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Abstract

Planning is one of the oldest areas of research within artificial
intelligence, studying the selection of actions for accomplish-
ing goals. The more recently established areas of plan, activ-
ity, and intent recognition instead study an agent’s behavior
and task(s) given observations of its chosen actions. While
these areas have been independently studied and applied to
games in the past for both understanding player behavior and
developing game characters, the potential for their integra-
tion presents even more opportunities via adaptive interaction
with the player. In this manuscript, we discuss recent research
on the integration of these areas and investigate potential uses
for such integrated systems in games.

1 Introduction

The design, development, and even playing of games can
be studied from interdisciplinary perspectives. The involve-
ment of artificial intelligence (AI) in these studies spans
many challenges that have been identified over the years in
venues such as AAAI’s AI for Interactive Digital Entertain-
ment (AIIDE) and IEEE’s Computational Intelligence and
Games (CIG). Among the approaches proposed, the areas
of planning and plan, activity, and intent recognition (PAIR,
when referred to altogether) have been used almost inde-
pendently of each other. However, there has been recent in-
terest in integrating these methods to create more adaptive
dynamic interactions between humans and computational
agents. While some plan recognition methods build heav-
ily on existing planning algorithms, that is not what we refer
to as integration of planning and recognition. Instead, we fo-
cus on integrating the recognition process with the response
planning process so that each process benefits from the in-
formation produced by the other in real time. There are sev-
eral potential benefits for such integration of planning and
PAIR in games with respect to adaptive content generation.
We will introduce these in the remainder of this manuscript
following a brief background on planning and PAIR along
with some of their past applications to games and game-
related research.
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Planning
One of the earliest challenges posed to the AI community
involves machines being capable of making autonomous de-
cisions at or above the level of human experts. This led to
the establishment of the planning and scheduling commu-
nity that particularly studies representation of tasks, problem
solving under various conditions ranging from uncertainty to
resource constraints, and higher-level decision making pro-
cesses such as metareasoning. Formally, a planning problem
P is generally defined by a domain D that models the world
and an objective that drives the agent’s decision making. D
describes a state space S and the set of actions A that transi-
tion between states, which can range from logic-based fac-
tored representations such as the STanford Research Instis-
tute’s Problem Solver (STRIPS) (Fikes and Nilsson 1971)
and Planning Domain Definition Language (PDDL) (Mc-
Dermott et al. 1998; Fox and Long 2003) to grammar-
inspired breakdowns of complex actions into simpler ones
such as hierarchical task networks (HTNs) (Erol, Hendler,
and Nau 1994) to direct enumerations with transition prob-
ability tables such as Markov decision processes (MDPs)
(Bellman 2003). Objectives also vary greatly depending on
the assumptions and formulation. For example, STRIPS and
PDDL both specify an initial state I ∈ S and goal conditions
(logical statement G) that indicate which states satisfy the
objective, HTNs further include some high-level task/action
T ∈ A that must appear at the root of the solution’s tree,
and MDPs measure the desirability of states with a reward
function R : S → R rather than specifically provide an ini-
tial and goal state. Solutions π are typically sequences of
actions a1, a2, . . . ∈ A called plans or functions mapping
states to actions π : S → A called policies.

Planning has been used in quite a few game-related appli-
cations besides the typical motion planning tasks for char-
acter navigation (Rabin and Sturtevant 2016). The game
FEAR (Orkin 2006) developed its own representation for
AI-controlled agents based on high-level planning represen-
tations such as STRIPS and PDDL, and Kelly, Botea, and
Koenig (2008) used HTNs to create unique schedules for
each non-playable character (NPC) to follow. A planning
formulation was also used to create actions as game mechan-
ics given an initial configuration and completed configura-
tion of a level (Zook and Riedl 2014). This enabled content
creators to receive suggestions based on what the player-



controlled characters need to do in simulation to complete
the level.

Plan, Activity, and Intent Recognition
The more recently established field of plan recognition
(Goldman et al. 2011) instead studies the identification of
an agent’s task given observations of its chosen actions,
while intent recognition aims to predict the agent’s upcom-
ing actions or specific goal state from these observations.
On the other hand, activity recognition develops higher-level
interpretations of lower-level events, ranging from descrip-
tions of raw sensor data to more complex descriptions of se-
quences of simpler actions like button-presses. Building on
top of the planning formulation above, a recognition prob-
lem receives a sequence of observations o1, o2, . . . ∈ O
as input and returns some form of context from a library
c ∈ L depending on the type of recognition and representa-
tion. For plan recognition, it is often the case that O = A
and L = {π1, π2, . . .} so that some subsequence of a plan
is observed and the rest should be filled in as an ‘explana-
tion’. Intent recognition also frequently uses O = A, but
L = {G1, G2, . . .} to instead identify the driving motivation
behind the actions performed or L = A to predict upcom-
ing actions implied by the previous ones. Activity recogni-
tion usually assigns L = A as the higher-level interpretation
of lower-level inputs that have some other set of symbols
Σ = O.

Plan recognition with probabilistic bounds has been used
with StarCraft to identify player strategies represented with
HTNs (Synnaeve and Bessière 2011). Poo Hernandez, Bu-
litko, and Spetch (2015) recognized themes from player
choices in a choose-your-own adventure story to guide the
events so that they better connected emotionally with the
player; emotions were tracked using a MDP with player
choices representing the actions. Likewise, predicting a
player’s intent of hiding locations in a first-person shooter
game allows computer-controlled agents to better decide
where to go (Tastan, Chang, and Sukthankar 2012). Using
stacked denoising autoencoders rather than traditional clus-
tering, Min et al. identified general tasks players were per-
forming in an educational game that did not explicitly reveal
the goals to the players; underlying user goals in educational
simulators have also been recognized using HTN-like rep-
resentations called exploratory grammars (Mirsky, Gal, and
Shieber 2017). However, more than single-player strategies
can be identified. Hajibagheri et al. (2015) studied logs from
massively multiplayer on-line games in order to study the
formation and evolution of ad-hoc groups.

2 Integration of Planning and Recognition
Integration of planning with at least one of PAIR intro-
duces the potential for more dynamic interaction. An early
framework to propose this concept was specially developed
for use in a factory domain (Levine and Williams 2014)
where the workers’ possible sequences of actions are typi-
cally known in advance. Thus it was possible to monitor a
worker’s progress up to specific branching points where the
worker could perform one of several actions for the over-
all task; then the planning system identified what would not

be accomplished from the chosen branch and assigned tasks
to partner robots that completed them in time (for exam-
ple, providing a screw if the worker picked up a screwdriver
when both were on the table). Similarly, Geib, Craensen,
and Petrick (2016) parsed HTNs to identify a human’s task
and predict upcoming subtasks, which a robot could then
confirm and ask for permission to do instead. If given per-
mission, the robot ran a planner to solve the subtasks while
avoiding further interference with the human. As an attempt
to compromise the openness of the latter approach (not mon-
itoring a predetermined sequence of actions) with the actual
opportunity for agents to interact, a method for plan recog-
nition derived from off-the-shelf classical planners (Ramı́rez
and Geffner 2010) was modified to predict necessary goal
conditions that the interactive agent can then solve as a
two-agent problem using the same planner (Freedman and
Zilberstein 2017). This allows adaptive interaction between
the human and agent because the recognized behavior can
change over time, which also influences the planner’s cho-
sen actions, and vice-versa.

CPU-Controlled Characters
While the works above only use applications with robotic
interactive agents, they can easily be generalized to inter-
active agents in games. Often operated by expert systems
such as finite state machines, the artificial intelligence of
game agents has frequently been hard-coded by program-
mers. Such a design choice poses issues depending on the
relationship between the character and player, but adaptive
interactive agents present an opportunity to address them.
We will consider the three interaction types proposed by
Freedman and Zilberstein (2017) as analogues of these re-
lationships.

Adversarial The stereotypical enemy characters com-
monly found in games are designed to prevent the player
from making progress. The use of expert systems for their
artificial intelligence guarantees that the designers can cre-
ate specific challenges for each type of enemy that the player
will learn to overcome. However, this patterned behavior
does not acknowledge the player’s style significantly and can
be countered systematically once the player has learned the
pattern and identified a weakness. A more adaptive adversar-
ial agent will instead react against players based on predic-
tions of their goals and upcoming action decisions, which
may provide a deeper sense of consequence to a player’s
choices. Furthermore, the use of planning for a response can
avoid the monotony of a finite state machine’s decision for
a given game state, especially if there are multiple decisions
to make or slightly less optimal actions are selected based on
a satisficing method. As satisficing planners are more inter-
ested in finding any solution rather than the best one, these
may be more ideal for games with real-time performance
constraints.

Assistive Buddy characters that cooperate with the player
to help level progression (or accompany the player as a com-
ponent of a challenge) have become more complex over the



years. Rather than follow the player’s character around the
screen and act under a simpler finite state machine than most
enemies, efforts are now taken to enhance the buddy’s deci-
sions to reflect unique personalities and develop a sense of
companionship with the player throughout the play expe-
rience (Dyckhoff 2015). Most these enhancements are still
created manually using human experts and precomputed for-
mulas so that the buddy does not get in the player’s way,
which may interrupt and/or detract from the player’s enjoy-
ment and experience — this should be prioritized because
players typically chose to participate in the game for their
own entertainment.

Hence, if a buddy character pays attention to the players’
decisions through PAIR algorithms, then it has a context of
what the player is likely doing within the scenario. This in-
formation is very useful for creating a task that the buddy
character can plan to accomplish under constraints that fur-
ther avoid player interference. For example, if the player is
focusing on a particular task within a challenge such as solv-
ing a puzzle component or targeting a specific subset of en-
emy characters, then it may be best for the buddy to work
on the remainder of the challenge so that the player is not
burdened with as many tasks and feels that the buddy is con-
tributing to the group’s success. Likewise, if the player can
be recognized as retreating from a situation, then the buddy
character may decide to stay slightly behind and defend
when the likelihood of successfully retreating is lower and
the buddy can sustain (self-sacrifice is not as ideal in many
buddy character situations unless used as a plot device), or
the buddy character may retreat alongside the player and aid
the escape process when it cannot sustain. These situations
can be assessed using planning to determine which choice is
best and then acting out the decision. Such cases can portray
a buddy’s personality and develop companionship via acting
responsively with respect to the player.

Independent NPCs usually compose the majority of char-
acters in a game because they represent everyone who is not
controllable, often excluding enemies and buddies. While
some genres such as fighting games have few NPCs, other
genres such as role playing games with large scale story-
driven gameplay contain many NPCs. Due to their presence
throughout the game at so many moments, it can be over-
whelming to create unique and diverse personalities for all
of them. Memory limitations once meant they were also
given little code so that their interactions with the player
were simple and static. However, artificial intelligence tech-
niques are creating more dynamic NPCs as they can help
the most with preserving the players’ suspension of dis-
belief (Champandard, Champandard-Pail, and Wisniewski
2003 2017). Besides personalizing NPC dialogue (Kerr and
Szafron 2009) and schedules for who appears where at vari-
ous times (Kelly, Botea, and Koenig 2008), we can use plan-
ning on its own to allow NPCs to act within the environment.
However, because these tasks may interfere with the player’s
progress, we may consider the integration of PAIR to adapt
the NPC’s action selection. Then the NPCs can still plan to
achieve their own goals while also ensuring that the player
is not stopped from doing what she is predicted to do. This

has the potential to be a greater challenge when there are
many NPCs near the player because all the NPCs need to
accommodate each other as well.

Adaptive Gameplay
In addition to characters having agency, we may also regard
the game itself as an agent. This perspective allows us to fur-
ther explore adaptive interaction with respect to the player
beyond just character choices, but also gameplay choices.
Though the designers and developers have a specific expe-
rience that they wish to share with or express to players, it
is not always possible to convey the message the same way
to everyone. Hence adapting the gameplay to adjust how the
experience is delivered to each player has the potential to
better connect designers with their playerbase as well as per-
sonalize the player’s experience.

Progression Refinement Each unit of game content
(level, event, etc.) is often refined and ordered after multi-
ple iterations of design, develop, and playtesting in order to
present the entire game in a manner that feels fair and engag-
ing. Depending on a player’s experience and skills, though,
the chosen ordering may not be ideal. Thus the simplest ex-
ample of a possible application for personalization is alter-
ing difficulty level. Depending on the player’s style, PAIR
may be able to extract trends such as preferred strategies
and commonly used action patterns. Then the game may re-
arrange content based on how it relates to the player’s rec-
ognized style. Content that can be successfully played us-
ing methods more familiar to the player’s common strategies
should technically be easier in difficulty while content that
requires methods less familiar to these common strategies
will likely be harder in difficulty. Thus, rather than force pro-
gression through the content as the designers preassigned it,
the game may reorder it for a difficulty/learning curve closer
to the one intended by the designers’ initial ordering.

However, reordering requires some level of caution, es-
pecially when there are prerequisites for some content such
as completing a certain task from another unit of content
in the game. This is especially important for story-driven
games because some elements of the story may rely on
other events first happening or a spoiling revelation may
occur that will reduce the enjoyment of other story con-
tent if it was not yet experienced. Riedl and Young’s (2010)
and Cheong et al.’s (2016) work on computer-generated sto-
ries using planning techniques can help to maintain order-
ing constraints between content while rearranging it based
on the recognized player strategies. Open world and sand-
box games can even use this integration of PAIR and plan-
ning to enforce a sequence of events without restricting lin-
ear progression through the world. Given the recognized in-
tents of where a player is going, placement of triggers for
events may be planned so that linearized content still unfolds
with the player’s choices. Though an illusion of choice, this
readjustment to the content (revising characters, locations,
etc.) allows the player to follow a nonlinear path through the
game based on personal preference of exploration through
the world.



Procedural Content The introduction of procedural con-
tent to a game can lead to greater replay value by generat-
ing original content during gameplay. However, many games
with procedural content currently perform this generation
process randomly where the individual pieces can always be
combined without constraints. There has been research on
developing procedural content with a greater focus on so-
lution strategies (Smith et al. 2011), but these strategies are
currently developed by hand or randomly. Given a player’s
recognized strategies and play styles, though, we should be
able to personalize the set of strategies needed to complete
the challenges posed by the newly generated content. As
described above, this can determine the personal difficulty
level of the procedural content. Additionally, to determine
the extent to which the content is solvable, we can use plan-
ning to simulate a player and evaluate its performance in a
manner similar to the process used for validating whether
a generated set of mechanics can solve a given level (Zook
and Riedl 2014).

In addition to adapting procedural gameplay content,
there is also procedural media content ranging from dynamic
audio (Collins 2008) to automatically generated dialogue
(Kerr and Szafron 2009). While dialogue can be approached
similarly to character behavior, procedural non-diegetic au-
dio (background music and sound effects not caused by the
game’s entities) may need a different perspective. In partic-
ular, recognizing a player’s plans, activities, or intents does
not present a direct correlation to sound in context. Likewise,
planning for music composition or sound effect allocation
will lack the semantic associations humans have culturally
assigned to various sound patterns. Hence, though the po-
tential for personalized audio that adapts with the player’s
in-game actions exists, it is not directly clear how this may
be developed via the integration of PAIR and planning. We
leave this as a question for the community to consider.

3 Discussion
There has been tremendous progress in both planning and
PAIR, but existing recognition algorithms typically process
the observed activity and output recognized information in-
dependent of planning the response. The response to the user
is determined, if at all, using a separate planning process. In
that sense, each research area in PAIR as well as planning
mostly studies its own specific problem independently of
the other. Recent research on the integration of planning and
recognition shows the potential for adaptive interaction with
human users. Depending on what we classify as the interac-
tive agent, we propose applications of adaptive interaction
with players in games using either characters that respond
to the player’s actions or the game itself adjusting content
based on the player’s style and strategies. This presents op-
portunities for enriching the player experience with person-
alized gameplay and interactions that respond dynamically
based on the player’s choices.
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