
Towards Quicker Probabilistic Recognition with Multiple Goal Heuristic Search

Richard G. Freedman Yi Ren Fung∗ Roman Ganchin∗ Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts, Amherst, MA 01003, USA
{freedman, rganchin, shlomo}@cs.umass.edu, yfung@umass.edu

Abstract

Referred to as an approach for either plan or goal recognition,
the original method proposed by Ramı́rez and Geffner intro-
duced a domain-based approach that did not need a library
containing specific plan instances. This introduced a more
generalizable means of representing tasks to be recognized,
but was also very slow due to its need to run simulations via
multiple executions of an off-the-shelf classical planner. Sev-
eral variations have since been proposed for quicker recogni-
tion, but each one uses a drastically different approach that
must sacrifice other qualities useful for processing the recog-
nition results in more complex systems. We present work in
progress that takes advantage of the shared state space be-
tween planner executions to perform multiple goal heuris-
tic search. This single execution of a planner will potentially
speed up the recognition process using the original method,
which also maintains the sacrificed properties and improves
some of the assumptions made by Ramı́rez and Geffner.

1 Introduction
Early research in plan recognition (Kautz 1991; Charniak
and Goldman 1991) identified which plan was being exe-
cuted given a description of what an agent was doing and
a plan library containing a set of action sequences (plans)
that solve a collection of predefined tasks. This ‘most-likely
match’ formulation was later extended to plan recognition
with hierarchical task network representations through an
analogy with natural language parsing (Geib and Steed-
man 2007; Freedman, Jung, and Zilberstein 2014), which
was similarly used for plan recognition over exploratory
grammars (Amir and Gal 2013; Mirsky and Gal 2016;
Mirsky, Gal, and Shieber 2017). However, the formulation
developed for plan recognition with classical planning rep-
resentations such as PDDL and STRIPS instead used a
plan domain that generalized the plan library (Ramı́rez and
Geffner 2009); a specified set of plans is not necessary for
each task because the domain definition represents the set
of all plans for each task. Related research has since la-
beled this work as goal recognition rather than plan recog-
nition because it identifies the goal conditions/task descrip-
tion only—no specific plan is returned due to the lack of a

∗These authors contributed equally to this work.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

match in a plan library (Sohrabi, Riabov, and Udrea 2016;
E-Martı́n, R-Moreno, and Smith 2015; Pereira, Oren, and
Meneguzzi 2017).

The method Ramı́rez and Geffner initially proposed uses
the domain definition to run any off-the-shelf classical plan-
ner and solve each recognizable goal in the list, both with
and without requiring the observed actions to be in the so-
lution. A probabilistic variation was proposed the following
year (Ramı́rez and Geffner 2010), introducing ranking and
a mathematical description of the recognition process for
classical planning. However, both versions require running
the chosen planner for each of these possible goals, which
makes the process very slow because it can only solve one
goal at a time.

Methods for speeding up the recognition process were in-
spired by this issue, but made modifications to the approach
that introduce sacrifices to the mathematical intuition and
accuracy in some cases. E-Martı́n, R-Moreno, and Smith
propagate cost information through a planning graph and
use the values of the nodes representing the goal conditions
to approximate the least-costly plan (2015). Their results
were typically faster, but were less accurate in some cases
and actually slower in a few domains. Pereira, Oren, and
Meneguzzi alternatively abstracted the problem from simu-
lating the entire planning process to just simulation of the
landmarks that must be accomplished no matter which plan
is used to reach a satisfying goal state (2017). Their results
performed far faster in every case, but the method is not yet
able to provide the probabilistic distribution due to the use of
a relative heuristic rather than actual plan cost. Furthermore,
there are far fewer landmarks than states so that applications
that need in-progress recognition (Freedman and Zilberstein
2017) will have the short-sighted bias of predicting the goals
whose optimal plans are closest to completion. This is due
to the partial observation sequences exclusively containing
actions from the beginning of the execution sequence. Vered
and Kaminka (2017) begin to address this for on-line recog-
nition of motion planning using two heuristics that decide
(1) whether to recompute as each new observation is made
and (2) when to remove goals that are less likely from the
list of possible goals. However, this approach also lacks a
probabilistic distribution over the possible goals. A varia-
tion strictly designed for GRIDWORLD-style path planning
domains found approximate values that can be precomputed

once and showed that, based on the strongest assumption
made by Ramı́rez and Geffner, the observation sequence is
not necessary if the current state and waypoints of interest
are all known in advance (Masters and Sardina 2017).

Instead of using shortcuts to speed up the traditional
recognition approach, we will take advantage of the con-
sistent search space and research on multiple goal heuristic
search (Davidov and Markovitch 2006) to avoid iteratively
running the off-the-shelf planner. In particular, the explored
regions of the space are expected to overlap between itera-
tions so that many nodes will no longer be redundantly ex-
panded. We will provide background on the Ramı́rez and
Geffner method and multiple goal heuristic search in Sec-
tion 2 and then discuss how the two work together in Sec-
tion 3. Section 4 discusses advantages of the integrated ap-
proach including the potential speed-up and increase in ac-
curacy due to an assumption the original method makes. As
this is work in progress, we then conclude with our plans for
future research using this proposed method in Section 5.

2 Background
Recognition with Classical Planners
The classical planning problem has tuple representationP =
〈F, I,A,G〉where F is the set of all fluents that describe the
world, I ⊆ F is the initial state’s true fluents, A is the set
of actions that may alter the state’s fluents, and G ⊆ F is
the set of goal conditions that must be true in a state for the
problem to be solved. Each action a ∈ A is composed of
precondition fluents pre (a) ⊆ F that determine whether an
action is applicable and effects del (a) , add (a) ⊆ F that set
fluents false or true, respectively. Because full observability
and deterministic actions are assumed, it is possible to solve
P using traditional search methods over a graph called the
state space whose nodes represent every possible state of the
world S = 2F and edges represent applicable actions whose
effects transition between different states a ∈ A : s1 ∈ S 7→
s2 ∈ S if pre (a) ⊆ s1 and s2 = (s1 − del (a)) ∪ add (a).
The solution is a sequence of actions, called a plan π, that is
equivalent to a path in the state space from I ∈ S to some
goal state g ∈ S such thatG ⊆ g. π is optimal if its total path
cost c (π) (the sum of the action costs) is the lowest possible
cost that solves P , but any π that solves P is satisficing; this
set is called ΠG.

On the other hand, a plan recognition problem defined
by Ramı́rez and Geffner keeps the domain D = 〈F, I,A〉
within the tuple T = 〈D, O,G〉 where G is the set of all pos-
sible goal conditions that an agent may choose to accomplish
and O is a (possibly partial) sequence of observed actions
that the agent has already taken towards its particular goal
conditions γ ∈ G. Thus the task is to identify γ given O
and our domain D (Ramı́rez and Geffner 2009), which was
later extended to a probability distribution over G given O
(Ramı́rez and Geffner 2010). Because one can simply take
the most probable goal conditions to be γ, we will use the
latter approach for the remainder of this manuscript.

Under the assumption that an agent is as rational as pos-
sible, the observed agent will ideally perform actions that
will accomplish γ with the lowest total plan cost possible.

Thus, if we were to strictly consider the set of plans that
include the observed actions in order (but not necessarily
consecutively), then the optimal plan(s) that provide a path
from I to a state satisfying goal conditions in G are the most
likely plans that the agent will take. It thus follows that the
goal conditions of these plans are the most likely ones that
the agent intends to accomplish. We believe this is also the
reason for the discrepancy between whether the method per-
forms plan recognition or goal recognition, but we will nei-
ther take a side nor pursue this argument further.

More formally, the probabilistic reasoning for computing
the likelihood over G given O is derived via Bayes’s Rule:

P (γ ∈ G |O) ∝ P (O |γ) · P (γ)

where the prior P (γ) is assumed to be uniform and the like-
lihood is computed based on the plans that satisfy γ and O:

P (O |γ) =
∑
π∈Πγ

P (O, π |γ) =
∑
π∈Πγ

P (O |π, γ) · P (π |γ) .

The former term of the product is binary because each plan
π either contains O as a subsequence or does not, which
simplifies the above equality by summing over the subset of
plans Πγ+O ⊆ Πγ . We explain the significance of γ +O in
the next paragraph, but we conclude the probability deriva-
tion as the latter term of the product is considered to be pro-
portional to the exponential decay of the cost - this captures
the notion of the rationality assumption for choosing a plan:

P (π |γ) ∝ e−βc(π)

for some constant β. Hence

P (O |γ) ∝
∑

π∈Πγ+O

e−βc(π).

To avoid a potentially infinite sum, Ramı́rez and Geffner
lastly assume that, due to the rapid rate at which exponential
decay decreases, it is sufficient to approximate the sum over
Πγ+O with just the greatest term. This is conveniently the
term associated with the optimal plan that both satisfies γ
and follows the observation sequence O. By making a few
changes to domain D, we are able to customize it to account
for following O:

• F ′ = F ∪
{
p0, p1, . . . , p|O|

}
• I ′ = I ∪ p0

• For each a ∈ A, observed action a′ ∈ A′

has pre (a′) = pre (a), add (a′) = add (a) ∪{
pi−1 → pi

∣∣a is the ith action in O
}

, del (a′) =

del (a) ∪
{
pi−1

∣∣a is the ith action in O
}

. This condi-
tional effect is not directly applied to the preconditions
because the action may still be performed without the
purpose of matching an observation.

Then we may also define modified goal condition γ + O =
γ ∪

{
p|O|

}
that signifies both achieving the goal conditions

and following all the observations in the sequence. Hence,
for each γ ∈ G, we may define a classical planning problem
〈F ′, I ′, A′, γ +O〉 whose optimal solution can compute the

above probability’s approximation. To normalize for the pro-
portionality of P (O |γ), a Boltzmann distribution with alter-
native stateO allows us to compute P (O |γ)+P

(
O |γ

)
= 1.

As O implies that the observations were not followed, we
can similarly approximate P

(
O |γ

)
using the optimal solu-

tion from the planning problem
〈
F ′, I ′, A′, γ +O

〉
where

γ +O = γ ∪
{
¬p|O|

}
. Therefore, running any off-the-shelf

classical planner with each new planning problem will yield
all the numbers needed to approximate the probability dis-
tribution P (γ ∈ G |O) for recognition.

Multiple Goal Heuristic Search
Classical planning problems typically aim to find one so-
lution for each planning problem because the single plan
is sufficient for completing the task. Likewise, the major-
ity of problems in computer science-related research need
just one solution per problem. For example, machine learn-
ing models typically need one optimal parameter configu-
ration. However, there are problems such as searching for
website pages that require finding multiple solutions. Crawl-
ing the web should ideally find multiple websites that satisfy
a queried topic.

Research on multiple goal heuristic search (Davidov and
Markovitch 2006) was inspired by this application under the
realistic constraint that there are not enough resources to
search through the entire space, whether it be limited time,
memory storage, or something more problem-specific. It is
an anytime or contract algorithm that exchanges optimality
for finding as many goals as possible before the specified re-
source limit is exhausted. Some degree of optimality is still
implicit because it costs more resources to find less optimal
results, but there can be trade-offs when there is one optimal
solution in one region of the search space compared to many
less optimal solutions in another region of the search space.

More formally, a search problem is represented as tuple
〈N,E, I,G〉 where N is the set of nodes that compose the
search space, E is the set of edges that join adjacent nodes
in the search space, I ∈ N is the initial state from which
the search begins, and G ⊆ N is the set of all goal nodes in
the search space that will solve the problem. The traditional
search process iteratively explores some state along a hori-
zon/frontier H ⊆ N and then places all its adjacent nodes
that are not yet explored into H . The loop typically stops
once the chosen node from H is one of the desired goals G.
The data structure chosen to represent H often determines
how to navigate the search space; using a priority queue for
F generates a heuristic search where the priority values are
computed via a heuristic function h : N → R≥0 that ap-
proximates the remaining cost from some node n ∈ N to
some goal node g ∈ G. In heuristic search, selecting n from
H is interpreted as n being the closest node within H to a
goal node, possibly a goal node itself.

Multiple goal heuristic search adjusts this standard pro-
cedure by terminating the loop when the specified amount
of resources R is exhausted instead of after selecting a goal
node from H to explore. The proposed heuristic function
that ignores resource constraints is the progress heuristic
that accounts for the subset of goal nodes towards which

each node in the frontier is relatively progressing. For each
node n ∈ N , this set of goal nodes is

Gp (n) =

{
g ∈ G

∣∣∣∣hd (n, g) = min
n′∈F

hd (n′, g)

}
where hd (n ∈ N, g ∈ G) is the heuristic distance function
to a specific goal node. Then the average distance between
n and all goal nodes in Gp (n) is

Dp (n) = |Gp (n)|−1 ·
∑

g∈Gp(n)

hd (n, g)

so that the progress heuristic is hprogress (n) = Dp (n) ·
|Gp (n)|−1, which increases the priority value of node n in
H when Dp (n) is lesser and/or Gp (n) is greater. That is,
nodes with a lesser average distance to more goal nodes are
preferred in the exploration step of search.

In the case of web search where the distance between web
pages may not be easily estimated, the heuristic function can
be substituted with the marginal utility function that repre-
sents how many goal states are expected to be found from
a search starting at node n ∈ N with the remaining unused
resources. If there was perfect information about the entire
search space, then the marginal utility would simply be:

MU (n, r ≤ R) =
maxT∈T (n,r) |Tg (n) ∩ T |

r

where Tg (n) is the set of all goal nodes reachable from
n in the search space and T (n, r) is the set of all search
trees generated from initial node n using no more than r re-
sources. In this case, R is typically the number of nodes that
can be explored during the search. Due to the lack of such
perfect information without already performing the search,
partial values at depth d ≤ D for the number of nodes vis-
ited Nd (n) from each intermediate node n and the number
of goal nodes found Gd (n) are maintained in a table. These
table entries are updated as the search continues, and the ra-
tio Nd (n) · Gd (n)

−1 can approximate the marginal utility
for unexplored nodes in H when they are ‘similar’ either as
siblings in a search tree/graph or via a metric between nodes.

3 Recognition with Multiple Goal Heuristic
Search

When running an off-the-shelf classical planner for each
modified planning problem generated as part of Ramı́rez
and Geffner’s method (2010), we note that F ′, I ′, and A′
are all kept constant — only the goal conditions change
between each planner execution. Therefore, the state space
and initial state do not change between planning problems
so that the independent searches start identically. We thus
rewrite all 2 · |G| planning problems into a single problem
for multiple goal heuristic search: 〈S′, EA′ , I ′, GG〉 where
S′ = 2F

′
is the set of all states, EA′ is the set of all tran-

sition edges in the state space formed by the actions in A′,
and GG = {γ +O |γ ∈ G } ∪

{
γ +O |γ ∈ G

}
is the set of

all goal conditions.

Modifications for PDDL
As the search space for web crawling can be different
from the state space composed by a PDDL representation,
some modifications must be made to multiple goal heuristic
search. Because the search space is derived from the state
space, we will use node and state interchangeably.

The simplest change is the goal node check. Instead of
comparing the explored node to all specified goal states in
a list, we check whether the current state satisfies any one
of the specified goal conditions. Although it is possible to
enumerate all 2|F

′−G| goal states for each set of goal con-
ditions G ∈ GG , such a list would be quite large. The time
complexity is also a linear search over the set of goal con-
ditions O

(∑
G∈GG |G|

)
compared to a binary search (all

states can be uniquely mapped to |F ′|-digit binary numbers)
over the set of all goal states satisfying at least one set of
goal conditions O

(
log
(∑

G∈GG 2|F
′−G|

))
where it is of-

ten the case that there are far fewer goal conditions than flu-
ents |G| << |F ′|.

The other differences are fortunately acknowledged in
Section 4.5 of Davidov and Markovitch’s paper (2006), ti-
tled ‘Additional Considerations’. These were provided as
alterations for search spaces with certain properties not
present in their applications, and several of them are found
in our case. In particular, we take advantage of the fact that
fluents F ′ serve as features over PDDL-represented states
so that we may apply the Hamming distance between binary
representations of states to measure their similarity.

For example, we need to find at least one goal state that
satisfies each G ∈ GG in order to complete all the compu-
tations for the probabilistic recognition algorithm, but the
progress heuristic and marginal utility prefer to continue
searching in regions of the search space where the already
found goal states exist. Removing the found goal states from
the goal list cannot be done due to the above change to
goal condition checking. However, their proposed modified
heuristic function h′ (n) = h (n)

(
1 + c1e

−c2d(n)
)

is appli-
cable where d (n ∈ S′) is the minimal Hamming distance
from n to the visited goal states (we instead consider the goal
conditions that visited goal states satisfy) and c1, c2 ∈ R≥0

are parameters. This increases the heuristic value of states
closer to the found goals so that more exploration through
other regions of the state space is enforced until one goal
state per set of conditions is found.

Likewise, many actions are reversible in PDDL-
represented domains so that the search space is often a well-
connected bidirectional graph rather than a tree-like struc-
ture. This means that many nodes inH may lead to the same
goal states such that exploring all of them is redundant and
a waste of the limited resources. Davidov and Markovitch
(2006) address this using the Hamming distance between
states with lowest priority value in H and recently expanded
states as a tie-breaker. States with greater distances are pre-
ferred because they are more likely to be associated with
a different region of the search space and thus find novel
goal states. Enforcing diversity in tie-breaking is an effective
strategy for quickly finding a goal state in single-goal heuris-

I’

G0
1

G0
2

G1
1

G1
2

G0
3 ^G1

3

G0
4 ^G1

4

Figure 1: A search space where multiple goal heuristic
search does not significantly reduce the number of explored
nodes. The sparsity of the goal conditions’ states (Gki is the
kth goal state satisfying conditions Gi) and their displace-
ments in the space make it as effective as running indepen-
dent searches for each goal (red for G0 and blue for G1).

tic search methods such as A∗ without wasting as many re-
sources (Asai and Fukunaga 2017), which further supports
this strategy for quickly finding a variety of different goals.

4 Expected Benefits of Approach
Improved Runtime
We hypothesize that this reformulation will provide several
benefits to the original recognition algorithm. The great-
est contribution is quickening the algorithm because call-
ing the planner multiple times not only increases overhead,
but restarting the search within the same state space is ex-
pected to repeat exploration and expansion of many states.
This repetition is most likely to occur with states whose dis-
tance to I ′ is smaller, but can also happen if there is overlap
between different goal conditions. In the best case, one of
the goal conditions γ cannot be satisfied with or without the
observations so that there will be no solution for γ + O or
γ+O. The off-the-shelf planner will identify this case when
the entire subset of the state space reachable from I ′ is ex-
hausted because no goal states were found, but all the other
goal states for the remaining problems would have already
been expanded for a complete overlap. In the worst case, the
goal conditions correspond to sets of states in vastly differ-
ent regions of the state space so that there is little overlap of
the explored state space between each individual planning
problem, illustrated in Figure 1. However, the average case
will contain a reasonable overlap between each individual
search’s visited regions of the state space because the goal
states are not often at opposite regions of the state space.

Improved Computational Accuracy
The second hypothesized benefit takes advantage of the fact
that a single set of goal conditionsG corresponds to 2|F

′−G|
goal states in the state space. This enables multiple goal
heuristic search to find multiple goal states for the same
goal condition, which gives us multiple plans that solve a
single one of the planning problems. This is beneficial for
the computational accuracy of the probability P (O |γ) be-

cause, as mentioned in Section 2, the method assumes that
only the most optimal plan’s cost matters. While their re-
sults imply that this assumption may be sufficient for rank-
ing purposes in recognition, other works that use the prob-
abilities for computation such as necessities in interaction
(Freedman and Zilberstein 2017) will benefit from having a
more accurate value. Clearly the assumption is also neces-
sary for practical purposes because running an off-the-shelf
planner 2 · |G| times is already time intensive, and obtaining
additional plans from more planner executions (a satisficing
planner is needed to avoid getting just the optimal plans)
only increases the time requirement.

While the most accurate approximation would come from
a method such as K∗ search (Aljazzar and Leue 2011)
that returns the k shortest paths (k most optimal plans), it
would need to be executed for each goal independently and
again sacrifice the speed-up. Sohrabi, Riabov, and Udrea
(2016) used the K∗ and LPG-d diversity planner (Nguyen
et al. 2012) to sample many plans for a similar purpose in
their variation that handles noisy observations. Multiple goal
heuristic search will also find a variety of plans that satisfy
the goal conditions. Employing a tree search version with
sufficient resources will find every path to all the goal states,
but the set of all plans will be infinite if a goal state is part
of a cycle within the state space. Thus we must use a graph
search version, which can still identify a single plan to reach
each goal state and contribute up to

∑
G∈GG 2|F

′−G| plans
to the computations.

Despite the rapid exponential decay of the probability
mass contribution from much less optimal plans, Ramı́rez
and Geffner do not mention that search trees usually grow
exponentially at each depth. Hence there are more instances
of plans with a specific less optimal cost, and there are often
multiple optimal plans as well.
Lemma 1. For all d, i ∈ R≥0, let Πd be the set
of all plans that solve some planning problem P =
〈F ′, I ′, A′, G ∈ GG〉 with cost d greater than the optimal
plan’s cost, and let Πd+i be the set of all plans that solve
P with cost d + i greater than the optimal plan’s cost. If
the number of plans increases by a factor of eβi from Πd

to Πd+i, then Πd+i’s contribution to the probability mass of
P (O |γ) will be as much or greater than Πd’s.

Proof. Let d ∈ R≥0 and Πd be the set of all plans that
solve some planning problem P = 〈F ′, I ′, A′, G ∈ GG〉
with cost d greater than the optimal plan’s cost. Then
P (π ∈ Πd |G) = Z−1e−βc(π) = Z−1e−β(c(π∗)+d)

where π∗ is an optimal plan that solves P and Z is
a normalizing constant. Then setting

∑
π∈Πd

P (π |G) =

|Πd|Z−1e−β(c(π∗)+d) ≤ |Πd+i|Z−1e−β(c(π∗)+d+i) =∑
π∈Πd+i

P (π |G) for any i ∈ R≥0 implies that

eβi ≤ |Πd+i|
|Πd|

.

Thus increasing the number of plans by a factor of eβi en-
sures that the set of plans with cost d + i more than the op-
timal plan’s contribution to the probability mass of P (O |γ)
will be greater.

In the works that use these computations, β is always
set to 1 so that the rate increases about 3 times per ex-
tra unit of cost. While this means that additional plans
will contribute more to significantly alter the unnormalized
likelihood value, experimentation will be necessary to con-
firm whether this alters the probabilities after normalization.
If these extra plans affect all the likelihood computations
evenly, then it is possible that the normalized probabilities
will still be similar to the approximation version.

5 Discussion
Recognition using off-the-shelf classical planners allows the
flexibility of not needing a library of predefined plans, but
is consequently much slower due to the need to simulate the
plans. We propose using multiple goal heuristic search in
order to reduce the expected runtime by taking advantage
of the fact that each individual execution of the planner has
the same state space and initial state. This means that many
of the same states are revisited with each planner call, and
this redundancy can be removed by searching for all the goal
states at once. This also allows us to potentially find multi-
ple plans for the same goal condition, which may improve
the accuracy of the probabilistic computations that currently
assume that only the cost of the optimal plan matters. At the
moment, this approach is being implemented for upcoming
experiments that will test our hypotheses of these benefits.

Planned Experiments

We are currently implementing the algorithm for recogni-
tion using multiple goal heuristic search and plan to first test
the hypothesis regarding expected speed-up. Because the
Ramı́rez and Geffner method and ours both perform a form
of heuristic search, we can compare speed with respect to the
number of states that are generated and expanded during the
searches. However, the other approaches for fast recognition
that use cost propagation over the planning graph (E-Martı́n,
R-Moreno, and Smith 2015) or landmark-based heuristics
(Pereira, Oren, and Meneguzzi 2017) cannot be measured
by the number of nodes expanded. Thus, we will need to
perform the overall comparison via clocked runtime for the
standard benchmarks developed from domains at past iter-
ations of the International Planning Competition. Our ap-
proach should find additional goal states that would not be
found during the individual planner executions; so it may be
more fair to try a variation for this experiment that removes a
goal condition fromGG when one of its corresponding states
is selected.

On the other hand, it will be necessary to find all these dif-
ferent goal states in order to run experiments that test the hy-
pothesis regarding expected accuracy improvements. These
experiments will simply compare the approximated proba-
bility P (γ ∈ G) using only the optimal plan’s cost per goal
condition in GG against all the plans’ costs found per goal
condition in GG . We will also investigate how the resource
limit parameter for multiple goal heuristic search impacts
the runtime and approximation; there may be some trade-
offs between them.

Future Work
While faster recognition algorithms are generally ideal for
any application, one of our key motivations is adaptive inter-
action. Initial work for in-progress recognition based on the
Ramı́rez and Geffner approach was used to perform simple
responsive interaction, but it was so slow that it was impos-
sible to use with an actual human because it is unreasonable
to expect a person to wait nearly thirty minutes for an in-
teractive response to a single action (Freedman and Zilber-
stein 2017). Thus, if our hypotheses hold, we plan to use this
quicker method in order to begin testing simple interactions
with humans. We will also further study the applicability of
multiple goal heuristic search to other recognition and plan-
ning problems.

Acknowledgements
We thank the anonymous reviewers for their feedback. This
work was supported in part by the National Science Foun-
dation under grant IIS-1405550.

References
Aljazzar, H., and Leue, S. 2011. K∗: A heuristic search algo-
rithm for finding the k shortest paths. Artificial Intelligence
175(18):2129–2154.
Amir, O., and Gal, Y. K. 2013. Plan recognition and visu-
alization in exploratory learning environments. ACM Trans-
actions on Interactive Intelligent Systems 3(3):16:1–16:23.
Asai, M., and Fukunaga, A. 2017. Tie-breaking strategies
for cost-optimal best first search. Journal of Artificial Intel-
ligence Research 58:67–121.
Charniak, E., and Goldman, R. 1991. Probabilistic ab-
duction for plan recognition. Technical Report CS-91-12,
Brown University, Providence, RI, USA.
Davidov, D., and Markovitch, S. 2006. Multiple-goal
heuristic search. Journal of Artificial Intelligence Research
26:417–451.
E-Martı́n, Y.; R-Moreno, M. D.; and Smith, D. E. 2015.
A fast goal recognition technique based on interaction esti-
mates. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, 761–768.
Freedman, R. G., and Zilberstein, S. 2017. Integration of
planning with recognition for responsive interaction using
classical planners. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, 4581–4588.
Freedman, R. G.; Jung, H.-T.; and Zilberstein, S. 2014. Plan
and activity recognition from a topic modeling perspective.
In Proceedings of the Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling, 360–364.
Geib, C. W., and Steedman, M. 2007. On natural lan-
guage processing and plan recognition. In Proceedings of
the Twentieth International Joint Conference on Artificial
Intelligence, 1612–1617.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Allen, J. F.; Kautz, H. A.; Pelavin,
R. N.; and Tenenberg, J. D., eds., Reasoning About Plans.
San Francisco, CA, USA: Morgan Kaufmann. 69–125.

Masters, P., and Sardina, S. 2017. Cost-based goal recog-
nition for path-planning. In Proceedings of the Sixteenth
Conference on Autonomous Agents and Multiagent Systems,
750–758. São Paulo, Brazil: International Foundation for
Autonomous Agents and Multiagent Systems.
Mirsky, R., and Gal, Y. K. 2016. SLIM: semi-lazy infer-
ence mechanism for plan recognition. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 394–400.
Mirsky, R.; Gal, Y. K.; and Shieber, S. M. 2017. CRA-
DLE: an online plan recognition algorithm for exploratory
domains. ACM Transactions on Intelligent Systems and
Technology 8(3):45:1–45:22.
Nguyen, T. A.; Do, M.; Gerevini, A. E.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190:1–31.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
3622–3628.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence, 1778–1783.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, 1121–1126.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan
recognition as planning revisited. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 3258–3264.
Vered, M., and Kaminka, G. A. 2017. Heuristic online goal
recognition in continuous domains. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, 4447–4454.

