
Generating Admissible Heuristics by Abstraction for
Search in Stochastic Domains

Natalia Beliaeva and Shlomo Zilberstein

Department of Computer Science
University of Massachusetts Amherst
{nbeliaev, shlomo}@cs.umass.edu

Abstract. Search in abstract spaces has been shown to produce useful admissi-
ble heuristic estimates in deterministic domains. We show in this paper how to
generalize these results to search in stochastic domains. Solving stochastic opti-
mization problems is significantly harder than solving their deterministic counter-
parts. Designing admissible heuristics for stochastic domains is also much harder.
Therefore, deriving such heuristics automatically using abstraction is particularly
beneficial. We analyze this approach both theoretically and empirically and show
that it produces significant computational savings when used in conjunction with
the heuristic search algorithm LAO*.

1 Introduction

The Markov decision process (MDP) is widely used in artificial intelligence to solve
problems of planning and learning under uncertainty. The most common way to solve
an MDP is by using a dynamic programming algorithm such as value iteration or policy
iteration. The major drawback of this approach is that the entire state space has to be
evaluated. More recently, heuristic search algorithms have been developed for solving
MDPs [6]. These algorithms can avoid evaluating states that are not reachable from the
start state by an optimal policy. The effectiveness of heuristic search mostly depends
on the heuristic function being used to guide the search process. One way to generate
anadmissibleheuristic is to use search in abstract spaces [7, 11]. Abstraction works by
replacing an original state space by an abstract space, which is easier to search. This
idea is not new. It has been previously applied to creating admissible heuristics for A*
search [8]. More recently, there has been growing interest in developing heuristics us-
ing a form of abstraction calledpattern database[3, 9, 10]. The goal of this paper is
to extend the use of abstraction as a means of creating admissible heuristics for search
in stochastic domains. Heuristic estimates generated by abstraction are then used to
guide LAO*, which is a heuristic search algorithm that can be used to solve stochastic
planning problems. To test whether heuristics generated by abstraction produce any sav-
ings as compared to uninformed search, LAO* algorithm is applied to a task planning
problem that involves uncertainty regarding the use of resources. The structure of this
problem facilitates the creation of an abstract space very easily by varying the resolution
of resource usage, always rounding up the amount of resources left for future activity.
We show that heuristic estimates obtained by search in such abstract space are always
admissible. That is, the heuristic value is an optimistic estimate (overestimate) of the

actual value of a state. We also show that the effectiveness of such heuristic estimates
depends on the problem and that they could result in significant savings compared to
blind search.

The rest of the paper is organized as follows. In Section 2, we review some related
work on search in abstract spaces and alternative approximation techniques for MDPs.
Section 3 describes the general methodology used in the current research. Section 4
describes the specific model used in the paper. Section 5 analyzes experimental results.
Section 6 concludes the paper with a summary of contributions and further work.

2 Related Work

We describe briefly related work in two research areas. First, we examine previous work
on the problem of creating heuristics by abstraction in deterministic settings. This paper
extends this body of research to stochastic domains. We then describe existing exact
and approximate techniques for solving MDPs; heuristic search presents an alternative
approach to these techniques.

2.1 Creating Heuristic by Abstraction for Search in Deterministic Domains

Several researchers have looked at the problem of creating heuristic by abstraction for
search in deterministic domains (for example, [7, 8, 11, 12]). The most relevant work to
the current study is Holteet al. [8]. This paper focuses on one type of abstraction called
homomorphism (grouping together states of the original state space to create a single
abstract state). The heuristic created by abstraction is then used to guide A* search.
The goal of the paper was to develop a technique that would break Valtorta’s barrier. To
achieve this goal the number of states expanded by a heuristic search has to be less than
the number of states expanded by uninformed search. The authors use an abstraction-
based search algorithm called hierarchical A*. To create an abstraction they use the
STAR abstraction technique, which groups together neighboring states within a certain
radius. Once one level of abstraction is created, the procedure is repeated recursively
until a trivial abstract level is created. The implementation of hierarchical A* is stan-
dard except for the way heuristic values are estimated. Every time A* needs a heuristic
estimate, it is computed by searching at the next level of abstraction. It was found that a
naive version of the algorithm ends up expanding many more states as compared to un-
informed search, i.e. Valtorta’s barrier is not broken. This could be explained by the fact
that although A* never expands the same state twice in a single search, it has to expand
the same state many times while performing multiple searches of the abstract levels.
To overcome this problem the authors implemented two types of cashing techniques
and as a result the Valtorta’s barrier was broken in every domain. The authors have also
discovered that as the radius of abstraction increases, the number of nodes expanded by
hierarchical A* decreases until it reaches some minimum value. Increasing the abstrac-
tion radius further caused the number of expanded nodes to increase. In every case the
best abstraction radius represented a large fraction of the search space and as a result
the abstraction hierarchy contained only one non-trivial level. In this paper we examine

the applicability of these same ideas in stochastic search and evaluate the effectiveness
of the approach.

More recently, an effective approach to exploit abstraction in the form of a pattern
database has been developed. The idea was introduced by Culberson and Schaeffer [3]
who applied it to permutation problems, like the 15-puzzle. To form a pattern database,
a search space is projected into an abstract space, which is small enough to allow an
efficient computation of the value function for each abstract state. The computed values
are stored in a look-up table. Each abstract state is called a pattern and the table that
stores the optimal values is called a pattern database. These precomputed values are then
used as heuristic estimates for the search in the original state space. Usually more than
one pattern database is defined for the same problem. Heuristic estimates for the states
of the original space are computed as maximum of several pattern database heuristics.
For example, Korf defined three pattern databases to solve the Rubik’s cube problem
[10]. Similarly, Korf and Felner used eight pattern databases to solve the 24-puzzle [9].

2.2 Approximate Solutions to MDPs

A common way to solve MDPs is by using dynamic programming techniques such as
value iteration or policy iteration. The problem with this approach is that the entire state
space–which grows exponentially with the number of state variables–has to be evalu-
ated. This makes it hard to find exact solutions, leading to a vast literature on techniques
that can approximate the optimal solution. Both planning and learning techniques for
approximation of MDP solutions have been developed. The goal of both planning and
learning under uncertainty is to discover an optimal or near-optimal policy of action,
represented as a mapping from states to actions. The main difference is that planning
problems assume that the action model and the reward function are known, whereas
learning problems assume both of these to be initially unknown and attempt to learn
them. While planning is typically performed off-line, learning algorithms are frequently
designed for on-line operation.

A large body of research that attempts to find an approximate solution to an MDP in
the context of planning deals with reducing the level of detail in the problem representa-
tion by aggregating states with similar or identical values and/or action choices. These
aggregate states are then treated as a group by the dynamic programming algorithm
(see [5]). Another way to reduce the complexity of the problem is by pruning the tree
representation of value functions by removing such nodes in the tree that induce small
differences in value (see [2]) or by substituting the values at the terminals with ranges
of values (see [13]). Another class of approximation procedures used in planning under
uncertainty involves searching local regions or so called envelopes of the state space
(see [4, 14]).

Solving MDPs has also been a focus area in reinforcement learning (RL). Most RL
algorithms adapt dynamic programming algorithms so that they could be used on-line.
To avoid the curse of dimensionality, many methods have been proposed to approximate
MDP solutions. Barto and Mahadevan, for example, identify the following three meth-
ods for finding approximate solutions using RL algorithms [1]: (1) Restricting com-
putation to states along sample trajectories to avoid the exhaustive sweeps of dynamic

programming; (2) Sampling from the appropriate distribution to simplify the basic dy-
namic programming backup; and (3) Representing the value function and/or policies
more compactly by using function approximation methods, such as linear combinations
of basic functions or neural networks.

The technique we present in this paper is an exact algorithm, but it can be easily
transformed into an approximation technique. In previous work, we have shown how to
convert any exact heuristic search algorithm into a “well-behaved” anytime algorithm
that could produce approximate solutions with error-bounds that improve with compu-
tation time. However, examining the anytime characteristics of hierarchical LAO* is
beyond the scope of this paper.

3 Methodology

3.1 The LAO* Algorithm

The LAO* algorithm was developed by Hansen and Zilberstein [6] as a heuristic ap-
proach to finding optimal solutions to MDPs. What distinguishes LAO* from other
classical heuristic search algorithms, such as AO*, is the fact that it allows to find so-
lutions that contain loops. Since LAO* is a heuristic search algorithm, it can avoid
evaluating the entire search space which makes it a good alternative to dynamic pro-
gramming algorithms that are commonly used to solve MDPs. Since LAO* does not
evaluate every state of the problem, it is not necessary to supply the entire graph to
the algorithm. Instead, a graph is specified implicitly by a start state and a successor
function.

For complete details of the implementation of LAO* see Hansen, Zilberstein [6].
Generally, the algorithm has two main steps: a forward search step and a dynamic pro-
gramming step. The forward step identifies and expands the best partial solution graph.
The dynamic programming step updates the evaluation function and marks best action
for each state that belongs to the current best solution. Although LAO* works correctly
independently of which state of the best partial solution is expanded next, the perfor-
mance of the algorithm can be improved by a good heuristic function. One way to
construct a heuristic is by search in abstract spaces.

3.2 Heuristic Construction by Abstraction

Heuristics are designed to speed up search. However, construction of a good heuristic
usually comes at a cost. The goal is to come up with a heuristic such that the cost of
computing it is less than the savings from using it. The use of heuristich is said to be
beneficial if the total number of states expanded by search with heuristich is less than
the number of states expanded by “blind” or uninformed search. In a stochastic setting
“blind” search is also equivalent to reachability analysis.

There are two types of abstraction that can be used to construct a heuristic:

1. Embedding – relaxing a problem by “adding edges” to a state space (for exam-
ple, by dropping preconditions from, or adding macro-operators to the state-space
definition).

 Sp

S

aj ak

Fig. 1. StateSp is expanded and actionak is chosen as the best action. StateS is visited but not
expanded

2. Homomorphism – grouping together several states in the original state space to
create a single state in the abstract space.

It was proven by Valtorta (see [15]) that A* search using heuristic constructed by
embedding transformation cannot be beneficial. Holteet al. [8] have generalized Val-
torta’s theorem to any abstraction transformation. They have shown that if the abstrac-
tion used to direct A* is a homomorphism, then it can be beneficial. The potential
savings are due to the fact that expansion of many states in the original space can be
replaced by an expansion of a single state in the abstract space. The goal of this research
is to see whether the same idea holds in a stochastic setting, i.e. whether an admissible
heuristic can be constructed by homomorphism and whether it can be beneficial if used
to direct LAO* search. The next section generalizes Holteet al. version of Valtorta’s
theorem to stochastic search spaces.

3.3 Valtorta’s Theorem Generalized to Stochastic Search

Let SPbe the original state space,SP′ the abstraction ofSP. Let S be any state nec-
essarily expanded when the given problem(S0, G) is solved by reachability analysis
directly in spaceSP. Let f be any abstraction mapping fromSPto SP′ andhf (S) be
computed by reachability analysis inSP′ from f(S) to f(G). If the problem is solved
in SPby LAO* search usinghf (·) as heuristic estimate, then either:

1. S itself will be expanded, or
2. f(S) will be expanded

Proof. When LAO* terminates, every state will either be

1. expanded,
2. visited, or
3. or unvisited.

We examine each one of these cases below:

 S0

S*

Sp
*

aj ak

S

Fig. 2.StateS∗ is visited but not expanded. StateS is unvisited

1. In the first case, the stateS itself is expanded.

2. In the second case, the parent nodeSp of stateS, is expanded and the best action
for Sp is computed (see Fig. 1). BecauseS is not expanded, the actionaj which
leads to stateS with a certain probability is suboptimal. However, to pick an op-
timal action for stateSp, hf (S) must have been computed. To computehf (S), it
is necessary to solve a problem(f(S), f(G)) in the abstract space by reachability
analysis. Therefore,f(S) has to be expanded at the first step.

3. In the third case, the stateS is unvisited (see Fig. 2). It means that on every path
from S0 to S there must be a state which was visited but not expanded. LetS∗

be such state on any shortest path fromS0 to S. As in the previous case,hf (S∗)
must have been computed. To computehf (S∗), it is necessary to solve a problem
(f(S∗), f(G)) in the abstract space by reachability analysis. Since stateS is reach-
able in the original state space, the corresponding state,f(S). in the abstract space
has to be reachable as well. Therefore, while solving the problem(f(S∗), f(G))
by reachability analysis, the statef(S) has to be expanded.

3.4 General Problem Description

One type of problems that can be solved using LAO* with heuristics created by ab-
straction is executing multiple tasks that involve uncertainty about resources. In such
problems, an agent has to perform a series of tasks. Every task is associated with a set of
actions that an agent can undertake to complete the task. Each action uses an uncertain
amount of one or several resources (for example, time, energy, etc.) and compensates
the agent with a certain reward. The process stops once the agent either performs all
tasks or runs out of at least one of the resources. The goal is to maximize the collected

reward while performing a sequence of tasks. The structure of such problems allows
creating an abstract space very easily by grouping states by resources.

Each state is defined by the amount of resources left:

Ri = {0, 1, 2, . . . ,Ni} , i = 1, . . . ,n

and by values of the variables:

Vi = {1, 2, . . . ,Mi} , i = 1, . . . ,m

Formally,S= {R1, . . . ,Rn ; V1, . . . , Vm}. The start state can be defined as

S0 = {N1, . . . ,Nn ; 1, . . . , 1}

There are many possible terminal states. One example of a terminal state is

G = {0, . . . ,Rn ; V1, . . . , Vm}

3.5 Creating an Abstract Space

To create the abstract space, it is first necessary to choose the desired granularity of
abstraction orabstraction step. Selecting larger steps for grouping resources will result
in a smaller total number of states in an abstract space and therefore fewer states to
expand while performing a “blind” search. On the other hand, the generated heuristic
estimates will be coarser and subsequently more states will need to be expanded in the
original space. If smaller abstraction steps are used, then there will be more work in the
abstract space, and less in the original. Therefore, it is important to use such abstraction
steps that result in an optimal trade-off between the number of states expanded in the
abstract and the original spaces.

When an abstract space is created, states of the original space are grouped by re-
sources with each resource rounded up. Only states with the same variable values can
be grouped. Since we are representing the amount of remaining resources (as opposed
to the amount of used resources), rounding resources up ensures admissibility of the
heuristic as it will always be overestimating the reward. Given that the amount of re-
sources available in each state is overestimated, it might be possible to do more work
(i.e. take more actions) and subsequently collect a larger reward.

4 The Model

4.1 Problem Specification

To test whether heuristic estimates generated by abstraction produce any savings as
compared to uninformed search, the LAO* algorithm was used to solve the following
problem that involves uncertainty regarding the use of resources. An agent operates
autonomously for a period of time. Its goal is to perform a sequence ofM tasks (see
Fig. 3). A terminal state is reached when the agent either performs all tasks or runs out
of at least one resource.

 M 2 1

Start

B
A

skip B

A

Goal

B
A

skip

Fig. 3.An illustration of a problem instance

Each task can be executed either by taking an actionA, or by taking an actionB. In
addition, some tasks may be skipped altogether. When a problem instance is created,
the skip action is added to a task with probabilityp and omitted with probability1− p.
(This probability only applies to the process of generating a random problem instance.)
Action A, on average, uses less resources than actionB. An agent’s goal is to maximize
the reward obtained during the time period. Theattractivenessof the task can be defined
as a ratio of expected reward to expected resources used to execute an action. When a
sample task is generated, its expected reward is computed as follows. First, an average
amount of each resourcei used to execute an action is generated. Then the expected
reward for performing the task is computed as:

ER =
n∑

i=1

ki × E[Res usedi] . (1)

where,

ki is a random number in the range[0.1, 1]
n is the number of resources

Each state is defined by the remaining resources,Ri = {0, 1, . . . ,Ni}, and by the
current task number,I = {1, 2, . . . ,M }. Formally,S = {R1, . . . ,Rn ; I }. The start
state isS0 = {N1, . . . ,Nn ; 1}. An example of a terminal state isG = {0, . . . , 0; I }.

4.2 Original and Abstract State Space Construction

State spaces are represented as AND/OR graphs with all unique tree nodes stored in
hash tables. To construct the original and abstract state space, first, the average resource
use and the reward for action one and two are precomputed. Then whether the task can
be skipped is determined according to probabilityp. Construction of the original tree
starts with the root. The root node is assigned the maximum values for each resource
and variable value of 1. After that the whole graph is generated as follows. The number
of successors for the first two actions is determined at random from the range [5, 15]. In
case of multiple resources, it is assumed that resources are correlated, i.e. if an action

requires the minimum amount of resource 1, it will also require the minimum amount
of all other resources. Under this assumption, the resource values for successor states
are determined as follows. The first successor always gets assigned the resource values
of the previous resource levels less some predetermined minimum resource use. The
middle successor gets assigned the resource values of the previous resource levels less
the precomputed average resource use. The resource levels for the rest of the successors
are linearly projected from these two states. The variable value for each of the succes-
sors is determined as a previous variable value plus 1. Successor states are assigned
probability values according to the linear probability model. The middle state which is
associated with the average resources use has the highest probability of occurrence. The
first and last states which are associated with the lowest and highest resources use have
the smallest probability of occurrence. The probability values associated with all other
states are linearly interpolated.

An abstract state space is constructed using the same data and assumptions as the
original state space. First, the abstract root node is constructed. For example, if the
initial resource is 50 and the abstraction step is 20, the initial level of resource is rounded
up and the abstract root state gets assigned the resource value of 60. For the purpose of
construction of abstract successors the number of successors in the original state space
is assumed to be the maximum. The resource value for each successor is generated in
the same way as in the original space. Then, each resource is rounded up according
to the abstraction step and identical states are grouped. The probability value for each
abstract successor is assigned according to the linear probability model.

4.3 Heuristic Construction and its Application to the LAO* Algorithm

Once an abstract space is constructed, the next step is to perform a “blind” search of
this abstract space. During this process, all reachable abstract states get expanded and
assigned a value. These values are then used as heuristic estimates for the states in the
original state space. Every time an algorithm needs to estimate a heuristic value for a
state in the original space, it creates an abstract state that corresponds to the original
state by rounding the resources up according to the abstraction steps and looks up the
abstract state value in the hash table. The abstract state space constructed using the
procedure outlined in the previous section is not guaranteed to give the exact represen-
tation of the original state space. As a result, some of the original states might not have
a counterpart in the abstract state space. In case the corresponding abstract state can-
not be found in the hash table, the value of the state with the same variable but higher
level of the resource is used. This way the heuristic value is always overestimated and
it remains admissible.

The procedure for constructing the heuristic by abstraction can be taken one step
further by using multiple abstract spaces, i.e. by creating an abstraction hierarchy. The
first abstract space is created in exactly the same way as before. The next abstract space
is created by grouping states of the previous abstract space. This process is repeated un-
til the top abstract space becomes trivial. The algorithm starts by performing a complete
“blind” search of the top abstract level. After that at each iteration of LAO* whenever
it is necessary to estimate the value of the heuristic, the next higher level of abstraction

1500

1700
1900

2100
2300

0 10 20 30 40 50

abstraction step size

st
at

es

Fig. 4.Average number of states expanded both at the base and abstract level as a function of the
abstraction step

is searched. The search of the abstract space starts with the abstract state that corre-
sponds to the state in the level below. When the second to last abstract level is searched,
the heuristic estimates are simply looked up in the hash table for the top abstract level.
Once an abstract space is searched at least once, the values are known for all states that
belong to the solution graph. These states can be cashed and their values can be used as
heuristic estimates for the lower level in all subsequent searches.

It is worth noting that some difficulties could arise with this approach. Since abstract
states are created by rounding the resources up, there could be no change in the level
of resources after executing a series of actions. Therefore, in certain situations an agent
can come back to the same state. In general, this is not a problem since LAO* can easily
handle solutions with loops. However, it becomes a problem if an agent comes back to
the same state with probability 1 because it leads to an infinite loop. Fortunately, this
difficulty does not arise in the problem considered here because each state is defined
by the amount of resources left and the number of the task to be performed. Even if
no resources have been used while executing a task, the task number will increase.
Therefore, an agent cannot come back to the same state once an action is executed.
Although this problem does not contain loops and therefore could be handled by AO*
algorithm, the procedure described here is general enough to handle problems with
loops.

5 Experimental Results

5.1 One Resource, One Level of Abstraction

This section analyzes problems with one resource. The heuristic estimates are based on
one level of abstraction. Fig. 4 shows the average number of states expanded at the base
and abstract levels over 20 problems with 15 tasks and the starting level of resource
of 200 units. The first bar corresponds to the average number of states expanded by
“blind” search. On average, the use of abstraction step 5 is not beneficial since the
algorithm expands more states than the “blind” search. All other abstraction steps can
be considered beneficial since they result in some savings as compared to the “blind”

0.75

0.85

0.95

1.05

5 15 25 35 45 -10

0

10

20

5 10 15 20 25 30 35 40 45 50

Fig. 5.Left: average amount of work as compared to blind search as a function of the abstraction
step. Right: average savings in % as compared to blind search as a function of the abstraction
step. An average over 20 problems with initial level of resource of 200, 15 tasks, and probability
of skip action of 1

search. The smallest number of states gets expanded when the abstraction step of 40 or
above is used.

Fig. 5 shows the average amount of work as compared to the “blind” search (the
chart on the left) and the average savings (or loss) that occur due to the use of abstraction
(the chart on the right). The probability of “skip” action is 1, i.e. each task can be
performed by taking an actionA or an actionB or the task can be skipped. The three
lines on the charts on the left represent the average amount of work over 20 problems
with one standard deviation band around it. The average amount of work is determined
as a ratio of the total number of states expanded at both base and abstract levels over
the total number of states expanded by “blind” search. The left chart shows that as the
abstraction step increases, the average amount of work decreases. Similarly, the chart
on the right shows that the average savings due to the use of heuristic constructed by
abstraction go up as the abstraction step size increases. The maximum savings achieved
are 18.1%.

The size of the problem determined by the number of unique states in a hash table
can be increased by either increasing the starting level of resource or by increasing the
number of tasks the agent needs to perform or by increasing both. Fig. 6 explores the
relationship between the average savings due to abstraction and the size of the problem
when the size of the problem increases due to increase in the starting level of resource.
The chart on the right shows the average number of states in a hash table for each level
of resource. The hash table keeps growing until initial level of resource reaches 350.
After that the increase in the starting level of resource does not result in additional
states being added to the hash table. When initial resource level is set at 50, it is enough
to perform only a few tasks. In this case, the algorithm tries to determine which tasks
should be skipped and which tasks should be performed. On the other hand, when initial
level of resource is set at 500, the resource is plentiful to perform all tasks, so at each
step it will be necessary to determine whether an actionA or B should be preferred
since the skip action will always be suboptimal (because of zero reward). The chart on
the left shows the average savings due to abstraction as a function of the initial level of
resource. When the level of resource is low, the savings from abstraction are the lowest

0
5

10
15
20
25

50 12
5

20
0

27
5

35
0

42
5

50
0

0

1000
2000

3000
4000

50 12
5

20
0

27
5

35
0

42
5

50
0

Fig. 6. Left: average savings in % as compared to blind search as a function of the initial level
of resource. Right: average size of the hash table as a function of the initial level of resource.
Averages are over 50 problems with 15 tasks, and probability of skip action of 1

0

10

20

30

5 15 25 35

0
2000
4000
6000
8000

5 15 25 35

Fig. 7. Left: average savings in % as compared to blind search as a function of the number of
tasks. Right: average size of the hash table as a function of the number of tasks. Averages are
over 50 problems with initial level of resource set at 200, and probability of skip action of 1

(less than 15%). The savings are the highest (above 20%) when resource is abundant.
A lot of the savings will occur because brunches corresponding to the skip action are
suboptimal and therefore will be ignored in a heuristic search but expanded in a “blind”
search. In general, the most savings occur when the problem tree has a lot of clearly
suboptimal branches. Heuristics constructed by abstraction will easily identify those
branches and save a lot of work at the base level.

Fig. 7 explores the relationship between the average savings due to abstraction and
the size of the problem when the size of the problem increases due to increase in the
number of tasks an agent has to perform. The chart on the right shows the average
number of states in a hash table as a function of the number of tasks in a problem. As
the number of tasks to be performed increases, so does the size of the hash table. On
average, addition of 5 tasks to the problem adds roughly 1000 states to the hash table.
The chart on the left shows the average savings due to abstraction as a function of the
number of tasks to be performed. As in Fig. 6, the most savings occur when the initial
level of resource is high relative to the number of tasks to be performed. As the number
of tasks to be performed goes up, the average savings go down. The largest savings of
24.2% occur when there are only 5 tasks to be performed. In this case there is enough of
the resource to perform all tasks. Savings occur largely due to the possibility to ignore

0.75

0.85

0.95

1.05

5 10 15 20 25 30 35 40 45 50 -10

0

10

20

5 10 15 20 25 30 35 40 45 50

Fig. 8. One level of abstraction. Left: average amount of work as compared to blind search as
a function of the abstraction step. Right: average savings in % as compared to blind search as
a function of the abstraction step. An average over 20 problems with initial level of resource of
200, 15 tasks, and probability of skip action of 1

0.75
0.85

0.95
1.05
1.15

5 10 15 20 25 30 35 40 45 50 -10

0

10

20

5 10 15 20 25 30 35 40 45 50

Fig. 9. Two levels of abstraction. Left: average amount of work as compared to blind search as
a function of the abstraction step. Right: average savings in % as compared to blind search as
a function of the abstraction step. An average over 20 problems with initial level of resource of
200, 15 tasks, and probability of skip action of 1

those branches that correspond to the skip action while performing the heuristic search.

5.2 One Resource, Two Levels of Abstraction

In this section, an identical set of 20 problems with 15 tasks, initial level of resource
of 200 and probability of skip action of 1 was solved by LAO*, first, using heuristic
constructed with one level of abstraction, second, using heuristic constructed with two
levels of abstraction. Fig. 8 shows graphs for one level of abstraction. Fig. 9 shows
graphs for two levels of abstraction. In this case X axis values correspond to the ab-
straction step at the first level, s1. Abstraction step at the second level was assumed to
bes2 = 2 × s1. Comparison of the two figures shows that heuristic constructed by ab-
straction with one level of abstraction produces higher savings as compared to heuristic
constructed by abstraction with two levels. For example, the highest possible savings
with one level of abstraction are 18.1%, whereas the highest possible savings with two
levels of abstraction are 17.1%.

1500
1800
2100
2400
2700
3000
3300
3600

0 5 10 15 20 25 30 35 40 45 50
abstraction step size

st
at

es

Fig. 10.Average number of states expanded both at the base and abstract level as a function of
the abstraction step

0
0.2
0.4
0.6
0.8

5 10 15 20 25 30 35 40 45 50

60
65
70
75
80

5 15 25 35 45

Fig. 11.Left: average amount of work as compared to blind search as a function of the abstraction
step. Right: average savings in % as compared to blind search as a function of the abstraction step.
An average over 20 problems with initial level of resource 1 of 50, resource 2 of 50, 7 tasks, and
probability of skip action of 1

5.3 Two Resources, One Level of Abstraction

This section analyzes problems with two resources. The heuristic estimates are based on
one level of abstraction. Fig. 10 shows the total number of states expanded at both base
and abstract levels. The first bar corresponds to the average number of states expanded
by “blind” search (about 3500). On average, the use of any abstraction step is beneficial.
Unlike in the case with one resource, the smallest number of states (around 1960) gets
expanded when the abstraction step of 10 is used.

Fig. 11 shows the average amount of work as compared to the “blind” search (the
chart on the left) and the average savings that occur due to the use of abstraction (the
chart on the right). On average, savings that occur due to abstraction are significantly
higher than in the case with one resource for any abstraction step. The highest savings
occur when abstraction step of 10 is used. In contrast, in the case of one resource the
highest savings occur when the abstraction step of 40 is used.

6 Conclusions

We have shown that admissible heuristics can be generated using abstraction in stochas-
tic domains. The results are very similar to those obtained by Holteet al. in determin-
istic settings [8]. In general, the use of abstraction in both stochastic and deterministic
settings is beneficial. The actual amount of savings depends on the abstraction step.
Holte et al. have found the abstraction radius to be large as compared to the size of
the search space. As a result, only one level of abstraction is necessary. A similar con-
clusion can be made for the type of problems considered here. The experiments with
two levels of abstraction and one resource show that the use of one level of abstraction
results in higher savings as compared to two levels. In case of one level of abstraction
and one resource, an abstraction step of 40 turns out to be the most beneficial; in case
of two resources, an abstraction step of 10 is the most beneficial. In general, the amount
of savings depends on the difficulty of the problem. Problems with two resources result
in much higher savings as compared to the problems with one resource. We expect the
savings to grow with the number of resources.

One benefit of our approach is that it is designed to avoid visiting the entire state
space either during search or any preprocessing stage. Although the abstract space is
created in advance, it is generated independently of the original space. Moreover, there
is no need to go through the entire base-level state space in order to search the abstract
space. Another source of savings is the fact that the search in the abstract space is only
through reachable states, not all states.

Because it is generally much harder and less intuitive to design admissible heuris-
tics for stochastic domains, it is beneficial to design automated techniques based on
abstraction such as the one we present in this paper. Moreover, because it is relatively
easy to transform LAO* into an approximation anytime algorithm, the result of this
work facilitate the development of both exact and approximate algorithms for search in
stochastic domains.

Acknowledgments

Support for this work was provided in part by the National Science Foundation under
grant number IIS-0328601.

References

1. Barto, A.G., Mahadevan, S.: Recent Advances in Hierarchical Reinforcement Learning.Dis-
crete Event Dynamic Systems: Theory and Applications13 (2003) 41–77

2. Boutilier, C., Dearden, R.: Approximating Value Trees in Structured Dynamic Programming.
In Proc. of the Thirteenth International Conference on Machine Learning(1996)

3. Culberson, J.C., Schaeffer, J.: Pattern Databases.Computational Intelligence14(3) (1998)
318–334

4. Dean, T., Pack Kaelbling, L., Kirman, J., Nicholson, A.: Planning with Deadlines in Stochas-
tic Domains. InProc. of the Eleventh National Conference on Artificial Intelligence(1993)
574–579

5. Dearden, R., Boutilier, C.: Abstraction and Approximate Decision-Theoretic Planning.Arti-
ficial Intelligence89 (1997) 219–283

6. Hansen, E.A., Zilberstein, S.: LAO*: A Heuristic Search Algorithm that Finds Solutions with
Loops.Artificial Intelligence129(1-2) (2001) 35–62

7. Holte, R.C., Drummond, C., Perez, M.B., Zimmer, R.M., MacDonald, A.J.: Searching with
Abstractions: A Unifying Framework and New High-Performance Algorithm. InProc. of the
Canadian Artificial Intelligence Conference(1994) 263–270

8. Holte, R.C., Perez, M.B., Zimmer, R.M., MacDonald, A.J.: Hierarchical A*: Searching Ab-
straction Hierarchies Efficiently. InProc. of the Thirteenth National Conference on Artificial
Intelligence(1996) 530–535

9. Korf, R.E., Felner, A.: Disjoint Pattern Database Heuristics.Artificial Intelligence134(1-2)
(2002) 9–22

10. Korf, R.E.: Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases. InProc. of
the Fourteenth National Conference on Artificial Intelligence(1997) 700–705

11. Pearl, J.:Heuristics. Addison-Wesley (1984)
12. Preditis, A.: Machine Discovery of Admissible Heuristics.Machine Learning12(1995) 165–

175
13. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: Approximate Policy Construction Using

Decision Diagrams.Neural Information Processing Systems13 (2000)
14. Tash, J., Russell, S.: Control Strategies for a Stochastic Planner. InProc. of the Twelfth Na-

tional Conference on Artificial Intelligence(1994) 1079–1085
15. Valtorta, M.: A New Result on the Computational Complexity of Heuristic Estimates for the

A* Algorithm. Artificial Intelligence55(1)(1992) 129–142

This article was processed using the LATEX macro package with LLNCS style

