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ABSTRACT
In decentralized settings with partial observability, agents can often
benefit from communicating, but communication resources may be
limited and costly. Current approaches tend to dismiss or underesti-
mate this cost, resulting in overcommunication. This paper presents
a general framework to compute the value of communicating from
each agent’s local perspective, by comparing the expected reward
with and without communication. In order to obtain these expecta-
tions, each agent must reason about the state and belief states of the
other agents, both before and after communication. We show how
this can be done in the context of decentralized POMDPs and dis-
cuss ways to mitigate a common myopic assumption, where agents
tend to overcommunicate because they overlook the possibility that
communication can be deferred or initiated by the other agents.
The paper presents a theoretical framework to precisely quantify
the value of communication and an effective algorithm to manage
communication. Experimental results show that our approach per-
forms well compared to other techniques suggested in the literature.

1. INTRODUCTION
In multiagent settings, each agent is faced with three types of

uncertainty. The first is uncertainty about the effects of its actions.
This uncertainty is often addressed using the Markov Decision Pro-
cess (MDP). The agent’s world consists ofstates, and the agent’s
actions have probabilistic outcomes that change the state. The
agent can receive areward for entering a desirable state. The sec-
ond type of uncertainty is about the state that the agent is in. This
uncertainty can be addressed by addingobservationsto the model.
The agent can reason about its state by combining its knowledge
about state transitions with knowledge of its past actions and ob-
servations. The third type of uncertainty is about the state that the
other agents are in, and the future actions that they will take, while
accounting for the fact that the other agents perform similar rea-
soning. In this paper, we consider the Dec-POMDP (Decentralized
Partially Observable MDP) model [2], and how this third type of
uncertainty manifests itself within a Dec-POMDP.

One way to alleviate the latter type of uncertainty is to commu-
nicate with the other agents. In fact, it would usually be unrealistic
to assume that agents do not communicate in a cooperative setting.
But assuming ubiquitous communication is unrealistic for two rea-
sons. First, trivially, if communication were ubiquitous, then in
fact the problem could be solved and executed by onecentralized
agent, removing a key feature of multiagent systems. Second, in
the real world communication is often not ubiquitous. Agents may
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be separated by distance, or the bandwidth between them may be
limited, or they may operate in a low power environment where en-
ergy must be conserved. A common approach to factor this into the
model is to assign communication a negative reward orcost.

In this paper, we will use thesyncmodel of communication [13].
That is, when one agent decides to communicate, the result will
be that all agents mutually exchange all available information. Be-
cause we assume that agents can synchronize in this manner, the
paper studies the question ofwhento communicate. There is a rich,
separate branch of the literature that studieswhat to communicate
as well [9].

The paper proceeds as follows. First we discuss previous work
on communication. Then we discuss the specific model that we
use to produce communication decisions. An algorithm is devel-
oped that converts the complicated multiagent domain into a Hid-
den Markov Model in order to estimate the state of the other agents.
The algorithm is expanded so that each agent can account for the
communication policies of the other agents as well as their states.
Finally, we show that the resulting planner performs well empiri-
cally.

2. RELATED WORK
The literature on communication can be divided into works that

start with a centralized plan and those that do not. In the former
group, agents generate a centralized policy at planning time, and
then at execution time they communicate to enforce execution of
the centralized plan. Xuan et al. consider the view of a “moni-
toring agent” whose knowledge consists only of jointly observable
information since the last synchronization time [13]. Agents com-
municate whenever the monitoring agent notices ambiguity in what
an agent should plan next. Roth et al. use thetell model of com-
munication instead of thesyncmodel [8]. Each agent uses its local
history and theQPOMDP heuristic to reason about the joint action that
should be taken. The history is also used to reason about commu-
nication.

Other works do not start with a centralized policy. Nair et al. in-
troduce the Communicative DP-JESP (Dynamic Programing Joint
Equlibrium-Based Search for Policies) technique, which integrates
a communication strategy intoK-step pieces of the JESP algorithm
and finds a Nash equilibrium of policies for multiple agents [6]. In
order to keep the algorithm tractable, the authors enforce a rule that
communication must occur at least everyK steps.

Some recent work explores the concept of delayed communi-
cation. Spaan et al. find the best domain-level policy given that
communication delays are stochastically possible [7].

The above approaches do not explicitly represent any cost to
communicating. Overcommunicating is thought to be undesirable,
either out of general principle, or because it can add to planning



time. Williamson et al. compute an explicit reward for communi-
cating [12]. They introduce thedec_POMDP_Valued_Commodel,
which includes a communication reward function. Reward for com-
municating is based on the KL Divergence in the agents’ belief
states.

The approach most similar to ours has been developed by Becker
et al. [1]. Communication incurs a negative reward, determined by
the domain. Each agent determines theValue of Communication
(VoC), which is the difference between the expected value of fu-
ture policies with and without communication. However, the tech-
nique assumes that the world has joint full observability, that each
agent fully observes its own local state, and furthermore that the
other agents cannot affect its transitions or observations. The only
interaction between the agents is via the joint reward function. The
resulting problem is “only” NP-Complete [4], as the elimination
of observations means that each agent only needs to reason about
the global state, and not the belief states or observation histories
of the other agents. In this paper, we will use a similar method-
ology to solve instances of the more complicated Dec-POMDP-
Comm model, where each agent receives partial observations, and
the agents are not transition or observation independent. Comput-
ing the value of communication in this more general context is sub-
stantially more complicated and is one of the key contributions of
this paper. We retain thesyncmodel of communication, though, as
we will see in the next section.

3. DEC-POMDP
A Dec-POMDP is a Decentralized Partially Observable Markov

Decision Process with Communication [3]. It is defined by the fol-
lowing components:

• A set of agents numbered1..n

• S, the set of domain states.

• b0 ∈ ∆S, the initial belief state distribution.

• A = ×iAi is the set of joint actions, whereAi is the set of
actions available to agenti. At each time step, agents take
one joint actiona = 〈a1, .., an〉.
• T , the transition model:T (s′|s,a) is the probability of tran-

sitioning to states′ given the previous state wass and joint
actiona was taken by the agents.

• R, the reward function:R(s,a) is the immediate reward for
taking joint actiona in states.

• Ω1..Ωn, the sets of observations possible for each agent.
Each agenti receives only its own observationoi ∈ Ωi at
each timestep. The vector of received observations iso =
〈o1, .., on〉.
• O, the observation function. It specifies joint observation

probability O(o|s′, a1..an), the joint probability that every
agenti sees corresponding observationoi after the agents
took joint actiona causing a state transition tos′.

• H, the horizon, or number of steps, in the problem.

We add communication to the model. Each agent has the option
to initiate communication before taking an action. We restrict this
paper to thesynccommunication model, so the communication lan-
guage simply allows transmission of the agents’ action/observation
histories before each action. Communication is instantaneous, a
message is received without delay as soon as it is sent. We also in-
cludeC, a fixed cost on each step of communicating these synchro-
nization messages. The fixed cost ofC is incurred ifanynumber

of agents choose to communicate. Otherwise, if no agent commu-
nicates, they incur no penalty. This problem is NEXP-hard. In-
deed, when communication is prohibitively expensive, the model
becomes a Dec-POMDP with no communication.

Since the problem has a finite horizonH, we can use a policy tree
to represent a non-communicative policy of an agent. In the policy
tree representation, nodes represent actions and branches represent
observations. Each agenti follows its own policy tree generated at
the last synchronization step, referred to asπ0

i with its first action
corresponding to the root at timet = 0, and its last action corre-
sponding to the leaves.π0

i contains a number of subpolicies, each
corresponding to an observation sequence as the tree is traversed.
We refer to an observation sequence asō and the resulting subpol-
icy asπi(ō). Note that if we know an agent’s initial policy and
its sequence history of observations, we can derive its sequence of
actions. Furthermore, the next sections will show that the local his-
tory of an agent can be combined with Bayesian reasoning on the
Dec-POMDP model and the initial policies of the other agents to
form a belief about the histories of other agents. To summarize,
each node of an agent’s policy tree maps to:

• A unique action/observation sequenceōi

• A future local subpolicy rooted at the nodeπi(ōi)

• A belief about the globalS as well as the action/observation
histories of the other agents.

We will use these mappings throughout the paper. Unless stated
otherwise we will also assume some housekeeping on the part of
the algorithms that we describe, that knowledge ofπi(ōi) implies
knowledge ofōi.

Let b(s) be a belief state, and letq be a variable representing
a successor state. Letai anda−i be the root actions of policies
〈πi, π−i〉. Standard theory on Dec-POMDPs says that the value of
a joint policy tree,〈πi, π−i〉 at a given belief state is recursively
defined as the expected sum of the rewards of the subpolicy trees.
That is:

V (〈πi, π−i〉, b) =
∑

s,q,oi,o−i

[
b(s)T (q|s, ai, a−i)

O(oi, o−i|q, ai, a−i)V (〈πi(oi), π−i(o−i)〉, q)
]

The above equation says that the value of the joint policy atb0 can
be decomposed into cases where the root actions result in a transi-
tion to stateq, resulting in observationsoi ando−i. The base case
of the recursion occurs at the last step of a finite horizon problem,
where value simply corresponds to the rewardR(s, ai, a−i) of the
last actions taken.

4. SOLUTION METHOD
In our method, plans and communication strategies are deterim-

ined offline and stored for use at runtime. The planner starts by
precomputing optimal joint policies without communication (any
non-communicative planner which generates policy trees can be
used for this step). It also precomputes non-communicative joint
policies for various reachable belief states of horizons1...T (more
details on this are in the next section), and stores these policies and
their value in a cache. It uses these to construct a cache function
for reachable belief distributions on the global state, and at runtime
the cache will be accessed by each agent through a function call:

CACHEi(b(S), h)→ 〈π∗i (b(S)), π∗−i(b(S))〉

wherei is the identity of the local agent accessing the cache,b(S)
is the belief state it wants to query,h is the depth of the policy and



π∗ represents that the policy is specific to that belief state. It also
optionally stores a mapping of some or all observation sequences
to communications decisions (if these are not stored, they could be
recomputed by the agent at execution time).

〈b(S), ōi〉 → {true, false}

where ōi is a vector composed of the observations agenti has
made on prior steps. At execution time, each agent follows its
policy and its communications policy. Upon communication, it
retrieves the appropriate policy from the cache for the discovered
belief state. We note trivially that if agents’ policies are known to
each other, then a joint observation sequence〈ōi, ō−i〉 also deter-
mines a unique action history, and a uniqueb(S) can be constructed
by starting at the initial belief state and performing a forward com-
putation as in a POMDP.

Before each action, each agent must decide whether to com-
municate. To do this, it uses theValue of Communication. Let
P (q, ō−i|ōi, 〈πi, π−i〉, b0) represent the probability of reaching state
q while the other agents receive observationsō−i after |ōi| steps,
given a starting belief stateb0 with policies〈πi, π−i〉, and local ob-
servations̄oi. (The computation of this probability will be deferred
to the next section). Let〈πi, π−i〉 be the joint policy before com-
munication and〈π∗i (bh), π∗−i(bh)〉 be the joint policy that results
from communication and discovery of joint belief statebh.

DEFINITION 1. The Value of Communication (VoC) is the dif-
ference between the expected value when communicating and the
expected value for remaining silent.

V oC(ōi, 〈πi, π−i〉, b0) =
∑

q

∑
ō−i

Pq,ō−i(V
∗ − C − V )

where
Pq,ō−i = P (q, ō−i|ōi, 〈πi, π−i〉, b0)

V ∗ = V ∗(〈π∗i (bh), π∗−i(bh)〉, q, t)
V = V (〈πi(ōi), π−i(ō−i)〉, q, t)

bh is the belief distribution at timeh given〈oi, o−i〉 andb0.

To understand the above definition, consider the perspective of
agenti. It has synchronized with the other agents and determined
that they synchronized in belief stateb0, it knows that the other
agents have been following policiesπ−i since then, and that it
has observed̄oi since synchronization. In order to contemplate the
value of remaining silent, it must consider the joint probability that
the other agents’ have observedō−i, and that the real current state
is q. If this is the case, it knows that the agents will continue along
subpolicies〈πi(ōi), π−i(ō−i)〉, and the value of staying silent is
simply the value of the joint subpolicy from stateq. If the agents
do communicate, they will combine observations to form a new
joint belief statebh, and they will follow a new joint policy for the
belief state,〈π∗i (bh), π∗j (bh)〉. The new joint belief state does not
affect the fact that the true state isq, and so it computes the value
of the new joint policy forq.

For example, consider the well-known multiagent Tiger problem
[5], after an agent has observed Tiger-Left. In order to evaluate
the value of communicating, the agent must consider each scenario
that occurs after communication, one of which is the (small) chance
that the other agent has also observed Tiger-Left, that they use the
combined observations to open the door on the right, but that the
true state was Tiger-Right, resulting in a large penalty.

4.1 Estimating the Joint History
We now explain howP (q, ō−i|ōi, 〈πi, π−i〉, b0) is computed.

There are three sources of difficulty in this computation: (1) the

Algorithm 1 : Find SSTs for other agents at current step
input : Synchronized Belief State b, Nonlocal PoliciesQ−i, Local

Observation Historȳoi, Local Action Historyāi, steps
output : An array of SSTs, each containing the true state, the

remaining policies of the other agents, and a probability
begin

D, E ← arrays of StateSubTrees, initialized to empty
for i = 1 to |S| do

D[i]← 〈i, Q−i, b(i), false〉
for step = 1 to steps do

E ← empty
for i = 1 to |D| do

ā−i ← the root actions ofD[i].tree
ai ← āi[step]
oi ← ōi[step]
for s′ = 1 to |S| do

for o−i = 1 to |Ω−i| do
SST ← new SST
α← (D[i].p)T (s, ai, a−i, s

′)
O(s, ai, a−i, oi, o−i, s

′)
if nonmyopicthen

LookupSST.comm
if SST.comm == true then

prune SST

SST.s = s′

SST.p = α
SST .Q =D[i].Q.subTrees[o−i]
Add SST to E

Merge SSTs with equivalent subpolicies
Prune SSTs withp < threshold fromE
Normalize eachSST.p in E
D ← E

returnD
end

local agent’s history of actions has affected the transition matrix
of the global state; (2) the other agents have adjusted their actions
based on their observation history, not the true state; and (3) each
local agent only holds its own observations, not necessarily the ob-
servations of the other agents.

DEFINITION 2. Let a State SubTree (SST), be a tuple〈s, Q, p, comm〉,
where s is a state, Q is a finite-horizon policy, p is a probability, and
comm is a boolean.

Algorithm 1 shows howP (ō−i, q|ōi, 〈πi, π−i〉, b0) is estimated.
The algorithm takes as input initial belief stateb0, the action and
observation histories of the current agenti, and the known policies
of the other agents atb0. It outputs a set of SSTs at the current time
step, each SST assigns a probability to one world state, composed
of the actual state and the current policy of the other agents. SSTs
are computed in a forward fashion. The set of SSTs is initialized
to contain one element for each nonzero entry inb0, with its p be-
ing its probability inb0, and itsQ being the initial policies of the
other agents. At each time step, the current set of SSTs are used
to generate a new set. Each SST in the new set represents a joint
action taken by the other agents, a joint observation received, and a
global state transition from an old SST, resulting in the new SST’s
state and subpolicy. The forward probabilityα is the probability of
the old SST times the probability that the other agents made this
transition, given the local agent’s knowledge of its own action and
observation on that step.

We also take the opportunity to merge SSTs with the same sub-
policy. That is, if two observation histories of the other agent lead
to the same subpolicy, there is no need to distinguish the two cases.
Formally, if there are two SSTs,



〈s, Q, p1, comm〉
and

〈s, Q, p2, comm〉
, they can be merged into a single SST

〈s, Q, p1 + p2, comm〉

This can be particularly useful in practice, if the non-communicative
plans were built by an algorithm such as IMBDP [11], which builds
plans where only a limited set of subpolicies are generated, and dif-
ferent observations lead to the same subpolicy.

There are other augmentations that can be made to Algorithm 1
which are not explored in this work. (1) The cache can be smaller
and only contain likely decision points. At run-time, when a non-
cached state is encountered, the agent can either initiate an online
computation, or it can use the joint-policy from the least (Man-
hattan) distant cached belief-state. (2) SSTs can be generated by
sampling from agent histories, rather than direct computation.

THEOREM 1. The problem of estimatingM.p has an equiva-
lent Hidden Markov Model (HMM) representation. Furthermore
the algorithm is correct:

Suppose agenti calls Algorithm 1 with threshold0 at timet after
observingōi, and the algorithm returns a setZ of SSTs. Then
∀M ∈ Z, if M = 〈s, Q, p, comm〉, thenp is the probability that
the global state iss and the other agents’ policies on this step are
Q at timet.

PROOF. We can convert the problem of estimatingM.p into an
HMM, and then solve using the forward-backward algorithm [10].
Each state of the HMM corresponds to a global state and an obser-
vation history of the other agents (we use the fact that each joint
observation history maps to a specific joint subpolicy such as Q).
State transition probabilities of the HMM correspond to state tran-
sition probabilities of the Dec-POMDP, given the local agent’s ac-
tion histories, times the probability of making the last observation.
The transition probability is zero if the new observation history can
not follow from the old. That is, a state with an observation his-
tory w1w2 can not transition to a state with an observation history
w2w2w3, but it can transition to a state with observation history
w1w2w3.

Given this transition model, it is clear through induction (with
the base case consisting merely ofS when Algorithm 1 is initial-
ized) that the forward computation used to generate the leaves in
the last step of Algorithm 1 are the same as the steps used to gen-
erate the corresponding states in the HMM.

We note that approaches similar to Algorithm 1 appear through-
out the literature. For instance, [6] states that "The key insight
in the multiagent case is that if the policies of all other agents
are fixed, then the free agent faces a complex but normal single-
agent POMDP”. However, we are unaware of a specific equiva-
lency proof to an HMM, and we are hopeful that such an equiva-
lency can be used in future work to leverage the rich HMM litera-
ture in Decentralized POMDPs.

PROPOSITION 1. Assume the agents synchronize at belief state
b0 and form policies〈πi, π−i〉, and the cost of communication is
C. Assume a myopic perspective (the local agent may communi-
cate only once, and the other agent can not communicate at all).
The error introduced when agenti makes a single communication
decision after observation sequenceōi is at most:

P (ōi|〈πi, π−i〉, b0) · C

PROOF. Assuming Theorem 1, if an agent computes its expec-
tation of communication and decides not to communicate, it can
never be wrong in the expected case. However, if it decides to
communicate, it may be making an error. SinceV ∗ ≥ V , that is,
the policy after communication is always at least as good as the
one before, the error on this case bounded byC, and weighing by
the probability of encountering the case in the first place, we have
P (ōi|〈πi, π−i〉, b0) ·C. Note that we are only considering the sin-
gle communication decision; not possibilities that involve multiple
future communication actions. This analysis is considerably more
complex and will be handled in future work.

The communication may not be necessary, as there are cases where
(1) the other agent may initiate communication in all of the neces-
sary states, or (2) communication can be deferred to a future step
when more information is known.

Note that the number of SSTs can grow exponentially in each
step, in the worst case. In practice, however, the number only grows
with reachable belief states, and often on real-world problems only
a small number of observations will be possible on each step. In
order to keep the algorithm tractable, the algorithm can optionally
prune SSTs with low probabilities at each step.

4.2 Non-myopic Reasoning
Algorithm 1 does not take into account the communication pol-

icy of the other agents, nor does it take into account the fact that
communication need not be immediate, it may be deferred to future
steps. In this section, we discuss how we improve the algorithm
past thismyopic assumption. The algorithm can be improved in
three ways, first by using the fact that other agents did not commu-
nicate since the lastsync, second by using the fact that other agents
can communicate in the present, and finally by using the fact that
communication can be deferred to the future.

4.3 Other agents in the past
We can use the knowledge that the other agents have not com-

municated since the last synchronized state. To do this, we use
thecommfield in the SST structure. At planning time, each agent
computes VoC given its possible observation sequences and syn-
chronized belief states. If VoC is positive, it setscommto true. The
commvalue is stored for this history.

As Algorithm 1 is executed, each SST represents one possible
observation history of this agent, and its children represent a con-
tinuation of that history. If thecommfield is set to true for a corre-
sponding observation history, this means that the agents would have
communicated at this point. But any agent executing Algorithm 1
knows that didn’t happen, since the algorithm initialized at the last
communication point. Therefore it is known that the observation
histories represented by such an SST never occurred, and the SST
can be pruned.

(As an aside, the algorithm only generates accurate probabilities
for SSTs in the current step. SST probabilities from previous steps
are not necessarily reflect the probabilities of those histories. This
is due to the nature of the forward-backward algorithm. In the last
step, only a forward computation is necessary, such as that provided
in the algorithm. For past steps, however, backwards information
from subsequent steps would be necessasry. Let this backwards
probability beβ, and define it to be the probability that an SST’s
policy Q was executed from its states given future observations.
Findingβ can be computationally complex, as each leaf ofQ must
be evaluated. Therefore in implementation we limit the analysis of
Q to the nexth steps, and only computingβh. For instance define
β1 for an SST with states′ and whose policyQ corresponds to an



observation historȳo−i to be:

β1 ←
∑
s′′

∑
ō′′∈O′′

T (s′′|a, s′)O(ō′′|a, s′′)

wherea is a joint action composed of the known local action for
that step as well as the root action for each other agents’ policies in
the SST, andO′′ is the set of joint observations which must include
the known observation from the local agent’s history.)

4.4 Nash equlibrium in the present
Having modeled the communication strategy of the other agent

on past steps, we turn to modeling the present step. To do this, we
find a Nash equilibrium of communication strategies by construct-
ing a matrix. For the two agent case, each row of the matrix corre-
sponds to the SSTs for one agent, and each column corresponds to
the SSTs for the other agent (for the multiagent case, each dimen-
sion represents another agent). Entries in the matrix correspond to
the VoC given the history represented by the corresponding joint
history, multiplied by the probability of that joint history. Each
agent has the ability to communicate or not to communicate given
a history. Communicating after a history corresponds to turning
a row (or column, for the other agent) ”on” or ”off”. The value
of a joint communication strategy is the sum of the ”on” values in
the matrix. The myopic strategy discussed in above sections cor-
responds to turning each row or column on if its entries sum to a
positive number. However, this illustrates the flaw of myopia, it
does not maximize the value of the whole matrix, only its indi-
vidual rows and columns. Since the row agent and column agent
are not coordinating, they may double count entries. We improve
on this by finding the Nash equilibrium. The approach is similar
to the one described in [1], except (1) The rows and columns and
probabilities correspond to observation histories, not states. (2) To
reduce time of computation, agents can only alterK rows, where
K is a parameter specified by the users. The remaining rows are
toggled through myopic computation.

4.5 Value of deferring communication
The value of deferring communication to the future can be com-

puted. For a given SST, the value of delay is the reward achieved by
not communicating on the current step, added to the expected re-
ward after communicating on the next step. The immediate reward
is pR(s,a) and it is added to:

p
∑
s′,o′

T (s′|a, s)O(o′|a, s′)V(〈π∗i (bh+1), π
∗
−i(bh+1)〉, s′)

wherep is the probability associated with the SST,a is the joint
action specified by continuing the current policy of the local agent
and the SST,s is the state in the SST,o′ the next joint observa-
tion, andbh+1 is the belief state that would result at the next step.
V is used to represent the fact that VoC must be retrieved for the
local agent’s observation ino′, and if it is positive thenV = V ∗

andbh+1 is the belief state that results from communication while
if V is negative,V = V and the joint policy merely continues.
To compute the value of delaying communication, the computation
above is summed for all SSTs returned by algorithm 1. If the sum is
greater than or equal to the value of communicating on the current
step, the agent does not communicate. A new value of delay will
be computed after the next action is executed. Because of this, it is
possible that the decision to postpone communication will cascade
across several steps.

5. EXPERIMENTS

horizon Cost No-Comm Periodic VoC-NM
3 0 5.19 11.3 12.5
3 5 5.19 5.46 7.99
3 10 5.19 5.19 6.03
5 0 4.92 26.2 26.2
5 5 4.92 6.3 9.14
5 10 4.92 4.92 5.62
8 0 9.00 41.8 41.8
8 5 9.00 12.3 24.3
8 10 9.00 9.00 10.6
10 0 9.4 53.2 53.2
10 5 9.4 12.87 22.7
10 10 9.4 9.4 11.9

Table 1: Comparison of various communications strategies for
the Tiger problem.

horizon Cost No-Comm Periodic VoC-NM
5 0 59.6 78.7 (4.0) 78.7 (4.0)
5 15 59.6 64.3 (1.0) 64.9 (.89)
5 30 59.6 60.3 (1.0) 64.1 (.80)

Table 2: Comparison of various communications strategies for
the BoxPushing-5 problem. Parentheses show the mean num-
ber of communications for each simulation.

We considered our algorithm, labeledVoC-NM(Value of Com-
munication - Non-Myopic), as compared to the algorithms ofNo
Communication, Full Communication(communicating on every
step), as well asPeriodic Communicationon various domains from
the literature. For this latter strategy, we ran an algorithm which
communicated everyK steps, and we used results from the best
value of K from 1 to the horizon of the problem. Thus,Peri-
odic will provably outperformNo CommunicationandFull Com-
munication, so we do not separately list results for full communi-
cation. Our algorithm was implemented as follows: we precom-
puted values of communication for each agent for reachable histo-
ries at planning time by running a large number of simulations, and
then stored this in a cache. We used a pruning threshold of0, as
we did not prune SSTs. We used the IMBDP planner [11] as the
non-communicative submodule for this step. Then we ran a new
100,000 simulations of the non-myopic algorithm, referencing this
cache on each simulation. Since MBDP-based planners only store
a handful of subpolicies for each horizon step (using the same sub-
policies for various branches of the larger policy tree), this choice
of planners kept the size of the cache smaller.

The Multiagent Tiger problem [5] was simulated with horizon
10. Results show that theV oC−NM planner was able to success-
fully communicate for both lower and higher costs of communica-
tion. Not shown in the figure, there was also a smooth decline in
the number of communications attempted by theVoC-NMplanner
as cost of communication increased. There was an average of3.5
synchronizations for each simulated run when the communication
cost wasC = 5, atC = 10 there was an average of.5 communi-
cations, and atC = 15 communication was rare, the average was
.04 per simulation. Running time was9 seconds for the precompu-
tation, and 2 seconds for the100, 000 simulated runs after that. We
also ran a myopic variant of theVoCplanner, it did not include the
algorithm enhancements of Section 4.2. The result across all tests
was an approximately10% decrease in score atC equal to5 or 10.

We also ran the larger BoxPushing problem [11] for horizon5, a



problem in which the value of the generated centralized and decen-
tralized plans only differ by20. Still, results similarly show that
a VoC-NMmethodology outperformed the other strategies because
it communicates less, resulting in a gradual decrease in value as
communication cost gets higher. The time taken for BoxPushing-5
was4300 seconds at the planning stage, and then.38 seconds to
run each simulation at execution time.

Across all experiments, a simple communication policy such as
Periodiccan be adequate when communication cost is low, or when
communication points can easily be picked from the domain. As
the cost of communication cost gets higher, and agents are moti-
vated to avoid communication if possible, the richerVoC-NMap-
proach is required. Even assuming, as we did, that the best pe-
riod can be determined, a periodic communicator is forced to ei-
ther choose to not communicate at all, or else to overcommunicate.
This was shown as theVoC-NMapproach reduced the amount of
communication by10% on BoxPushing when communication cost
was15, and by20% when cost was30.

6. CONCLUSION
We have presented a general approach for reasoning about costly

communication within the Dec-POMDP framework. Computing
the value of communication is challenging because each agent re-
ceives different partial observations and must reason about the pos-
sible synchronized state of the system after communication. We
have shown that computing the value of communication can be
used effectively to determine the utility of communicating versus
staying silent. The approach allows each agent to make an exact es-
timate of the state of the other agents. We implemented and tested
this capability using several standard benchmark problems. The re-
sults show that our approach uses communication effectively and
outperforms a naive algorithm based on periodic communication.
One area not explored in this paper is the tradeoff between build-
ing the cache of new policies at planning time, versus building it
at runtime. Our implementation used for experiments generated
the full cache at planning time, and always accounted for all pos-
sible observation histories. In future work, it would be interesting
to trade accuracy for speed. This can be done by pruning more im-
probable belief state histories for the other agents as the algorithm
progresses. Furthermore, it may be possible to drop the require-
ment that the exact value of the post-communication policies be
used. Instead, perhaps a quicker heuristic could be used, such as
the value of the centralized policy. These techniques create prac-
tical, yet disciplined ways to manage communication in decentral-
ized multiagent systems.
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