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Abstract

Planetary rovers must be effective in gathering scien-
tific data despite uncertainty and limited resources.
One step toward achieving this goal is to construct a
high-level mathematical model of the problem faced
by the rover and to use the model to develop a
rover controller. We use the Markov decision process
framework to develop a model of the rover control
problem. We use Monte Carlo reinforcement learn-
ing techniques to obtain a policy from the model.
The learned policy is compared to a class of heuristic
policies and is found to perform better in simulation
than any of the policies within that class. These pre-
liminary results demonstrate the potential for using
the Markov decision process framework along with
reinforcement learning techniques to develop rover
controllers.

1 Introduction

Planetary rovers have received increased attention
in recent years and have been successfully deployed
on actual space missions. A planetary rover is a
small, unmanned vehicle that explores the surface
of a planet, taking pictures and performing experi-
ments. Among the many interesting problems that
need to be solved in order to have a successful rover
mission is a high-level decision-making problem. Fre-
quently in the course of a mission, decisions have to
be made regarding where to go and what to do at a
given location, in order to maximize the amount of
scientific return from the mission. One example of a
decision that may occur is whether to take another
picture at the current location or leave the current
location and explore elsewhere.

This decision-making problem is difficult for a
number of reasons. First, many of the decisions need
to be made autonomously because of limited commu-
nication with Earth. The rover must choose a course
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of action based only on its local sensor readings and
information about the objectives of the mission. Sec-
ond, resource constraints need to be taken into ac-
count in the decision making. The time, battery ca-
pacity, and data storage that the rover has are all
seriously limited and must be used wisely. Lastly,
uncertainty needs to be taken into account. Actions
in this domain have nondeterministic effects, and the
controller for the rover needs to be closed-loop.

It is natural to try to formalize the high-level
rover control problem as a decision-theoretic plan-
ning problem. With the decision-theoretic planning
approach, we start with a model of the rover’s envi-
ronment that incorporates uncertainty in the form of
probabilities. This model can be used to construct
a plan that optimizes the expected value of a per-
formance measure that we choose. In our case, the
quantity to be optimized is a function of how effec-
tive the rover is at gathering scientific data. Once
the plan is constructed, it can be integrated into the
rover’s execution architecture. During the mission,
when a decision needs to be made, the plan is queried
and returns a high-level action. This action is then
compiled into a lower-level sequence of commands
and executed. It is expected that training with a
model will translate into intelligent decision making
in real-time on the rover.

To be more specific, we formalize the problem
as a discrete-time, continuous-state Markov decision
process (MDP). Our model can be used to simulate
the rover control problem, but it is not the type of
model that can be used with classical MDP solu-
tion techniques, such as policy iteration. We could
simplify the model further to be able to apply these
techniques, but instead we use reinforcement learn-
ing techniques, which typically rely only on having a
simulator that samples next-states and rewards given
the current state. Although they are called learning
algorithms, these techniques can be viewed as plan-
ning with a simulator-type model.

The application of reinforcement learning algo-



rithms involves a significant amount of knowledge
engineering, as there are several parameters to tune
and design decisions to make. As such, we describe
in this paper some of the decisions we made in the
process of applying the techniques. After construct-
ing our simulator and choosing the parameters for
our reinforcement learning algorithm, we used the
simulator to train our learning agent. The result-
ing policy performed better than any of a class of
heuristic policies when evaluated on the simulator.
Upon analyzing the learned strategy, we saw that it
exploited subtleties in the model that we did not no-
tice at first glance. These preliminary results suggest
that the MDP framework and reinforcement learn-
ing techniques can be useful tools for designing con-
trollers for planetary rovers.

We note that there has been other recent work
on using decision-theoretic techniques to solve the
rover control problem. Zilberstein and Mouaddib [8]
discuss the application of the progressive processing
framework to the problem. Bresina and Washington
[3] study a way of incorporating uncertainty into the
Contingent Rover Language (CRL) for rover control.
These lines of work are all closely related and will
likely inform each other in the future.

This paper is organized as follows. First, we for-
mally describe the Markov decision process frame-
work. Then we describe how the rover control prob-
lem can be formalized as an MDP. Next, we dis-
cuss ways of using knowledge to constrain the policy
space. We describe a class of heuristic policies within
this space and a way of using reinforcement learning
techniques to find a policy in this space. Experimen-
tal results with both the heuristic policies and the
learned policies are presented. Finally, we discuss
the implications of the results and directions for fu-
ture work.

2 Markov decision processes

Markov decision processes (MDPs) model an agent
acting to maximize its long-term reward in a stochas-
tic environment. We will consider discrete-time
MDPs, where the process evolves at some discrete
time scale ¢ = 0,1,2,3,.... At each time step, the
agent perceives the state of the environment, s; € S,
and chooses an action, a; € A,,. One time step
later, the environment produces a numerical reward,
r¢, and a next state, s;11. The environment’s dy-
namics are modeled by state-transition probabilities
P(s,a,s') and expected immediate rewards R(s, a).

A policy for an MDP is a mapping from states to
actions. Given an MDP, our aim is to find a policy
that maximizes expected long-term reward. There
are a number of different ways to define long-term

reward, and thus a number of different optimality
criteria. In our problem, the agent will be maxi-
mizing the total reward obtained over an episode of
finite length, starting from the initial state sq. (It is
known that the episode will end, but the number of
steps is not known a priori.) The end of an episode
can be modeled as entry into an absorbing state that
has an associated reward of zero. In this case, the
agent’s long-term reward is
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where R;(s¢,ay) is the reward received at time step ¢.
This optimality criterion is commonly referred to as
the undiscounted, infinite-horizon criterion because
all rewards are given the same weight regardless of
how far in the future they occur.

3 Rover problem formulation

It is a difficult task to come up with detailed descrip-
tions of the problems that rovers will face on upcom-
ing missions. We describe one scenario that we view
as a simplified version of what missions in the near
future will be like. Our model is not intended to be
entirely realistic. It is simply a first step in develop-
ing complex and realistic simulators that can be used
in the construction of real rover controllers. In taking
an incremental approach to model construction, we
can experiment with the simpler models and use the
lessons learned from them to guide the development
of the more complicated models.

Our scenario can be described as follows. There is
a rover on Mars that communicates with Earth ex-
actly once each Martian day. The rover sends infor-
mation about its current state to Earth, and this in-
formation is incorporated into an MDP model. The
MDP is solved, and the resulting policy is uplinked
to the rover to direct the next day’s activities. The
resource levels at the time of communication deter-
mine the initial state sg of the MDP. We focus on
one particular initial state (the one in which all the
resource levels are maximized), so that we can easily
understand our experimental results. However, we
note that our solution technique should work equally
well for any initial state.

During its day, the rover must gather data from
various sites. There are several alternative ways to
do this, and the rover’s action choices dictate which
is implemented. The action set, A, contains four ac-
tions: abandon the current site in favor of a new site,
take a picture of the current site, perform a spec-
trometer experiment at the current site, and wait for
the battery to recharge.



State Variable Domain
Time Remaining [0 hr, 12 hr]
Battery Capacity [0 AH, 10 AH]

Data Storage
Difficulty
Importance
Data Gathered

{0M,1M,2M,3M,4M}
{easy, medium, hard}
{0,1,...,9}

{0,1,2} x {0,1}

Table 1: The domains of the state variables.

Having listed the actions, we now describe the set
of states for which the rover must choose an action.
Resource levels comprise three of the state features.
These include the time remaining until the next com-
munication, the battery capacity, and the storage
available. Time and storage are nonrenewable re-
sources. Battery capacity, on the other hand, can
actually increase during the day. In our model, dur-
ing the entire middle third of the day, the capacity
level is at its maximum. This is a simplified model
of the sun being in the right position to charge the
battery.

In addition to the resource levels, information
about the current site is included as part of the
state. One piece of information is the difficulty of the
current site. This is related to the probability that
the rover will obtain satisfactory data from the site
when it performs a spectrometer experiment. An-
other component is what we call the importance of
the site. This is a measure of how valuable data from
the site will be to the scientists. The importance
component is a factor in the reward function for the
model. The final component corresponds to what has
already been accomplished at the current site. This
feature can take on one of six different values. At any
point, the rover has taken no pictures, one picture,
or two pictures; also, it has either obtained satisfac-
tory spectrometer data or not. The state space, S, is
the set of all allowable assignments to the state vari-
ables. The domains for these variables are shown in
Table 1. The first two are continuous, while the last
four are discrete.

The state-transition function, P(s,a,s'), is de-
scribed qualitatively as follows. Picture taking can
consume time, storage, and battery capacity. Aslong
as its resource levels are high enough, the rover will
always be successful in taking a picture. Spectrom-
eter experiments can consume time and battery ca-
pacity. In contrast to picture taking, there is always
a chance that a spectrometer experiment will fail,
regardless of the resource levels. Waiting consumes
time but can lead to an increase in battery capacity.
Finally, when the rover decides to go to a new site,

the importance and difficulty components of the next
site are chosen randomly from a uniform distribution.
In addition, time and battery capacity can be con-
sumed during the traversal to the new site. Descrip-
tions of boundary conditions and the actual probabil-
ity distributions corresponding to all of these state-
transition rules are deferred to a longer version of
the paper. As we mentioned before, P(s,a,s') is not
represented in tabular form (which would actually be
impossible since the state space is continuous). We
note that the parameters used in our simulator are
rough estimates based on our present knowledge of
the problem. We expect these estimates to improve
over time as we obtain more information from field
tests and missions.

To complete our presentation of the model, we
must describe the reward function, R(s, a). A reward
of zero is obtained for all transitions except those
that take the rover to a new site. When the rover
does leave a site, its reward is the importance of the
site it just left times a function of the number of
pictures it was able to take and whether or not it
obtained acceptable spectrometer data. The total
reward for one episode is then the sum of the rewards
for all the sites.

4 Solution approach

4.1 Restricting the policy space

Some knowledge engineering can be done to con-
strain the policy space for the agent. What we do is
essentially put a layer in between the process and the
agent that restricts the information available to the
agent and the ways it can affect the process. Doing
this has the advantage of making the problem sim-
pler by reducing the size of the space that needs to
be searched. Of course, a disadvantage is that po-
tentially effective policies can be thrown out. This
problem is addressed in the discussion section.

We start by describing the constraints on the ac-
tion space of our agent. Recall that the available
actions at a site are to leave the site, use the spec-
trometer, take a picture, or wait for the battery to
recharge. We define a new, temporally-extended ac-
tion called investigate. This macro-action consists of
taking two pictures of the site and then performing
spectrometer experiments until satisfactory data are
obtained. In our new problem, the agent only has
two choices: investigate the current site or leave it
— there is nothing in between.

Next we describe the discretization of the state
space, which restricts the information on which the
agent can base its decisions. We use a very coarse
discretization. The continuous set of time values is
divided into six bins. The importance component



Threshold | Expected Reward | Std Dev
0 132.8 31.8
1 138.5 27.1
2 143.3 29.0
3 144.8 29.1
4 144.5 26.2
5 141.7 27.2
6 130.4 27.3
7 116.0 27.3
8 99.8 29.1
9 63.7 33.4

Table 2: Expected rewards for the threshold policies.

is not affected, and thus the agent can perceive ten
different values for this component. All possible val-
ues for the rest of the features are clustered together.
In other words, the agent can’t distinguish between
different values for those features, so they are effec-
tively ignored in the learning and decision-making.
Therefore, the agent can only distinguish between
60 different abstract states.

4.2 A heuristic policy

We experimented with a type of heuristic policy that
we call a threshold policy, which is a subset of our
constrained policy set. (Of course, the heuristic
policy in no way requires the restrictions described
above, but we describe things in this order for ease of
exposition.) With this type of policy, the agent uses
a threshold factor. If it comes upon a site with an
importance value greater than or equal to the thresh-
old, it investigates the site. Otherwise, it moves on
to the next site.

We evaluated each of the ten possible threshold
policies on our simulator. The results are shown in
Table 2 (averaged over 500 episodes). It turns out
that the optimal threshold value is 3. Intuitively, it
makes sense that the optimal threshold is somewhere
near the middle. If the threshold is set too low, then
the rover doesn’t discriminate enough and wastes its
resources on unimportant sites. On the other hand,
if the threshold is set too high, the rover wastes re-
sources moving between sites and doesn’t get enough
useful work done.

4.3 Monte Carlo reinforcement learning

We now describe our approach to applying a rein-
forcement learning algorithm to the problem. The
simulator provides our agent with the Markov state,
but our coarse discretization of the state space makes
it effectively partially observed. This factored into
our decision about which reinforcement learning al-

gorithm to use. Probably the most common rein-
forcement learning methods are temporal-difference
learning algorithms, which “back up” the value of
the next state to the current state. These algorithms
enjoy nice theoretical properties when the state is as-
sumed to be Markovian, but when the Markov state
is only partially observed, the theoretical guarantees
break down. In addition, empirical results point to
Monte Carlo methods as a promising way of deal-
ing with partial observability. We refer the reader to
[2, 7] for more information on this subject.

Monte Carlo methods are simple reinforcement
learning techniques that can be viewed as waiting
until the end of an episode to do any credit assign-
ment. With these methods, a state-action value func-
tion (or Q-function), Q(s,a), is maintained. This is
an estimate of the total expected reward obtained
after starting in state s and executing action a. Im-
plicit in the Q-function is a policy, namely the policy
that at every state takes the action that is greedy
with respect to the Q-function. The learning algo-
rithm works as follows. The Q-values are initialized
to some arbitrary values, and during the first episode
the agent executes the corresponding policy, taking
exploratory actions a fraction of the time determined
by the parameter e. Exploratory actions help the al-
gorithm escape from local minima; in our case, tak-
ing exploratory actions simply means choosing the
lower-valued action 100e percent of the time. Con-
sider the set of all state-action pairs that are encoun-
tered during the episode. For each pair (s,a) in this
set, let T'(s,a) be the time step at which (s,a) first
occurred. The Q-values are updated according to the
following equation:

oo

Q(s,a) = (1 - a)Q(s,a) +a Y R(ss,ar),

t=T(s,a)

where a is a parameter called the learning rate. This
is called first-visit Monte Carlo because the learn-
ing rule uses the total reward obtained after a state-
action pair is first visited. Subsequent visits to the
same state-action pair are ignored. With the new
Q-values set, the process is repeated for subsequent
episodes.

5 Experimental results

We used the Monte Carlo reinforcement learning
technique described above with & = 0.01 and € = 0.3.
We performed a learning run consisting of 1,000,000
episodes. After the learning run, the resulting policy
was evaluated on 500 episodes. The mean total re-
ward was 148.4 with standard deviation 27.3. Com-
pared to the results for the best threshold policy, this



is an improvement that has a p-value of 0.023 in a
standard two-sample t-test.

In order to understand this improved performance
better, we looked carefully at the policies that were
obtained from learning. The policies are similar
to the threshold policy, except that they vary the
threshold depending on the time remaining. This
is an (admittedly simple) example of an automatic
planner exploiting subtleties in the model that were
not immediately apparent to the system designers.
These preliminary results demonstrate that the MDP
framework and reinforcement learning algorithms
can be useful tools in designing controllers for plane-
tary rovers. For complex problems such as planetary
rover control, there is a limit to how well we can do
with just heuristic policies.

6 Discussion

6.1 Finding better policies

There are a number of unanswered questions related
to the model we have developed. One question is
whether we can find policies that perform better in
simulation than the ones we have studied thus far.
Using state and action abstraction, we put severe
constraints on the set of policies that were learnable
by our agent. On the state abstraction side, we could
make the discretization finer — allowing the agent
to make “better informed” decisions. With regard
to action abstraction, we could relax the all-or-none
constraint that is currently imposed. This would al-
low the rover to do things such as leave a site after it
has only taken one picture. Relaxing the constraints
gives the agent more freedom to discover interesting
and effective policies. The drawback of this, how-
ever, is that it can take a very long time to find even
a decent policy in the enlarged policy space. Thus,
we cannot be haphazard in this process. Perhaps a
good way to deal with this tradeoff is to use shap-
ing. With this approach, we start with a highly con-
strained problem and gradually relax the constraints
over the course of learning.

Sometimes, MDPs have special structure that can
be exploited in order to obtain good policies faster.
Our model has interesting structure that we did not
use in this work. In particular, the sites only depend
on each other through the resources. In other words,
when the rover decides to leave a site, the function
that determines the next state only takes as input the
time remaining, battery capacity, and data storage.
This type of structure is reminiscent of work involv-
ing weakly-coupled MDPs [5, 6]. One way to exploit
this structure is to have two value functions, a high-
level function that only takes resource levels as input
and is only updated during transitions between sites,

and a low-level function that can take any of the
state components as input and is updated at every
time step. We have performed some informal experi-
ments, and the results suggest that by combining the
low-level and high-level value functions during learn-
ing, it is possible to get faster convergence than with
a “flat” approach. We note that the high-level value
function is closely related to what has been called
the opportunity cost in previous work [8].

6.2 Generalizing the model

One of our main goals is to develop a realistic simu-
lator from which we can derive policies that can be
deployed on an actual rover. This will involve remov-
ing some of the simplifying assumptions on which our
current simulator is based. One such assumption is
that the parameters (e.g., importance, difficulty) of
a new site are always drawn from a uniform distribu-
tion; they do not depend on the site that the rover
has just left. In reality, the rover’s next site is not
just picked “at random.” A plausible situation is
one in which the rover has been assigned a fixed se-
quence of sites to explore, and it must make decisions
at each site regarding how to perform activities and
when to move on to the next site. Alternatively, the
rover could be given a directed acyclic graph of sites
it can visit. In this case, there are a number of pos-
sible ways to visit sites, and the rover is given the
responsibility of choosing among them.

Another assumption we have made is that the
state is fully observable to the agent. Without chang-
ing the dynamics of the simulator, we could just
make some components of the state unobservable to
the agent, resulting in a partially observable Markov
decision process (POMDP). One component that
perhaps should not be observed is the difficulty of ob-
taining data from a site. We should point out, how-
ever, that the results described in this paper would
be the same even if the state were partially observ-
able. This is because the learning algorithm ignored
all of the state components except for time and im-
portance.

Another way to make the model more realistic is
to require that activities be performed during con-
strained time intervals. These time constraints arise
because some experiments can only be performed
under certain conditions which do not always hold.
We would ideally like to add time constraints to
the problem without greatly increasing its compu-
tational complexity.

In addition to making the model’s high-level struc-
ture closer to what would be encountered on an ac-
tual mission, we would like to find accurate numer-
ical parameters to describe various rover activities.



These activities include, but are not limited to, tak-
ing pictures (including panoramic images), perform-
ing various experiments, calibrating sensors, and per-
forming failure detection. These parameters can be
obtained by working with existing high-fidelity rover
simulators in addition to the rovers themselves. In
the course of experimenting with real rovers, we will
get a better idea of which pieces of information must
be incorporated into the activity models and which
information can be ignored.

6.3 Coordinating multiple rovers

Another direction for future research is the extension
of this work to multi-rover scenarios. Researchers
have already pointed out the potential advantages
of multi-rover missions over single-rover missions [4].
More rovers can lead to an increase in productivity,
autonomy, and fault-tolerance. However, the coor-
dination of multiple rovers introduces a new type of
uncertainty and leads to a more complex decision-
making problem. During a multi-rover mission, each
rover must decide on a course of action based only
on partial information about the states of the other
rovers. In addition, decisions must be made regard-
ing communication between rovers.

The multi-rover problem can be modeled as mul-
tiple agents controlling a Markov process in a dis-
tributed fashion. However, solving for a policy to
control an MDP in a distributed manner is gener-
ally harder than solving for a centralized policy [1].
Thus, we need to develop heuristics that can yield
acceptable solutions in a reasonable amount of time.
One heuristic is to start by partitioning the set of
sites that can be explored, assigning a subset to each
rover, and solving the problem for each rover as an
MDP. With this simple approach, however, we can-
not have one rover take on the work of another rover
if that rover encounters difficulties. Perhaps we could
search for policies in which the rovers periodically
communicate and reallocate the sites based on the
current state. Of course, even this heuristic does
not apply to multi-rover problems in which there are
activities that require more than one agent to act to-
gether in a tightly-coupled manner. One of our goals
is to find adequate ways to address this problem.
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