Results

To test the algorithm on this class of problems, we im-
plemented the example problem shown in Figure 3, which
is a simple variant of Figure 1. This section will exam-
ine a typical instance of this problem in detail. The agents
had 6 time steps to execute their methods. Each method
took between 1 and 3 time steps to complete. Methods
M1 and M2 produced an integer quality between 0 and
2, while M3 produced a quality of 0, 2 or 4. The method
M3

2 took 1 time step and produced quality 0 if not en-
abled. After executingM3

2 agent 2 knows whether it was
enabled or not. The agents received a reward after the time
ran out equal to the final quality of their task. The global
reward being maximized is the sum of the local rewards:
Max(q1

1 + q2
1 , q3

1) + Max(q1
2 + q2

2 , q3
2).

There are four dependencies that representM3
2 being

enabled at times 2 through 5 (2 is the first time it could
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Figure 4. The optimal joint policy and an ex-
ample execution.

be enabled and 6 is the deadline). The state of each agent
also includes information about these dependencies. Agent
1 keeps track of the last dependency that was satisfied (for
a total of 945 states). Agent 2 keeps track of the last depen-
dency that was not satisfied and the first dependency that
was (for a total of 4725 states).

The dimensionality of the search was also different for
the two agents because they are on different sides of the de-
pendencies. Agent 1, being the enabler, had parameters that
represented the expected value for agent 2 given that agent 1
enabled at timet. There were four different times that agent
1 could enable agent 2 and another parameter for when
agent 2 was never enabled leading to a parameter space of
size five. Agent 2, being on the receiving end, depends on
the probability that it was enabled given the current time
and the last time it learned it was not enabled. There were
ten probabilities, but the parameter space depended on com-
binations of those probabilities and was much higher. Since
agent 1 had a much lower dimensionality, we chose to find
its optimal coverage set.

Figure 4 shows an FSM representation of the optimal
joint policy for one instance of the problem. The vertices
are the actions taken and the edges are transitions based on
the current state. The * matches any state not matched by
a more specific label. The optimal coverage set for agent 1
contained 141 policies and took less than an hour to find on
a modern desktop computer.

While the complexity of these decentralized MDPs with
event-driven interactions is significantly easier than models
like the DEC-MDP, it is still intractable for large problems
and certain hard small problems. Fortunately, it turns out
that the coverage set algorithm is naturally an anytime al-
gorithm with some very nice characteristics. Finding an op-
timal or near optimal solution usually takes very little time.
Proving that the solution is optimal takes the majority of the



computation. For example, the expected value of the opti-
mal joint policy in Figure 4 is 5.8289. The first joint policy
found had a value of 5.6062, or 96.2% of optimal. The op-
timal joint policy was discovered after only 0.004% of the
total computation. The result is a good anytime solution for
problems too large to solve optimally.

6. Conclusion

The DEC-MDP framework has been proposed to model
cooperative multi-agent systems in which agents receive
only partial information about the world. Computing the op-
timal solution to the general class is NEXP-complete, and
with the exception of [6] the only known algorithm is brute
force policy search. We have identified an interesting sub-
set of problems that allows for interaction between the two
agents in a fixed, structured way. For this class of problems
we have identified that the complexity reduces from being
doubly exponential in the state space to doubly exponential
in the level of interaction between the agents and only expo-
nential in the state space. Since many problems have a level
of interaction significantly lower than the number of states,
the savings can be quite substantial.

We also provided a mapping to an algorithm that runs
much faster than complete policy search. While the high
complexity still makes it intractable for large problems,
this work does facilitate finding optimal solutions for larger
problems that have only a limited amount of interaction be-
tween the agents. That can be useful in establishing a base-
line for evaluation of approximation algorithms.

The augmented MDP enables a simple yet powerful hill-
climbing algorithm that converges on a local optimum. In
addition, the coverage set algorithm is also naturally an any-
time algorithm with some promising characteristics. Using
these two approximations should facilitate finding good so-
lutions to much larger problems. This remains the subject
of future work.
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