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Abstract

Contemporary research in human-robot interaction (HRI)
predominantly focuses on the user’s experience while con-
trolling a robot. However, with the increased deployment of
artificial intelligence (AI) techniques, robots are quickly be-
coming more autonomous in both academic and industrial ex-
perimental settings. In addition to improving the user’s inter-
active experience with AI-operated robots through personal-
ization, dialogue, emotions, and dynamic behavior, there is
also a growing need to consider the safety of the interaction.
AI may not account for the user’s less likely responses, mak-
ing it possible for an unaware user to be injured by the robot if
they have a collision. Issues of trust and acceptance may also
come into play if users cannot always understand the robot’s
thought process, creating a potential for emotional harm. We
identify challenges that will need to be addressed in safe AI-
HRI and provide an overview of approaches to consider for
them, many stemming from the contemporary research.

1 Introduction
The presence of robots in the real-world is slowly becom-
ing a reality, and an upcoming step in this transition is the
direct interaction between humans and robots. Furthermore,
many present-day robots contain artificial intelligence (AI)
to provide more dynamic and realistic interactive experi-
ences with the users. In such cases, many robots that have
previously been allowed to directly interact with humans are
quite fragile like children’s toys and used for mostly non-
physical interactions such as communications (Kory and
Breazeal 2014), presentations (Knight and Simmons 2013;
Hoffman and Weinberg 2010), and playing games (Hirose,
Hirokawa, and Suzuki 2014). This design for a robot is not
practical for more physical interactions, which are needed
in many domains such as industrial factories (Levine and
Williams 2014; Lasota, Rossano, and Shah 2014), furniture
assembly/moving (Mörtl et al. 2012), and search and rescue
(Nourbakhsh et al. 2005) — these robots have often been
constrained to work in separate areas from humans to avoid
physical safety concerns (Enright and Wurman 2011). Some
cases of interaction even involve issues for mental safety
due to potential emotional bonds/relationships (Scheutz and
Arnold 2016; Darling, Nandy, and Breazeal 2015) and un-
censored content (Price 2016).
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Figure 1: Proposed approaches to categories of safety in AI-HRI.
We are unaware of any that handle all categories (marked by ?).

Developing safe technologies for AI and human-robot in-
teraction (HRI) has been discussed in the past for specific al-
gorithms and applications, but there are generalizations that
can be proposed and addressed. The recent SafePlan (Shafti
et al. 2016) and SafArtInt (OSTP and CMU 2016) Work-
shops are introducing this area, and our goal is to extend its
reach to the AI-HRI community. Many existing works do not
mention their potential applicability towards safety in AI-
HRI, but techniques for improving the user experience with
robots has a lot in common with ensuring their safety. In
fact, the relationship is bidirectional as ensuring safety also
improves the user experience. In the following sections, we
present general categories of challenges for safety in AI-HRI
and propose approaches, summarized in Figure 1. Based on
current literature in AI-HRI, we also explain how these ap-
proaches can start to be addressed. We then conclude with
an overall summary and consider future directions.

2 Omission of Humans
In AI, many domain instances of automated problem solving
and machine learning (ML) represent the environment and
autonomous agent(s) as the only components of the problem.
However, humans are not often encoded in these environ-
ments due to their unpredictability, even with more accurate
mental models. A robot planning to move between rooms
or perform a tactile task has enough difficulties considering
the geometrical space around itself and its own configura-



tion space; patternless moving obstacles that may or may
not interfere are not regarded as a priority for many labora-
tory settings. However, if we consider the robots in the real
world, then we begin to observe that humans are walking
around everywhere in these environments and have many in-
teractions with the autonomous machine, both positive and
negative (Yang et al. 2015; Reben and Paradiso 2011).

Ignoring the human obstacles during planning and train-
ing a policy/function can be unsafe with heavier and stronger
robots that may injure people by simply running over their
foot, charging into them (McFarland 2016), or accidentally
hitting them with a swinging appendage. Simply detecting
an obstacle before progressing with each action, though ef-
fective, is not efficient. Actions have potentially long-term
consequences such as entering a long hallway from one end
while humans progress from the other end. The robot now
becomes as much an obstacle as the humans, and one of
them must backtrack to allow the other(s) to exit. Clearly
this is unavoidable if such a hallway is the only path that
connects two areas of a building, and the case of humans us-
ing this hallway to escape from an emergency situation (fire,
chemical spill, etc.) is hopefully not a common scenario in
daily applications. However, the application of safety is not
an excuse to develop systems that act less optimally in the
average case. Unhelkar et al. (2015) recently introduced a
method for predicting a user’s trajectory to adapt the path
planning space, altering the paths the robot will consider
taking in the near future to avoid unnecessary confronta-
tion. When confrontations cannot be avoided in tight spaces,
Mainprice, Rafi, and Berenson (2015) introduce the use of
predicting occupancy regions for subtasks that the human
partner will approach, and then the robot can deal with sub-
tasks in other regions that will not interfere with the human.

By dividing up the tasks and avoiding confrontation in
the works above, the robot is able to reduce the likelihood
of directly working with the human so that it may omit
the human afterwards during its task execution. Some tasks
must involve the use of humans to assist the robot when
it is incapable of performing a specific action for its task,
such as repositioning misplaced/fallen objects (Knepper et
al. 2015) or pushing an elevator button due to the lack of
limbs (Rosenthal and Veloso 2012), or when there are shared
resources that require cooperation between the humans and
the robots to each use them. In these situations, signaling
is important to inform the human of the robot’s own intent
— communication can improve safety by enabling the hu-
man, a far more robust and dynamic planner than current
state-of-the-art AI, to accommodate rather than get in the
way. The human’s greater performance at such tasks has in-
spired the use of imitation learning to train probabilistic mo-
tion primitives for interaction (Maeda et al. 2014) so that
the robot is able to react to human movements in ways that
mimic the observed reacting human. A slightly less optimal
motion-planning trajectory can also display a robot’s intent
for which resource it wants from a collection by emphasiz-
ing a position disambiguating between them (Dragan and
Srinivasa 2014), and a robot can perform supportive actions
that provide a human partner clues indicating suggestions
for their shared task (Hayes and Scassellati 2015).

In addition to the mentioned works, research in semi-
autonomous systems (Zilberstein 2015) investigates tasks
where the AI agent must develop solutions that require some
level of human involvement in order to guarantee comple-
tion. Conversely, Levine and Williams (2014) and Freedman
and Fukunaga (2015) propose the integration of plan recog-
nition and planning so that agents can identify a human’s
task and act with respect to this task. The primary differ-
ence between these approaches is that the semiautonomous
robot is the one assigned the task (where humans assist when
needed) while the integrated recognition and planning sys-
tem assumes that the human is the one assigned the task
(where the robot assists as much as it can).

3 Lack of Understanding
While Section 2 represents the ignorance of people as
a robot not understanding humans, the challenge applies
equally in the other direction. Not only does a robot have
difficulty accounting for humans in its problem solving al-
gorithms, but humans often have difficulty interpreting robot
behaviors. Many ML methods learn functions that are not
easily interpretable to humans such as the currently popu-
lar deep learning neural networks (Nguyen, Yosinski, and
Clune 2015), and many of these functions and learned
plans/policies for solving real-world problems are far too
large and complex for a human to read. The humans’ inabil-
ity to understand the robots with which they are interacting
is an unsafe practice because, just as a robot without con-
sideration of others can harm a human by moving into her,
a misunderstanding human can incorrectly assume she will
not have contact with the robot. Additionally, a robot can
learn actions for certain states that are harmful without an
easy way to monitor it, such as making a mess in order to
later clean it up for additional reward (Amodei et al. 2016).

This is likely one reason that many members of the
AI-HRI community use hierarchical task networks (Erol,
Hendler, and Nau 1994). Their hierarchical nature breaks
down more complex tasks into simpler ones, and this top-
down explanation is intuitive for humans to interpret. Al-
though other representations are typically less intuitive, re-
search has been done to develop descriptions or summaries
that may facilitate a human’s understanding. For complex
policies with many states, compact contingency plan repre-
sentations can sacrifice some optimality to summarize the
main state-action pairs (Horstmann and Zilberstein 2003).
Learned clusters can also be explained using prototype ex-
amples (Kim, Rudin, and Shah 2014) or features describing
the ‘average objects’ (Freedman and Zilberstein 2016).

Although being on the same page as the robot can im-
prove the likelihood of safety in interactions, there is still
a safety concern if the human misinterprets the robot’s sta-
tus. For example, knowing that the robot will execute ac-
tion a in state s does not help the user prepare unless she
knows the robot is in s. This returns to the use of signals to
provide internal information rather than just intent. Baraka,
Paiva, and Veloso (2015) attached lights of varying colors to
a Cobot in order to convey internal states to nearby people
who may try to interact with it. There are also direct com-
munication methods including announcements of takeover



in semiautonomous driving scenarios (Miller et al. 2015)
and queries to confirm an understanding of the human’s in-
tentions (Mirsky and Gal 2016) or teachings (Cakmak and
Thomaz 2012). Public signals not only improve communi-
cation, but also improve emotional safety by putting the hu-
mans at ease of better understanding what the robot is up to.
However, private communication between multiple robots
may be acceptable without negatively affecting the humans’
trust (Williams et al. 2014). One future direction to consider
for this safety challenge is signal protocols — Wizard-of-Oz
experiments have revealed that the same signal can be in-
terpreted differently per person (Sirkin et al. 2015) and that
people may assume different signals to trigger a particular
response (Pourmehr, Thomas, and Vaughan 2016).

4 Preparing for Failures and Recovery
Even when there is mutual understanding between agents
and they are interacting based on a concensus, there is al-
ways an opportunity for error. What happens in the case of
an unexpected event during the interaction? Failing grace-
fully and recovering has been studied in AI planning (Fox
et al. 2006) where methods such as deciding when to replan
may be applied, but these systems are often virtual and do
not have physical robot concerns. If the robot is unable to
act accordingly, then humans can be at risk from the robot’s
incorrect actions or by getting in the robot’s way. Other acci-
dents can take place including people falling down and reck-
lessly running into things, especially when the interactions
involve the elderly (Faria et al. 2015) and young children.

Due to the unexpected physical safety concerns, solutions
for this challenge will need to integrate AI with the robot’s
hardware. An unexpected collision cannot simply be repre-
sented by a single state because the location of impact may
affect the robot’s stimuli and response. Robots such as U-
Bot and BigDog are designed to maintain their balance at
strong levels of impact while moving in the pushed direc-
tion; such recovery techniques have been identified by rein-
forcement learning (Kuindersma, Grupen, and Barto 2011).
This both reduces the force against the human or object that
hit the robot and avoids the danger of the robot falling over
(onto other unsuspecting humans). Besides robots maintain-
ing balance, other hardware that can assist with sensing un-
expected contact are hybrid cartesian force/impedence con-
trollers with energy tanks for passive contact with external
forces (Schindlbeck and Haddadin 2015) and robotic skin,
a full-chassis sensor that receives electric current from a
point of contact like a touch-screen interface (Silvera-Tawil,
Rye, and Velonaki 2015). If these hardware features become
mainstream or standards, then it will be critical for the AI-
HRI community to determine how to use their information.

Failure in interactions can also pose additional safety con-
cerns when emotions and ethics are considered. If a robot is
unable to assist the human properly, then her trust in it may
decrease. Humans have been empirically shown to have dif-
ferent expectations of robots than fellow humans (Kwon,
Jung, and Knepper 2016), but humans are willing to ac-
cept suggestions from robots if they contribute to better ef-
ficiency (Gombolay et al. 2014). Likewise, what happens if
a human fails to do her part in an interaction or misleads

the robot? Trust, like other morals, can be represented us-
ing higher-order logic in a knowledge base (Scheutz, Malle,
and Briggs 2015). Can affecting these relationships between
users and robots cause one to feel unsafe around the other?
Lastly, in some cases of failure, there is no easy recovery
option and an undesirable consequence will result from each
one (Blass and Forbus 2015); such ethical questions are still
complicated matters for humans in general.

5 Discussion
As the presence of robots increases in the real world and they
have more direct interactions with humans outside of caged-
off areas, it is important that the AI-HRI community ex-
pands its areas of study from improving the user experience
to also considering its safety. We introduced three categories
of challenges within the realm of safety in AI-HRI: the omis-
sion of humans from the robot’s modeling, humans’ lack of
understanding of the robot’s models and interior thoughts,
and need to prepare for failures in execution with recovery.
For each category, we showed how recent research can al-
ready be applied in these directions towards the proposed
approaches. There is also an opportunity to consider liter-
ature in some areas of AI such as metareasoning (Cox and
Raja 2011), which derives explanations for action decisions,
and mixed-initiative planning (Bresina et al. 2005), which
studies cooperative plan development between a human and
machine. As it goes hand-in-hand with the quality of the user
experience, improving the safety of HRI when AI has con-
trol is a present challenge worth considering.

Acknowledgments This work was supported by National
Science Foundation Grant No. IIS-1405550

References
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.;
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