
Efficient Maximization in Solving POMDPs

Zhengzhu Feng
Computer Science Department
University of Massachusetts

Amherst, MA 01003
fengzz@cs.umass.edu

Shlomo Zilberstein
Computer Science Department
University of Massachusetts

Amherst, MA 01003
shlomo@cs.umass.edu

Abstract
We present a simple, yet effective improvement to the dy-
namic programming algorithm for solving partially observ-
able Markov decision processes. The technique targets the
vector pruning operation during the maximization step, a key
source of complexity in POMDP algorithms. We identify two
types of structures in the belief space and exploit them to re-
duce significantly the number of constraints in the linear pro-
grams used for pruning. The benefits of the new technique are
evaluated both analytically and experimentally, showing that
it can lead to significant performance improvement. The re-
sults open up new research opportunities to enhance the per-
formance and scalability of several POMDP algorithms.

Introduction
A partially observable Markov decision process (POMDP)
models an agent acting in an uncertain environment,
equipped with imperfect actuators and noisy sensors. It pro-
vides an elegant and expressive framework for modeling a
wide range of problems in decision making under uncer-
tainty. However, this expressiveness in modeling comes with
a prohibitive computational cost when it comes to solving
a POMDP and obtaining an optimal policy. Improving the
scalability of solution methods for POMDPs is thus a critical
research topic.
Standard solution methods for POMDPs rely on perform-

ing a dynamic programming update of the value function,
represented by a finite set of linear vectors over the state
space. A key source of complexity is the size of the value
function representation, which grows exponentially with the
number of observations. Fortunately, a large number of vec-
tors in this representation can be pruned away without af-
fecting the values using a linear programming (LP) method.
Solving the resulting linear programs is therefore the main
computation in the DP update.
Consequently, many research efforts have focused on im-

proving the efficiency of vector pruning. The pruning hap-
pens at three stages of the DP update, namely the projec-
tion stage, the cross-sum stage, and the maximization stage.
During the cross-sum stage, the number of vectors increases
exponentially, making it the major bottle-neck in the DP up-
date process. As a result, most research efforts focus on the
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cross-sum stage. The incremental pruning (IP) algorithm
(Zhang & Liu 1996; Cassandra, Littman, & Zhang 1997)
was designed to address this problem by interleaving the
cross-sum and the pruning which leads to significantly re-
duced number of linear programs to be solved. Recently, we
developed a region-based variant of IP that can exploit the
local structure of the belief space to reduce the size of the
linear programs, leading to exponential improvement of the
cross-sum stage (Feng & Zilberstein 2004). However, these
algorithms do not address the performance of the maximiza-
tion stage that prunes the combination of the results from the
cross-sum stage, which can be exponentially large as well.
Therefore the improvement to the overall DP update process
by these methods is limited.
In this paper, we identify certain properties of the pro-

jection and maximization stages and show how they can be
exploited to greatly accelerate the DP process. We build on
the region-based cross-sum pruning approach we previously
developed, and specifically address here the maximization
step. We show that in the maximization stage, only vectors
whose witness regions are close to each other in the belief
space are needed for testing dominance. We show how this
closeness information can be obtained during the cross-sum
stage at little cost. Although this method leaves some dom-
inated vectors undetected, we show that typical reachability
and observability structure in a problem allows such domi-
nated vectors to be pruned efficiently in a subsequent pro-
jection pruning stage. Combining these two ideas, our algo-
rithm can deliver a significant performance improvement to
the whole dynamic programming algorithm.

The POMDP Model
We consider a discrete time POMDP defined by the tuple
(S, A, P,R, Z, O), where
• S is a finite set of states;
• A is a finite set of actions.
• P is the transition model, P a(s′|s) is the probability of
reaching state s′ if action a is taken in state s;

• R is the reward model, Ra(s) is the expected immediate
reward for taking action a in state s;

• Z is a finite set of observations that the agent can sense;

• O is the observation model, Oa(z|s′) is the probability of
observing z if action a is taken and resulted in state s′.

We are interested in maximizing the infinite horizon total
discounted reward, where β ∈ [0, 1) is the discount factor.
The standard approach to solving a POMDP is to convert
it to a belief-state MDP. A belief state b is a probability
distribution over the state space b : S → [0, 1], such that∑

s∈S b(s) = 1.0. Given a belief state b, representing the
agent’s current estimate of the underlying states, the next
belief state b′ is the revised estimate as a result of taking ac-
tion a and receiving observation z. It can be computed using
Bayesian conditioning as follows:

b′(s′) =
1

P a(z|b)Oa(z|s′)
∑

s∈S

P a(s′|s)b(s),

where P a(z|b) is a normalizing factor:

P a(z|b) =
∑

s′∈S

[
Oa(z|s′)

∑

s∈S

P a(s′|s)b(s)
]

We use b′ = T z
a (b) to refer to belief update. It has been

shown that a belief state updated this way is a sufficient
statistic that summarizes the entire history of the process.
It is the only information needed to perform optimally. An
equivalent, completely observable MDP, can be defined over
this belief state space as the tuple (B, A, T,RB), where B is
the infinite space of all belief states, A is the action set as
before, T is the belief transition function as defined above,
and RB is the reward model, constructed from the POMDP
model as follows: Ra

B(b) =
∑

s∈S b(s)Ra(s).
In this form, a POMDP can be solved by iteration of a dy-

namic programming update that improves a value function
V : B → #. For all belief states b ∈ B:

V ′(b) = max
a∈A

{
Ra
B(b) + β

∑

z∈Z

P a(z|b)V (T (b))

}
. (1)

Performing the DP update is challenging because the
space of belief states is continuous. However, Smallwood
and Sondik (Smallwood & Sondik 1973) proved that the DP
backup preserves the piecewise linearity and convexity of
the value function, leading the way to designing POMDP al-
gorithms. A piecewise linear and convex value function V
can be represented by a finite set of |S|-dimensional vectors
of real numbers, V = {v0, v1, . . . , vk}, such that the value
of each belief state b is defined by V (b) = maxvi∈V b · vi,
where b · v :=

∑
s∈S b(s)v(s) is the “dot product” between

a belief state and a vector. Moreover, a piecewise linear and
convex value function has a unique minimal-size set of vec-
tors that represents it. This representation of the value func-
tion allows the DP update to be computed exactly.

Vector Pruning in Dynamic Programming
Note that the computation of V ′ in Equation (1) can be di-
vided into three stages: (Cassandra, Littman, & Zhang 1997)

V a,z(b) =
Ra
B(b)
|Z| + βP a(z|b)V (T (b)) (2)

V a(b) =
∑

z∈Z

V a,z(b) (3)

V ′(b) = max
a∈A

V a(b) (4)

Each of these value functions is piecewise linear and con-
vex, and can be represented by a unique minimum-size set
of vectors. We use the symbols V ′, Va, and Va,z to refer to
these minimum-size sets.
Using the script letters U andW to denote sets of vectors,

we adopt the following notation to refer to operations on
sets of vectors. The cross-sum of two sets of vectors, U and
W , is defined by U ⊕ W = {u + w|u ∈ U , w ∈ W}.
An operator that takes a set of vectors U and reduces it to
its unique minimum form is denoted PR(U). We also use
PR(U) to denote the resulting minimum set. Formally, u ∈
PR(U) if and only if u ∈ U , and ∃b ∈ B such that for
∀u′ '= u ∈ U , u · b > u′ · b. Using this notation, the three
stages of computation can be expressed as follows:

Va,z = PR
(
{va,z,i|vi ∈ V}

)
, (5)

Va = PR (⊕z∈ZVa,z) (6)
V ′ = PR (∪a∈AVa) (7)

where va,z,i is a projection from vi computed by

va,z,i(s) =
Ra(s)
|Z| + β

∑

s′∈S

Oa(z|s′)P a(s′|s)vi(s′). (8)

We refer to these three stages as projection pruning, cross-
sum pruning, and maximization pruning, respectively. Ta-
ble 1 summarizes an algorithm from (White 1991) that re-
duces a set of vectors to a unique, minimal-size set by re-
moving “dominated” vectors, that is, vectors that can be re-
moved without affecting the value of any belief state.
There are two standard tests for dominated vectors. The

simplest method is to remove any vector u that is pointwise
dominated by another vector w. That is, u(s) ≤ w(s) for all
s ∈ S. The procedure POINTWISE-DOMINATE in Table 1
performs this operation. Although this method of detecting
dominated vectors is fast, it can only remove a small number
of dominated vectors.
There is a linear programming method that can detect all

dominated vectors. The main algorithm is summarized in
the procedure PR(W) in Table 1. Given a set of vectorsW ,
it extracts non-dominated vectors fromW and puts them in
the set D. Each time a vector w is picked from W , it is
tested againstD using the linear program listed in procedure
LP-DOMINATE. The linear program determines whether
adding w to D improves the value function represented by
D for any belief state b. If it does, the vector inW that gives
the maximal value at belief state b is extracted from W us-
ing the procedure BEST, and is added to D. Otherwise w
is a dominated vector and is discarded. The symbol <lex

in procedure BEST denotes lexicographic ordering. Its sig-
nificance in implementing this algorithm was elucidated by
Littman (1994).
Note that using this algorithm to prune a set W , the

number of constraints in each linear program is bounded by
|PR(W)|, the size of the resulting set. In the worst case,

procedure POINTWISE-DOMINATE(w,U)
1. for each u ∈ U
2. if w(s) ≤ u(s), ∀s ∈ S then return true
3. return false
procedure LP-DOMINATE(w,U)
4. solve the following linear program

variables: d, b(s) ∀s ∈ S
maximize d
subject to the constraints

b · (w − u) ≥ d, ∀u ∈ UP
s∈S b(s) = 1

5. if d ≥ 0 then return b
6. else return nil
procedure BEST(b,U)
7. max ← −∞
8. for each u ∈ U
9. if (b · u > max) or ((b · u = max) and (u <lex w))
10. w ← u
11. max ← b · u
12. return w
procedure PR(W)
13.D ← ∅
14. whileW *= ∅
15. w ← any element inW
16. if POINTWISE-DOMINATE(w,D) = true
17. W ←W − {w}
18. else
19. b ← LP-DOMINATE(w,D)
20. if b = nil then
21. W ←W − {w}
22. else
23. w ← BEST(b,W)
24. D ← D ∪ {w}
25. W ←W − {w}
26. return D

Table 1: Algorithm for pruning a set of vectorsW .

|PR(W)| can be as large as |W|. With this in mind, let’s
examine the number of constraints in the linear programs
during the three pruning stages:

Projection pruning Given the input value function V , the
linear programs in the projection pruning (Eq. 5) have worst
case number of constraints of |Va,z|. In the worst case,
|Va,z| = |V|. However, for many practical domains, Va,z

is usually much smaller than V . In particular, a problem
usually exhibits the following local structure:
• Reachability: from state s, only a limited number of
states s′ can be reachable through action a.

• Observability: for observation z, there are only a limited
number of states in which z is observable after action a is
taken.

As a result, the belief update for a particular (a, z) pair
usually maps the whole belief space B into a small subset
T z

a (B). Effectively, only values of V over this belief subset
need to be backed up in Equation 8. The number of vectors
needed to represent V over the subset can be much smaller,
and the projection pruning can in fact be seen as a way of
finding the minimal subset of V that represents the same
value function over T z

a (B). We will exploit this fact in

our algorithm, by shifting some of the pruning in the max-
imization stage to the projection stage of the next DP update.

Cross-sum pruning The cross-sum is the source of the
exponential growth of the value function, since |⊕z Va,z| =∏

z |Va,z|. Using the standard pruning algorithm, there are∏
z |Va,z| linear programs to be solved, and the the num-

ber of constraints in these linear programs can be as large
as |Va|. The incremental pruning algorithm (Cassandra,
Littman, & Zhang 1997) aims at reducing the number of lin-
ear programs that need to be solved in the cross-sum pruning
stage, by interleaving the pruning and the cross-sum opera-
tors:

Va=PR(Va,z1⊕ PR(Va,z2⊕ ···PR(Va,zk−1⊕ Va,zk) ···))

This greatly reduces the number of linear programs.
However, although in practice there are usually a large
number of vectors that are dominated in ⊕zVa,z , the size
of Va still represents an exponential increase over the
size of the inputs. Therefore in incremental pruning, each
linear program can still be very large. Recently, Feng
and Zilberstein (2004) introduced an improved version of
incremental pruning that reduced the worst case number of
constraints to

∑
z |Va,z|, leading to an exponential speed-up

of the cross-sum stage.

Maximization pruning The maximization pruning
presents yet another bottleneck in the DP process, since it
needs to prune the union of the cross-sum value functions
for all actions, and each cross-sum Va can be exponential
in the size of the previous value function V . In this paper,
we propose a simple algorithm for selecting constraints
for the linear programs used in the maximization pruning
stage. We borrow the region-based view presented in (Feng
& Zilberstein 2004), and pick constraints for use in the
maximization pruning linear program according to the local
belief space structure.

Region-Based Cross-Sum Pruning
In this section, we review the region-based pruning algo-
rithm for the cross-sum stage in (Feng & Zilberstein 2004),
and introduce the notation used by our algorithm. Recall that
each vector u ∈ U defines a witness region Bu

U over which
u dominates all other vectors in U (Littman, Cassandra, &
Kaelbling 1996):

Bu
U = {b|b · (u− u′) > 0,∀u′ ∈ U − {u}}. (9)

Note that each inequality in Equation (9) can be repre-
sented by a vector, (u−u′), over the state space. We call the
inequality associated with such a vector a region constraint,
and use the notation L(Bu

U) := {(u − u′)|u′ ∈ U − {u}}
to represent the set of region constraints defining Bu

U . Note
that for any two regions Bu

U and Bw
W ,

L(Bu
U ∩ Bw

W) = L(Bu
U) ∪ L(Bw

W). (10)

Recall that the cross-sum stage performs the following
pruning: Va = PR(Va,z1 ⊕ Va,z2 ⊕ · · ·⊕ Va,zk).We use

v1 + · · ·+ vk ∈ (Va,z1 ⊕ · · ·⊕ Va,zk)

to refer to a vector in the cross-sum, implying vi ∈ Va,zi . It
can be shown that

∑
i vi ∈ Va if and only if

⋂
i B

vi
Va,zi '=

φ (Cassandra, Littman, & Zhang 1997; Feng & Zilberstein
2004). Testing for this intersection requires solving a linear
program that has

∑
i |Va,zi | constraints, one for each region

constraint.
We note that the witness region of v =

∑
i vi ∈ Va is

exactly the above intersection:

Bv
Va =

⋂

i

Bvi
Va,zi .

This gives us a way of relating the vectors in the output of
the cross-sum stage, Va, to the regions defined by the vectors
in the input vector sets {Va,zi}. For each v ∈ Va, there is
a corresponding list of vectors {v1, v2, . . . , vk}, where vi ∈
Va,zi , such that v =

∑
i vi and ∩iBvi

Va,zi '= φ. We denote
this list parent(v).
Proposition 1 The witness region of v is a subset of the wit-
ness region of any parent vi:

Bv
Va ⊆ Bvi

Va,zi ; (11)

Conversely, for each vi ∈ Va,zi , there is a correspond-
ing lists of vectors v1, v2, . . . , vm ∈ Va, such that vi ∈
parent(vj),∀j. We denote this list child(vi).
Proposition 2 The witness region of vi is the same as the
union of its children’s witness regions:

Bvi
Va,zi = ∪jBvj

Va . (12)

The construction of the parent and child lists only requires
some simple bookkeeping during the cross-sum stage. They
will be the main building blocks of our algorithm.

Region-Based Maximization
Recall that in the maximization stage, the set W = ∪aVa

is pruned, where each Va is obtained from the cross-sum
pruning stage:

Va = PR(⊕iVa,zi).
Let us examine the process of pruning W using proce-

dure PR in Table 1. In the while loop at line 14, an ar-
bitrary vector w ∈ W is picked to compare with the cur-
rent minimal set D. As the size of D increases, the number
of constraints in the linear programs approaches the size of
the final result, |V ′|, leading to very large linear programs.
However, to determine if some vector w ∈ W is dominated
or not, we do not have to compare it with D. Let w ∈ Va

and v ∈ Va′ for some a and a′.
Theorem 1 If a '= a′ and Bw

Va ∩ Bv
Va′ = φ, then w is dom-

inated byW if and only if w is dominated byW − v.
Proof: If w is dominated byW , that is, ∀b ∈ B,∃u ∈ W
such thatw '= u andw ·b < u·b. IfW−v does not dominate
w, then ∃b′ ∈ Bv

Va′ such that ∀v′ ∈ W − v, w · b′ > v′ · b′.
Since a '= a′, ∀v′′ '= w ∈ Va, w · b′ > v′′ · b′ and therefore
b′ ∈ Bw

Va . This contradicts the premise that Bw
Va∩Bv

Va′ = φ.
Therefore w must be dominated byW − v.
If w is dominated byW − v, then trivially it is also dom-

inated byW .!

Theorem 2 If a = a′ and Bw
Va ∩ Bv

Va′−w
= φ, then w is

dominated byW if and only if w is dominated byW − v.

Proof: The proof is analogous to that of Theorem 1.!
Intuitively, the two theorems state that to test dominance

for w, we only need to compare it with vectors that have
a witness region overlapping with the witness region of w.
(Although we frame the theorems for the case of maximiza-
tion pruning, it can be easily generalized to the pruning of
any set of vectors.) However, finding these overlapping vec-
tors in general can be just as hard as the original pruning
problem, if not harder. So this result does not translate to
a useful algorithm in general. Fortunately, for maximiza-
tion pruning, the special setting in which the union of some
previously cross-summed vectors are pruned allows us to
perform a close approximation of this idea efficiently. We
present a simple algorithm for doing so next.

Algorithm
We start by finding vectors in Va−w that have a witness re-
gion overlapping with the witness region of w. From Equa-
tion 11, each vector vi ∈ parent(w) has a witness region
Bvi
Va,zi that fully covers the witness region ofw. From Equa-
tion 12, each witness region Bvi

Va,zi is composed of witness
regions of child(vi). Therefore the set

D(w) = {v|v ∈ child(vi), vi ∈ parent(w)} (13)

most likely contains vectors in Va that have witness regions
surrounding that of w, and their witness regions in the set
Va − w will overlap with the witness region of w.
Next we build a set of vectors in Va′ , a '= a′ that overlaps

with the witness region of w. First, let b(w) be the belief
state that proved w is not dominated in Va. This belief state
is obtained from solving the linear program during the cross-
sum pruning stage. We can find in the vector set Va′ a vector
va′ that has a witness region containing b(w), using proce-
dure BEST in Table 1:

va′ = BEST(b(w),Va′).

By construction, va′ and w share at least a common belief
state, b(w). Now we use the same procedure as Equation 13
to build a set of vectors that covers the witness region of va′ :

D(va′) = {v|v ∈ child(vi), vi ∈ parent(va′)}

Finally, we put together all these vectors:

D′ = D(w) ∪
⋃

a′ $=a

D(va′),

and use it to replace the set D at line 19 in Table 1 during
maximization pruning. As a simple optimization, we replace
D only when |D′| < |D|. The rest of the pruning algorithm
remains the same.
Note that both D(w) and D(va′) are incomplete. For

D(w), it contains vectors that share a common parent with
w, but there can be vectors that touch the boundary of the
witness region of w but don’t share the same parent with it.
For D(va′), besides the same problem, the witness region

Time #LP proj Average #C proj #LP max Average #C max
problem |S| |A| |Z| RBIP-M RBIP RBIP-M RBIP RBIP-M RBIP RBIP-M RBIP RBIP-M RBIP
tiger 2 3 2 20.28 20.39 7292 5446 19.81 19.11 4535 4527 11.26 19.04
paint 4 4 2 27.55 27.72 5033 2736 14.15 13.86 3325 2820 6.40 15.96
shuttle 8 3 5 681.39 608.43 58937 58533 28.49 29.64 84086 86500 200.36 219.38
network 7 4 2 1367.68 1992.16 128132 118749 25.24 25.47 207909 204708 103.31 283.63
4x3 11 4 7 5529.90 41567.91 11622 10765 58.31 63.32 31828 36155 636.25 6646.32

Table 2: Comparisons between RBIP-M and RBIP. “#LP proj” is the number of linear programs solved during projection pruning. “Average
#C proj” is the average number of constraints in the linear programs in the projection pruning. “#LP max” and “Average #C max” are the
corresponding numbers for the maximization pruning stage. Time is in CPU seconds.

of va′ may only partially overlap with that of w. There-
fore the set D′ constructed above does not guarantee that a
dominated vector can always be detected. This does not af-
fect the correctness of the dynamic programming algorithm,
however, because the resulting value function still accurately
represents the true value, albeit with extra useless vectors.
These useless vectors will be included as the input to the
next DP update step, in which their projections (Equation 8)
will be removed during the projection pruning stage (Equa-
tion 5). At the cross-sum stage (Equation 6), the input vec-
tors become the same as those produced by a regular DP
algorithm that does not use our maximization pruning tech-
nique. Therefore the extra computation caused by the in-
accurate pruning of our algorithm in the previous DP step
happens at the projection pruning stage only.
As we will see in the next section, this extra computation

is usually insignificant compared to the savings obtained
from the maximization step. This may seem counterintuitive
because the pruning of those undetected dominated vectors
is not avoided, but merely delayed to the next step of the DP
update. However, as explain earlier, the projection usually
maps into a small region of the belief space, resulting in a
larger number of vectors being pruned from the projection.
As a result, the linear programs in the projection pruning are
usually much smaller than the ones in the previous maxi-
mization pruning stage.
It is possible that for some problems, the projection prun-

ing is so efficient that the maximization pruning step can be
skipped without significantly increasing the projection prun-
ing time. However, even when this is true, pruning at the
maximization step is still necessary, because it has impact
on computing the error bound and detecting convergence, a
process that involves solving linear programs similar to the
ones used in the pruning process. Thus, skipping maximiza-
tion pruning may greatly increase the time needed for com-
puting the error bound. We leave the detailed analysis of this
possibility to future work.

Experimental Results
Our algorithm is easy to implement and it only affects the
maximization step of the standard DP update. There are
many POMDP algorithms that use this standard DP up-
date as a component. For example, Hansen’s policy itera-
tion algorithm uses standard DP update for policy improve-
ment (Hansen 1998); Zhang & Zhang’s point based value it-
eration interleaves standard DP update with point based DP
update (Zhang & Zhang 2001); Feng & Hansen’s approx-
imate value iteration uses a symbolic representation of the

value function in the standard DP update (Feng & Hansen
2001); Zhang & Zhang’s restricted value iteration (Zhang
& Zhang 2002) also uses the standard DP update with a
transformed belief space. All these algorithms can be eas-
ily modified to incorporate the improvement offered by our
technique. In this paper, we present experimental results on
applying our algorithm to the RBIP algorithm as described
in (Feng & Zilberstein 2004). We call our algorithm RBIP-
M, and compare its performance against RBIP.
We test the algorithms on a set of benchmark problems

from the literature. The number of states |S|, number of ac-
tions |A| and number of observation states |Z| of each prob-
lem are listed in Table 2. These problems are obtained from
Cassandra’s online repository (Cassandra 1999). All tests
use a numerical precision of 10−6. The algorithm is con-
sidered converged when the error bound is less than 0.01,
except for problem 4x3 (see below). The machine used for
testing is a dual-Athlon running at 1.2GHz. Only one CPU
is used for the computation.
Our algorithm relies on two kinds of structures in a prob-

lem to perform well. First, the reachability and observability
structure should be sparse so that the projection pruning can
be much more efficient than the maximization pruning. The
columns “Average #C proj” and “Average #C max” in Ta-
ble 2 reflect this property. Second, the local structure of the
belief regions defined by the vectors should allow neighbor-
ing relations among the regions to be adequately and effi-
ciently captured by the parent and child lists. The adequacy
is reflected by the “#LP proj” column, showing the extra
number of linear programs that RBIP-M has to solve as a
result of the undetected dominated vectors in the maximiza-
tion stage. The efficiency is reflected by the reduction in the
number of constraints in the maximization stage, shown in
column “Average #C max”.
For the problems network and 4x3, RBIP-M is signifi-

cantly faster than RBIP. (Coincidentally, these two problems
are generally considered to be the harder problems in the lit-
erature.) This is because both structures are present in these
problems. For example, in 4x3, the average number of con-
straints in the projection pruning is about 60, much smaller
than the number of constraints in the maximization stage. In
addition, our algorithm is able to identify a much smaller
set of vectors for use in the maximization linear programs
(636.25 vs. 6646.32), while still effectively pruning most
of the dominated vectors, resulting in only a small increase
in the number of linear programs (from 10765 to 11622)
solved during the projection stage. Combining these two
factors gives our algorithm a great advantage. Note that for

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 5 10 15 20 25 30

CP
U

se
co

nd
s

iterations

RBIP
RBIP-M

Figure 1: Running time comparison on problem 4x3.

4x3, the data shown in Table 2 only represents the first 14
DP steps in both algorithms. At the end of the 14th itera-
tion, RBIP already uses over 10 hours and is terminated. At
this point RBIP-M is about 8 times faster than RBIP. The
Bellman residual at this point is 0.06. We continue to run
RBIP-M on the problem for another 16 steps, reducing the
Bellman residual to 0.03 using about the same amount of
time required for the 14 steps of RBIP. The running time of
these steps are plotted in Figure 1, and the average number
of constraints in the maximization pruning is plotted in Fig-
ure 2. From these figures, we infer that the actual speedup
of RBIP-M over RBIP on this problem can be much greater.
For the other three problems, one of the two structures

is absent, leading to little performance improvement. In
tiger and paint, the first structure is missing, as re-
flected by the number of constraints during the projection
pruning being comparable to that during the maximization
pruning. As a result, even though the maximization pruning
deals with much smaller linear programs, the saving is off-
set by the extra cost incurred during the subsequent projec-
tion pruning. In the problem shuttle, the second struc-
ture is missing, as reflected by the fact that the number of
constraints in RBIP-M (200.36) is only slightly smaller than
that in RBIP (219.38). Therefore there is not much saving
gained in the maximization pruning step and RBIP-M runs
slower than RBIP in this case due to the extra linear pro-
grams solved in the projection stage.

Conclusions
We have identified special properties of the projection and
maximization stages in the DP process for POMDPs, and
showed how they can be exploited to greatly accelerate the
pruning process. Our technique is simple to implement and
can be easily incorporated into several other POMDP algo-
rithms. In future work, we will study how our approach im-
proves other POMDP algorithms. This method promises to
significantly alleviate the current computational bottlenecks
in these algorithms.

Acknowledgment This work was supported in part by NSF
grant number IIS-0219606.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

Av
er

ag
e

Nu
m

be
r o

f C
on

st
ra

in
ts

iterations

RBIP
RBIP-M

Figure 2: Average number of constraints in problem 4x3.

References
Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental pruning: A simple, fast, exact method for partially
observable markov decision processes. In Proc. of the 13th
Conf. on Uncertainty in Artificial Intelligence, 54–61.
Cassandra, A. R. 1999. Tony’s POMDP page.
http://www.cs.brown.edu/research/ai/pomdp/.
Feng, Z., and Hansen, E. 2001. Approximate planning for
factored POMDPs. In Proc. of the 6th European Conf. on
Planning.
Feng, Z., and Zilberstein, S. 2004. Region-based incre-
mental pruning for pomdps. In Proc. of the 20th Conf. on
Uncertainty in Artificial Intelligence, 146–153.
Hansen, E. A. 1998. An improved policy iteration algo-
rithm for partially observable MDPs. In Proc. of the 14th
Conf. on Uncertainty in Artificial Intelligence (UAI-98).
Littman, M.; Cassandra, A.; and Kaelbling, L. 1996. Ef-
ficient dynamic-programming updates in partially observ-
able markov decision processes. Technical Report CS-95-
19, Brown University, Providence, RI.
Littman, M. 1994. The witness algorithm: Solving par-
tially observable markov decision processes. Technical Re-
port CS-94-40, Computer Science, Brown University.
Smallwood, R., and Sondik, E. 1973. The optimal con-
trol of partially observable Markov processes over a finite
horizon. Operations Research 21:1071–1088.
White, C. 1991. A survey of solution techniques for the
partially observed markov decision process. Annals of Op-
erations Research 32:215–230.
Zhang, N. L., and Liu, W. 1996. Planning in stochastic do-
mains: Problem characteristics and approximation. Tech-
nical Report HKUST-CS96-31, Hong Kong University of
Science and Technology.
Zhang, N., and Zhang, W. 2001. Speeding up the con-
vergence of value iteration in partially observable markov
decision processes. Journal of AI Research 14:29–51.
Zhang, W., and Zhang, N. 2002. Value iteration working
with belief subset. In Proc. of the 18th National Conf. on
Artificial Intelligence (AAAI-02).

