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Abstract Learning to communicate is an emerging challenge in AI research. It is
known that agents interacting in decentralized, stochastic environments can benefit
from exchanging information. Multi-agent planning generally assumes that agents
share a common means of communication; however, in building robust distributed
systems it is important to address potential miscoordination resulting from misin-
terpretation of messages exchanged. This paper lays foundations for studying this
problem, examining its properties analytically and empirically in a decision-theoretic
context. We establish a formal framework for the problem, and identify a collection of
necessary and sufficient properties for decision problems that allow agents to employ
probabilistic updating schemes in order to learn how to interpret what others are
communicating. Solving the problem optimally is often intractable, but our approach
enables agents using different languages to converge upon coordination over time.
Our experimental work establishes how these methods perform when applied to
problems of varying complexity.
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1. Introduction

Cooperative decentralized planning is the problem of computing a set of local behav-
iors for a group of agents that act in the same environment while maximizing a global
objective. Each local policy maps the information known or believed by the agent to
actions (i.e., domain actions and possibly communication acts as well). It has been
shown [4] that in the worst case, solving such multi-agent problems optimally is signifi-
cantly more complex than is the case for single-agent sequential decision problems.
One of the main sources of this difficulty is the fact that each individual decision-maker
lacks global information when they compute their local behaviors. Allowing agents to
share information may reduce uncertainty about this global information, for instance
by reducing the number of possible belief-states that each agent needs to consider. In
extreme cases, when communication is free and mutually understood, decentralized
planning becomes equivalent to single-agent planning (e.g., see the MMDP model [8]).
However, in practice, communication has some cost, be it the actual bandwidth used
by a transmission, or some other function that quantifies the resources required for the
information exchange. We have previously shown that computing policies involving
costly communication can be as hard as computing optimal solutions without com-
munication [22, 23]. Consequently, although communication can indeed be helpful
in simplifying coordination at execution time, computing when to communicate and
what to communicate may still be a complex process.

Beyond overcoming the computational problem of decentralized planning under
uncertainty, we are interested in robust decentralized systems. Such robustness will
often require agents to adapt their means of communicating in the face of new situ-
ations, or when miscoordination arises. Autonomous systems, developed separately,
interact more and more often in contexts like distributed computing, information
gathering over the Internet, and wide-spread networks of machines using distinct
protocols. As a result, systems may be called on to deal with new situations and
information, as autonomy increases and environments grow more complex. Agents
that act cooperatively may not necessarily share the same language of communica-
tion, and may not simply be able to exchange a translation, mapping discrepancies in
the languages, in an off-line manner. Such problems may occur, for instance, when
the content of an agent’s communication arises from observations available solely
to that agent, in the midst of some shared task. Even agents with the same sensing
apparatus may still lack the contextual information necessary to correctly interpret
each other’s messages. Alternatively, the ability to learn new meanings can guard
against unintentional design-time errors. In many applications, the misinterpretation
of messages can lead to miscoordination and an eventual decrease in performance.
NASA’s Climate Orbiter probe, for instance, crashed as a result of an unwitting use of
different (metric and imperial) conventions of measure in calculations communicated
between different design teams, causing the spaceship to follow an incorrect flight plan
[29]. Such considerations also arise where users of a system may have different levels
of competence—as in automated and interactive tutoring—or where it is practically
infeasible to specify all necessary communication protocols at design time. The latter
problem arises, for instance, in automated control and diagnosis. In such contexts, the
range of ways a particular mechanism may go wrong cannot generally be known in
advance, and encountered problems often require novel diagnoses and solutions [7].
Such problems are compounded when various mechanisms are combined as parts of
a larger overall process, as is common in manufacturing plants.
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The ability to communicate is thus a double-edged sword. While it has the potential
to make multi-agent coordination problems much easier to solve, the possibility of
miscommunication opens up difficulties of its own. In this paper, then, we focus on the
problem of how agents may learn how to interpret the messages they exchange, while
acting together in an uncertain and decentralized environment. We isolate this prob-
lem from the problem of computing optimal policies with costly communication and
concentrate on: (1) algorithms that update the understanding of messages exchanged
while improving the value of the joint policies of behavior; and (2) the properties of
systems and environments that allow such learning to take place.

The standard of success by which we judge the particular process of learning to
communicate is directly related to the system-wide measure of utility, rather than to
the individual cost of using that language (as, e.g. [18]). Agents attempt to learn cor-
relations between languages with pre-existing semantics, distinguishing the approach
from such as [40], in which agents collectively learn new shared concepts for the
purpose of learning to communicate per se and not in the framework of a planning
problem. Furthermore, agents learn to communicate while attempting to maximize
some global objective, which need not be the specific one of learning to communicate
itself, as opposed to work in which agents are specifically rewarded for pre-determined
“correct” responses to messages [42]. Finally, our work on cases where miscoordina-
tion arises is distinct from such research as that in verification systems [34], where
the aim is to identify inconsistencies between a software specification and its execu-
tion code, which can then be fixed manually. Our purpose, on the other hand, is to
explore methods by which agents automatically learn to correct a misinterpretation
in addition to identifying it, in the framework of decentralized control.

We provide a general practical and formal framework for studying the problem of
learning to communicate, and isolate sufficient and necessary conditions under which
agents can maximize their joint expected utility by successfully solving that problem.
We show this in particular for agents that communicate their observations and actions;
in the process, we shed light on the difficulties involved with learning languages in
general. One of the contributions of this work is in understanding how hard this
problem can be. The basic framework is decision-theoretic; agents operate with prob-
abilistic models of the meaning of languages of communication, and base decisions
on the given probabilities. The problem of determining message meanings may then
become unsolvable for languages in general—since it may be impossible to generate
a meaningful probabilistic model of a sufficiently rich language—and can be quite
complex even for relatively simple languages. Another contribution is an algorithm
that, under the identified conditions, converges to some mutual understanding of a
language which is not initially shared by the agents. We show how such convergence
eventually leads to situations in which agents can maximize the value of their joint
policy.

Sections 2 and 3 present the general language-learning process and show how the
problem can be framed as a process of updating belief-states in the context of a
decentralized Markov decision process. We explain this process further in Section 4.
Important properties of decision problems and necessary and sufficient conditions
for learning to communicate while acting are explained in Sections 5 and 6. These
are followed by empirical evidence for the usefulness of the approach, for scenarios
with increasing complexity, in Section 7. Finally, Sections 8 and 9 review other work
on communication in multi-agent systems and give our conclusions. For brevity, full
details of some proofs and other work have been omitted here; interested readers
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are referred to the technical report containing a complete version of the contained
research [20].

2. The general language-learning model

Figure 1 gives a graphical overview of the interrelations between the various com-
ponents of the language-learning process as it occurs in the case of two inter-commu-
nicating agents. These elementary parts, which will be discussed in more detail later
on, are as follows:

• State: The global state of the environment at any given time.
• Observation: How the global state actually appears to an individual agent.
• Message: The communications exchanged between agents.
• Belief-state: An agent’s belief about the current state of affairs, consisting of:

– Translation: An understanding of another agent’s language, and of the most
recent message.

– Belief-features: All other beliefs about the current state of the environment.

si State i tj Time-step j

σ
j
i Message j, sent by Agent i oj

i Observation j of Agent i

aj
i Action j of Agent i β

j
i Belief-state j of Agent i

Pj
τ i Translation-distribution j of Agent i Fj

i Belief-features j of Agent i

Fig. 1 A sketch of the language-learning process



Auton Agent Multi-Agent Syst

Such a process involves many elements that are familiar from the specification of
problems involving agents acting under uncertainty. In particular, we will want to
specify two important components:
State-action transitions: The environment transitions between global states s given the
actions taken by each agent α at time t.
Observation functions: Each agent α makes some observation o at any global state s.
Furthermore, an agent in such a situation will possess, or learn a behavior which
includes:
Policy of action: Given belief-states, agents take actions.
Policy of communication: Given belief-states, agents communicate something (maybe
nothing).
Belief update: Given belief-states, actions, observations, and messages, agents generate
new belief-states.

Language learning thus takes place within a general framework of action and com-
munication. While the process of updating belief-states involving the interpretation of
what other agents say has certain special features arising from the fact that language
is involved, it is a special case of a general problem, to do with finding successful
policies that are based on one’s beliefs. The main distinguishing feature of this work is
the notion of a translation. While the usual approach to many problems of action and
communication assumes that the language of communication is shared, we make no
such presumption. Instead, we include an agent’s possibly imperfect understanding
of another’s language as part of the belief-state. We represent the degree to which
agent αi understands agent αj by a correspondence between messages sent by αj, and
those that αi might itself send. (Looking ahead a bit to the formal definitions found
in Section 3, as far as αi is concerned, the meaning of some received message forms a
distribution over its own possible messages.)

Formally, we capture this model as a decentralized Markov decision process with
direct communication, originally formulated in [23]. For simplicity of exposition we
focus here on the case of two agents; the model can easily be extended to n agents.

Definition 1 (Dec-MDP-Com) A decentralized MDP with direct communication is
given by the tuple M = 〈S, A1, A2, P, R, �, C� , �1, �2, O, T〉 where:

• S is a finite set of world states with a distinguished initial state s0.
• A1 and A2 are finite sets of control actions, with ai ∈ Ai an action performed by

agent i.
• P is the transition probability function. P(s′|s, a1, a2) is the probability of moving

from state s ∈ S to state s′ ∈ S when agents α1 and α2 perform actions a1 and a2,
respectively.

• R is the global reward function. R(s, a1, σ1, a2, σ2, s′) represents the reward obtained
by the system as a whole, when in state s agent α1 executes action a1 and sends
message σ1 and agent α2 executes action a2 and sends message σ2, resulting in a
transition to state s′.

• � is the alphabet of messages and σi ∈ � is an atomic message sent by agent αi.
When this language is not mutually shared by all the agents, we use �i to denote
agent i’s language of communication. (Definition 2 formalizes the idea of language
precisely.)

• C� : � → � gives the cost to transmit a message. A null message has zero cost to
transmit.
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• �1 and �2 are finite sets of observations.
• O is the observation function. O(o1, o2|s, a1, a2, s′) is the probability of observing o1

and o2 (respectively, by the two agents) when in state s agent 1 takes action a1 and
agent 2 takes action a2, resulting in state s′. A Dec-MDP is jointly fully observable,
i.e., there exists a mapping J : �1 ×�2 → S such that whenever O(o1, o2|s, a1, a2, s′)
is non-zero then J(o1, o2) = s′.

• T is the time horizon of the problem (finite or infinite).

The proposed framework is based on several observations and assumptions. First,
agents learn to communicate while acting to maximize some objective reward func-
tion. Second, agents share a context, in terms of their starting presumptions about the
possible content of shared messages. While this may not be a single context, agents
still consider only a relatively small set of plausible candidates. Third, agents base their
understanding of one another upon probabilistic models of the relationship between
language and the environment. Questions then arise about the problem of learning
when such models are not accessible, but this is beyond the scope of this paper. Finally,
we observe that it is not desirable to obscure message content by making it part of an
extended state-space, to make the learning problem more general. Doing so will make
the problem of learning to communicate intractable, given the complexity proofs and
practical results for existing solution algorithms for Dec-POMDPs [4, 23]. Thus, we
consider the use of communication separately from domain actions, allowing us to
study techniques and features specific to language itself.

2.1. An applied example

The Dec-MDP-Com model can be applied to many real-world problems, so long as
we can specify states, actions, and observations, all interacting in Markovian con-
ditions. One such domain, which we have used in experimental work, involves two
(2) agents, each controlling a set of pumps and flow-valves in a factory setting. At
each time step, each agent separately observes fluid entering the system from one of
two different inflow ducts, along with the pumps and valves under its own control.
The agents seek to maximize flow out of the system through one of several outflow
ducts, subject to the efficiency constraint that the number of ducts be minimized.
Reward is directly proportional to outflow amount, minus the number of ducts used.
Probabilistic effects arise because each of the pumps and valves is susceptible to
variations in throughput, dependent upon whether the particular component was
used to route flow in the prior time step.

Formally, we specify the problem as a Dec-MDP-Com M = 〈S, A, P, R, �, C� , �,
O, T〉, where:

(a) S is the state set is described by flow through two inflow ducts, in1 and in2, and
through a set of pumps and valves for each agent, pi

1, . . . , pi
n and vi

1, . . . , vi
m.

Initially, all such flows are set to zero (0).
(b) A is at each time-step each agent αi chooses one action to control the pumps pi

r
(on, off, forward, back) or the valves vi

s (open, shut).
(c) P is the transition function directs flow according to actions taken; however,

pumps and valves fail to respond to commands probabilistically, based on whether
or not they were used in the prior time-step.
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(d) R is the total reward is given by (in/out)−d, where in is the total units of inflow,
out is the total units of outflow, and d is the number of outflow ducts used.

(e) � is each agent αi possesses messages corresponding to each of its possible
actions, identifying labels for every pump or valve in the system, as well as the
observed units of inflow through duct ini.

(f) C� is the cost of all messages is zero (0).
(g) � is each agent αi can observe its own inflow duct ini, along with all pumps pi

r
and valves vi

s that it controls; further, agents observe the system-wide reward.
(h) O is the observation function takes any state of the system and returns each

agent’s own observations.
(i) T is the problem has an infinite time horizon.

While the state space of such a problem can be quite large, given the number of
variables governing inflow and system settings, it is still efficiently solvable from a
single-agent, centralized perspective. By taking the point of view of one agent observ-
ing all states globally, and acting in place of both agents simultaneously, it is solved
offline using typical dynamic-programming methods. However, in situations where
agents must share local observations and actions, a centralized perspective is not
available, and agents need to communicate before optimal action is possible. The
work here outlines conditions—involving both the problem domain and mechanism
for communication—necessary to make this happen.

2.2. Solutions for Dec-MDP-Coms

In a Dec-MDP-Com with shared communication language �, the local behaviors of
the agents are given by local policies of action and communication, δA

i : �∗ ×�∗ → Ai
and δ�

i : �∗ × �∗ → �, each based on sequences of observations and messages. In
order to solve such decentralized processes optimally, we evaluate the possible local
policies of behavior and find one optimizing the expected value of the joint policy.
This expected value is computed as the expected reward obtained while following
the policies, equal to the summed reward for each state-action transition, weighted
by the probabilities of those transitions. We stress that while it is straightforward to
define the value of such policies, actually calculating it to find the optimal solution
is generally very difficult. In previous research, we have computed this value for the
case when communication lead to joint full observability [23], but the general case is
known to be extremely hard.

In the problems studied in this paper, on the other hand, agents do not share a com-
mon language of communication. Following Fig. 1, we notice that the local behaviors
of the agents are mappings from belief-states to either domain actions or messages.
That is, we wish to define the local policies of action and communication as func-
tions from belief-state sequences, δA

i : β∗
i → Ai and δ�

i : β∗
i → �i, respectively. These

belief-states are composed of both translations of messages received and beliefs about
the features of the states based on observations and message sequences. Section 4 dis-
cusses these policies and their value in full detail. Here, we simply note that our work
is based on the idea that agents learn to communicate on-line while acting towards
the maximization of some global objective. We assume that each agent already has
been assigned some policy of behavior that includes a local policy of action and a
local policy of communication. For every possible belief-state of its own, an agent will
know how to act and what message from its own language to send. All they lack, then,
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is a way to correctly interpret the messages received. Learning to act, to communicate
and to interpret messages all at once on-line is beyond the scope of this paper. Here,
we are interested in the process of updating these belief-states, resulting in updated
interpretation of messages and consequently better coordination between agents.

3. Formal definitions

The elementary items comprising the theory of communication learning are agents
taking actions and making observations in an environment, along with: (1) languages
of communication between agents; (2) translations governing how messages in differ-
ent languages are interpreted; (3) beliefs about the environment, governing which
messages are sent and which actions are taken; and (4) contexts which govern how the
interpretations of messages are generated and changed in response to feedback from
the environment.

Definition 2 (Language) A language is a pair � = (W, ∫), where:

1. W = {σo, σ1, . . . , σn} is a set of primitive words, the atomic units of which messages
are comprised.

2. ∫ is a syntax-function, defined as follows:
• Wn = W × · · · × W

︸ ︷︷ ︸

n

is the set of all n-word messages; W+ = ⋃

n∈N
Wn.

• ∫ : W+ → {1, 0}.
A message σ+ ∈ W+ is legal for language � (written σ+ ∈ �) iff � = (W, ∫) and

∫(σ+) = 1.
As given, the definition of a language does not specify any particular structure for

a language; in general, the syntax-function can be arbitrary. For most purposes, of
course, we would define such a syntax-function in some structured (perhaps com-
positional) way, so that the set of legal messages was similarly structured. Previ-
ous results [23] proved that agents controlling a Dec-MDP-Com benefit most by
exchanging their own last observations when the cost of communication is constant
over all messages. For more general cases, it may be worthwhile for the agent to
send information about the actions it has performed. Since individual observations
and actions are only known locally, they are natural candidates to be exchanged as
messages between the agents. For example, agents acting in a 2D grid may be mod-
eled as observing their own local coordinates. A language of communication can
then be defined as the set of pairs of possible coordinates: the language �xy = (N, ∫)

of coordinates in a 2D grid of size (MaxX × MaxY) is given by the set of messages
(x, y) where x, y ∈ N and ∫(x, y) = 1 if and only if both (0 ≤ x ≤ MaxX) and
(0 ≤ y ≤ MaxY). Of course, other languages could have yet more complex syn-
taxes, as for example messages that include the actions taken as well. So far, there
has been no study of Dec-MDPs featuring communication of messages that are
different from observations. Our work here considers just such cases.

Note that we do not specify a semantics as part of the definition of a language. In
fact, no detailed treatment of the meaning or truth-conditions of messages is given.
Rather, the semantics of any language � arises implicitly from elementary practices
of actual communication. Agents communicate particular messages, based simply on
their own observations, actions and resulting beliefs, according to the agent’s local
policy of communication, which can be presumed to depend upon the global goals.



Auton Agent Multi-Agent Syst

“Meaning,” then, is simply a correlation between particular messages and the beliefs
that cause their originator to send them; this is discussed in further detail below.
Similarly, an agent establishes a translation between its own language and another by
correlating the sets of messages in each (and so, indirectly, between messages in the
other language and its own beliefs about the environment).

Definition 3 (Translation) Let � and �′ be two sets of messages. A translation, τ ,
between � and �′ is a probability function over message pairs, i.e., for any messages
σ , σ ′, τ(σ , σ ′) is the probability that σ and σ ′ have the same meaning. τ+

�,�′ is the set
of all translations between � and �′.

An agent translates between its own language and (some subset of) another by
establishing a probabilistic correlation between the meanings of the messages in
each.1 Here we point out that “means the same thing” is given sense simply in terms
of the agents’ beliefs. For agent α1 to say that message σ2 ∈ �2, sent by agent α2, is
likely to mean the same as message σ1 ∈ �1, is simply to say that it is likely that the
situations in which α2’s beliefs cause it so send message σ2 are the same as those in
which α1’s beliefs would cause it to send σ1.

For example, assume that the messages σ1 ∈ �1 and σ2 ∈ �2 name locations in a
fully observable 2D grid, and that agent α1 always sends out the name of its current
location x, whenever it observes that it is in fact at x. Further, suppose that we have a
completely specified translation τ between �1 and �2. Then, the probability τ(σ1, σ2)

is simply the probability that the belief that causes α2 to send σ2 arises exactly when
α2 is in the same location that α1 names using σ1. Furthermore, in such a situation,
any functional output τ(σ1, σ2) = 1 will mean that α1 is absolutely certain that σ2 is to
be translated as σ1. This discussion can be made more precise by defining the notion
of a belief-state.

Definition 4 (Belief-state) For an agent α in state-space S, a belief-state β = (Pτ , F),
where:

1. Pτ is a probability distribution over translations.
2. F is a probability distribution over state-set S, with F(s) the probability that the

agent is in state s.

An agent’s belief-state thus consists of a probability distribution over states—a
familiar notion from the literature on partially observable Markov decision processes
(POMDPs)—along with a probability distribution over the set of translations be-
tween the agent’s own language and the language of another with which the agent
communicates. In the case that there exist more than one such other agent, the belief-
state will require multiple such translation-distributions; in this work, we will treat
only of the two-agent case, and so only provide a single such distribution. Further-
more, since each translation τ ∗ is in itself a probability distribution over message pairs,

1 In the most general case, the uncertainty of interpreting a message correctly can be captured by
some general feasibility measure. We focus on probabilities as an example of such measure. Other
measures are beyond the scope of this paper.
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(σ , σ ′) ∈ (� × �′), we can write Pτ (σ , σ ′) for the overall probability that some
particular pair are equivalent, defined as:2

Pτ (σ , σ ′) =
∑

τ∗∈τ+
�,�′

Pτ (τ
∗)τ ∗(σ , σ ′). (1)

Thus, each agent may possess any number of distinct translations between its own
language and some other, each assigned its own probability. The process of learning to
communicate is thus the process of adjusting these sets of translations, replacing them
with others that differ in the probabilities they assign to individual message pairs, or
with respect to their own individual probabilities. In particular, we will assume that
this process is governed by the observed outcomes of actions taken by the translator.
That is, an agent α learns to communicate in some language �′ as a result of taking
actions based (at least partially) on messages received in that language, and then
adjusting its current set of possible translations of �′.

In general, as given in Definition 3, a translation between language � and some
other language �′ involves a complete function over �. That is, the translation assigns
values to translations for every possible message σ ∈ �. In real situations, of course,
agents will not generally consider literally every possible meaning of a message σ

received in some unknown language, for if they did, the process of interpretation
and translation would never get off the ground. Rather, agents tend to restrict their
attention to certain specific subsets of plausible meaning for the utterances of others,
where such restricted subsets are given by contextual considerations of such things as
relevance and expected intent. Effectively, then, a context allows an agent to bound
the possible interpretations of other agents, or to pre-assign translations to specific
parts of the language, as for example in cases where two agents already share part,
but not all, of their two languages. The models and the bounds involved in contexts
of translation can also correspond to such things as assumptions about the syntax of
messages in the target language, or about the grammatical role of particular parts
of certain messages. Such models, and their restrictions, are what makes language
learning possible. Without some available context for translation—some model of the
relationships between messages, actions, and outcomes—an agent α will be simply
unable even to begin interpreting the language of another. Our notion of context is
thus in the same vein as the local models semantics/MultiContext Systems (LMS/MCS)
model reviewed in [33], in which it is assumed that an agent has a local theory contain-
ing all the knowledge it needs to solve a problem. We assume that agents share the
same context, although each agent may have a different vocabulary associated with
it. This paper studies algorithms that map one vocabulary to the other so that agents
can correctly interpret messages sent in the relevant context.

4. On belief-state updates

The problems studied in this paper involve agents that do not share one language of
communication, act in part based upon how they translate one another’s messages. In

2 A translation τ∗ ∈ τ+
�,�′ is total over an agent’s own language �, but may be partial over the other

language, �′, especially as all the particular contents of that second language may not yet be known.
In general, if some incomplete translation τ∗ is such that the particular pair (σ , σ ′) is not part of its
domain, then we set τ∗(σ , σ ′) = 0 for the purposes of Eq. 1.
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our framework, agents translate between sets of messages by establishing a probabilistic
correlation between them. In most cases agents need to consider multiple possible
translations between messages; that is, they possess beliefs about which translation
to utilize in any given situation, and update those beliefs over time based on their
experience. We now consider this update process, both in general and under some
special simplifying assumptions. First, we discuss the way that the general process
of updating translations, based on sequences of past observations, messages, and ac-
tions, interacts with policies of action and their value. Next, we look at a special case,
where translation updates are based solely upon information from immediately prior
time-steps.

4.1. Belief updates in general

Local behaviors of agents are mappings from sequences of belief-states to either
domain actions or messages, δA

i : β∗
i → Ai and δ�

i : β∗
i → �i. As given by Defi-

nition 4, the belief-state βi = (Pτ i, Fi) is composed of probability distributions over
translations and system states, respectively. We are particularly interested in updates
of the translation portion, Pτ i, of the belief-state (the portion Fi is itself dependent
upon the current translation–distribution, along with the observation and message
sequences), since the current translation will have direct effect upon an agent’s cur-
rent actions. Letting P+

τ i be the space of all possible distributions over translations
between languages �i and �j, we can write the local policies of each agent αi in a
manner analogous to those involving shared languages [23].

Definition 5 (Local Policy of Action with Different Languages)

δA
i : �∗

i × �∗
j × P+

τ i → Ai.

Definition 6 (Local Policy of Communication with Different Languages)

δ�
i : �∗

i × �∗
j × P+

τ i → �i.

That is, the policies for each agent are functions (to either actions or messages) from
observation and message sequences, along with particular translation–distributions.

We define transition probabilities over state sequences given such a policy, and its
expected value, just as for Dec-MDP-Coms with shared languages [23]. This task is
complicated by the need to factor in updates to the translation–distributions. In gen-
eral, agents will update their beliefs about translations—the distribution P+

τi
—based

on sequences of observations, messages, and actions.

Definition 7 (Translation-Update Function) Translation updates are functions:

Uτ i : �∗
i × �∗

j × A∗
i × P+

τ i → P+
τ i.

By convention, if any of the three input sequences is empty, then Uτ i returns some
designated distribution, P̂τ i ∈ P+

τ i, the default distribution; that is:

Uτ i(ε, σj, ai, �) = Uτ i(oi, ε, ai, �) = Uτ i(oi, σj, ε, �) = P̂τ i.

Over time, then, these updates influence actions taken, and the outcomes of those
actions in turn influence further updates. Relative to a given local action policy, which
generates the action sequences, we define the update function based on observation
or message sequences alone.
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Definition 8 (Translation Updates for an Action Policy δA
i ) For a given local policy of

action δA
i , and update function Uτ i, we define the translation-updates for δA

i , written
UδA

τ i , recursively on observation and message sequences as follows:

UδA
τ i (ε, ε) = UδA

τ i (oi, ε) = UδA
τ i (ε, σj) = Uτ i(ε, ε, ε, �) = P̂τ i, (2)

UδA
τ i (oioi, σjσj) = Uτ i(oioi, σjσj, δA

i (oi, σj), UδA
τ i (oi, σj)), (3)

where, for oi = 〈o1
i o2

i . . . on
i 〉 and σj = 〈σ 1

j σ 2
j . . . σ n

j 〉, we have action sequence,

δA
i (oi, σj) as:

〈δA
i (o1

i , σ 1
j , UδA

τ i (o1
i , σ 1

j )) δA
i (o1

i o2
i , σ 1

j σ 2
j , UδA

τ i (o1
i o2

i , σ 1
j σ 2

j )) . . . δA
i (oi, σj, UδA

τ i (oi, σj))〉.
That is, for either an empty observation or message sequence, the update returns the
default translation–distribution, P̂τ i. Further, for full sequences of observations and
messages, the update is based upon those sequences, along with the particular actions
and updates generated immediately prior, based on their prefix sub-sequences. Note
that the given action sequence presumes that oi and σj are of the same length; this
is merely for convenience, and the definition can be rewritten easily for sequences
of unequal length, given the proviso on Uτ i concerning empty sequences. Note also
that by convention the action sequence for empty observation or message sequences
is also empty: δA(ε, ε) = ε.

To identify the expected reward for a joint policy, we first define the probability
of transitioning over a sequence of states. This is given by the one-step transition
probability of reaching a destination state ′s from any origin state q (part of the
Dec-MDP-Com model), multiplied by the cumulative transition probability for any
possible sequence suffix leading to q, and weighted by the probability of sensing the
given observation sequence, just as in the case of policies with a shared language [23].
The difference here is that we must take account for the ongoing processing of mes-

sages received, i.e. the update function, UδA
τi . Thus, when we consider the actions taken

under each individual policy, we take into account not only the most recent sequence
of observations and actions, but also the latest state of the translation, given those
sequences.

Definition 9 (Transition Probability Over a Sequence of States with Translations) The
probability of transitioning from a state s to a state s′ following the joint policy
δ = (δ1, δ2) in the presence of translations while agent 1 sees observation sequence
o1o1 and receives sequences of messages σ2, and agent 2 sees o2o2 and receives σ1 of
the same length, written Pδ(s′|s, o1o1, σ2, o2o2, σ1), can be defined recursively:

1. Pδ(s|s, ε, ε, ε, ε) = 1.
2. Pδ(s′|s, o1o1, σ2σ2, o2o2, σ1σ1) =

∑

q∈S

Pδ(q|s, o1, σ2, o2, σ1) ∗ P(s′|q, δA
1 (o1, σ2, UδA

τ1 (o1, σ2)),

δA
2 (o2, σ1, UδA

τ2 (o2, σ1))) ∗
O(o1, o2|q, δA

1 (o1, σ2, UδA
τ1 (o1, σ2)), δA

2 (o2, σ1, UδA
τ2 (o2, σ1)), s′)

such that δ�
1 (o1o1, σ2, UδA

τ1 (o1o1, σ2)) = σ1 and δ�
2 (o2o2, σ1, UδA

τ2 (o2o2, σ1)) = σ2.
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The value of the initial state s0 of the Dec-POMDP-Com after following a joint
policy δ for T steps can be defined as the expected reward attained over all possible
sequences of states visited by δ starting in s0. This is also analogous to the shared-

language case [23], once again taking into account the update function UδA
τi

to reflect
how the sequence of past messages and actions is currently viewed, given current
translation.

Definition 10 (Value of an Initial State Given a Policy with Translations) The value
VT

δ (s0) after following policy δ=(δ1, δ2) from state s0 for T steps is given by:

VT
δ (s0) =

∑

(o1o1,o2o2)

∑

q∈S

∑

s′∈S

Pδ(q|s0, o1, σ2, o2, σ1) ∗

P(s′|q, δA
1 (o1, σ2, UδA

τ1 (o1, σ2)), δA
2 (o2, σ1, UδA

τ2 (o2, σ1))) ∗
R(q, δA

1 (o1, σ2, UδA
τ1 (o1, σ2)), δ�

1 (o1o1, σ2, UδA
τ1 (o1o1, σ2)),

δA
2 (o2, σ1, UδA

τ2 (o2, σ1)), δ�
2 (o2o2, σ1, UδA

τ2 (o2o2, σ1)), s′),

where the observation and the message sequences are of length at most T −1, and
both sequences of observations are of the same length l. The sequences of messages
are of length l + 1 because they considered the last observation resulting from the
control action prior to communicating.

The optimal policy for a Dec-MDP-Com with given translation-update functions,
Uτ i for each agent αi, is thus the joint policy which maximizes the expected value of
the starting state. As before, we stress the difference in difficulty between stating the
value-function, and actually calculating the value so that we can determine an optimal
value-maximizing policy. Solving such a problem will be no easier in general than for
problems with shared languages. In any case, our work does not involve generating
such policies. Rather, we are interested in the translation-update functions that pro-
duce behavior in concert with given policies. Therefore, we look now at ways in which
these update functions can be simplified.

4.2. Belief updates with limited information

In the processes we consider, belief-state updates need not be based upon possibly
unbounded sequences of observations, messages, and actions. Figure 1 (in Section 2)
has given a general overview of the relationships between various components of the
language-learning process. As shown there, the belief-state of an agent at any time t,
β t, depends upon the following pieces of information:

1. The prior belief-state, β t−1.
2. The prior action, at−1, taken on the basis of that belief-state.
3. The most recent observation of the environment, ot, resulting from that action.
4. The most recent message received, σ t.

It is to be noted that this is an ideal case. In particular, it assumes that updates rely only
upon information and action taken from the current and immediately prior time-step.
The process can become quite complicated, if not infeasible, when updates must rely
upon information from further in the past. Furthermore, we cannot always guaran-
tee that these sorts of updates are always possible, even given just the time-limited
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information specified here; we shall also examine cases in which updating the proba-
bilities assigned to certain translation entries are simply infeasible, due to defects in
the structure of the language in question.

As given by Definition 4, a belief-state is a two-part structure, consisting of an
agent’s current best belief about the meaning of another language (the probability
distribution over translations, Pτ ), along with a belief concerning other features of the
environment (the distribution over states, F). The process of updating the belief-state
therefore, involves updating each of these components, either separately or together.
As we model this process, it takes place sequentially, updating each part in turn. Let
β t

i = (Pt
τ i, Ft

i ) be the belief-state of agent αi, to be calculated at time t; ideally, we
want the probabilities reflected in the two component distributions to be set correctly
by way of a two-step update:

1. First, agent αi updates its belief about language, setting the probability distribu-
tion over possible translations based upon its prior belief-state and action, its own
current observation, and any message just received from agent αj. This update
should be such that for any pair of messages, it yields the probability that this pair
has the same meaning (written σi = σj):

(∀σi, σj) Pt
τ i(σi, σj) =

∑

τ∗∈τ+
�i ,�j

Pt
τ i(τ

∗)τ ∗(σi, σj)

= P(σi = σj | Pt−1
τ i , Ft−1

i , at−1
i , σ t

j , ot
i).

2. Second, the agent needs to update its belief about the state of the environment, set-
ting the probability distribution over states according to the prior such belief and
action, the most recent message and observation, and the current (just-updated)
translation distribution:

(∀s) Ft
i (s) = P(st = s | Pt

τ i, Ft−1
i , at−1

i , σ t
j , ot

i).

In our model, learning to communicate is therefore the process of systematically
updating belief-states with respect to translations. Agent αi chooses an action, ai,
based upon its local observation, oi, any messages received, and the current belief-
state, β t

i , about how to translate those messages. The choice of ai, along with the actions
chosen by other agents, leads to some state-transition, which in turn results in some
new observation, ot+1

i . This observation then leads to an update to a new belief-state,
β t+1

i , further affecting how later messages are translated, and thus influencing future
actions.

The procedure governing the update from belief-state β t
i to β t+1

i comprises the
agent’s language model: a function from actions, messages, and observations, to dis-
tributions over translations and system states. (Definition 7 and what follows, above,
gives a formal treatment of the language portion of these updates.) Such probabilistic
models can range from quite simple to highly complex, depending upon the nature of
the languages and problem environment. For instance, in a Dec-MDP-Com in which
agents already share a common language—so that translation is not an issue—and
can freely communicate with one another, all that is required is that agents update
their state-distributions. This, however, is elementary: since a decentralized MDP is
jointly fully observable (Definition 1, clause 8), agents can compute the actual global
state directly, and probabilities are strictly unnecessary. Where agents begin with-
out a commonly understood language, things are obviously much more complicated,
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and the prescribed belief updates can be difficult to compute correctly. Indeed, it
is not clear that it would be possible to generate a meaningful, let alone usefully
tractable, probabilistic model of a full-blown natural language. Thus, we concentrate
upon languages restricted to suit the needs of agents working in decentralized MDPs,
communicating specifically about their own observations and actions, and trying to
optimize performance in a set task. Even such basic languages provide interesting
challenges and difficulties; we discuss this further in [20, §4.2.1–2], including examples
of vicious circles in the update process, or where agents require unbounded memory.

5. The language-learning problem

As we have explained, the general problem of learning to communicate while acting
in a decentralized environment can be captured as the process of updating belief-
states about system-states and translations, together with policies that allow agents
to act based upon these beliefs Such problems may arise in any number of contexts.
One plausible use for such techniques arises in cases of automated systems coping
with errors in their design or specification, as for instance the problem of disparate
metric and imperial measures encountered in the Mars orbiter program [29]. Such
systems, when communicating with one another, or with human operators, may need
to learn to reinterpret instructions or state specifications, in light of new information.
In our Dec-MDP-Com framework, agents would each possess a model of the overall
problem domain, in terms of possible states of the system, along with a probabilistic
model of action effects in terms of state transitions, and a model of expected reward
for actions. When observations indicate discrepancies between the world and how
received messages are understood, agents will then need to learn how to re-translate
those messages. The Mars orbiter, for example, upon observing that following its given
flight-path information was leading it too close to the surface, might have been saved
had it the capacity to learn how to adjust its understanding of those instructions by
translating them into another system of measure.

Lacking any particular restriction on the updates and action choices, this general
process can be very complex and is not guaranteed to converge to either a correct
interpretation of the messages exchanged, or an optimal policy of action. In this sec-
tion, we define the problem of learning to communicate precisely, giving criteria for
what it means to solve it. Then, we identify desirable properties of algorithms for
doing such learning, and give properties of Dec-MDP-Coms that allow us to give
some guarantees on the performance of a system of probabilistic belief updates. The
rest of the paper will concentrate on a particular implementation of an algorithm that
solves the learning problem in such problem instances.

5.1. Solutions and solution algorithms

“Learning to communicate” comprises a broad set of behaviors and capacities. We
give the phrase specific meaning in terms of convergence to optimal action policies
in a decentralized MDP. In this context, agents learn to communicate while act-
ing towards a jointly optimal solution of the Dec-MDP-Com, and we evaluate how
successful learning has been according to its usefulness in achieving such a value-max-
imizing policy. To make the problem studied here precise, we refer to the expected
reward of the optimal joint policy given some translations (Section 4.1). Then, we can
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tell that a system of agents has learned to communicate if there exists some point in
time such that the best plan based on translations from that point on is in fact optimal.
We are not studying the optimality of the learning process itself, i.e. how much time
the learning process takes until such a point in time is found. Instead, we consider the
performance of a decentralized system when miscoordination may arise as a result of
discrepancies in the interpretation of messages exchanged.

We begin by defining what it is for a joint policy, in combination with agents’ update
functions, to converge. We again restrict the formal presentation to the two-agent case
for convenience.

Definition 11 (Convergence with Translation Updates) Let M1 be a multiple-language
Dec-MDP-Com:

M1 = 〈S, A1, A2, �1, �2, C� , P, R, �1, �2, O, T〉
and let agents α1 and α2 have translation-update functions Uτ1 and Uτ2. Additionally,
let the agents take part in the joint policy δM1 = [(δA1

1 , δ�1
1 ), (δA2

2 , δ�2
2 )], with individual

local policies as follows:

δAi
i : �∗

i × �∗
j × P+

τ i → Ai δ�i
i : �∗

i × �∗
j × P+

τ i → �i.

Further, let M2 be a Dec-MDP-Com identical to M1, except for a single shared lan-
guage, �+ = (�1 ∪ �2):

M2 = 〈S, A1, A2, �+, C� , P, R, �1, �2, O, T〉
and for any state s at time t, let δ∗

M2(s
t) = arg maxδ VT−t

δ (st) be the optimal policy for
M2, starting from s at t. Then, the first joint policy δM1 , with update functions Uτ1 and
Uτ2, has converged at some state s and time t if and only if:

VδM1 (st) = Vδ∗
M2 (st)(s

t).

That is, a policy converges, along with the associated update functions, when the
agents reach a point in time after which their actions, in accord with their translations
at that point and at all points afterwards, return the maximum value that could be
expected if the agents did in fact share all their linguistic resources. This definition
highlights the dual nature of convergence in the language-learning context, in that it
depends upon both the policies of action and communication, as well as the transla-
tion-update functions in use. Given this notion of convergence, it is straightforward
to give an exact statement of the learning problem.

Definition 12 (Learning to Communicate while Acting) Let M be a Dec-MDP-Com
with multiple languages: and let agents α1 and α2 have translation-update functions
Uτ1 and Uτ2, and joint policy δM = [(δA1

1 , δ�1
1 ), (δA2

2 , δ�2
2 )]. The agents have solved the

problem of learning to communicate while acting at some state s at time t if and only
if δM, with update functions Uτ1 and Uτ2, has converged at st.

That is, the agents have solved the problem of learning to communicate whenever
they arrive at a policy of action that, in combination with their given translation-update
functions, leads to a course of action equal in value to one that would maximize return
if the agents in fact shared all the same language. The definition therefore says nothing
about the character of the translations at work. In particular, we are not committed
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to any view as to whether these translations are “correct” or not. Rather, agents
are said to have solved the problem whenever their actions, however they translate
one another, are optimal. This opens the door to a number of possibilities, including
translations that are only partially complete, or ones that conspicuously mistranslate
certain language items. So long as these kinds of omissions or mistranslations do not
affect the optimality of the associated policy, we accept that the agents have indeed
learned to communicate.

5.1.1. Optimality of converged policies

A consequence of this manner of defining a solution to a communication problem is
that it takes into account the possibility that the joint policy, along with the update
functions, may converge to a pattern of behavior that is not absolutely optimal. That
is, the optimality of that policy is relative to the point of convergence, st, and we do
not guarantee optimal results if the agents were to “start over,” implementing the
policy from the initial Dec-MDP-Com start-state, s0. This is a result of an unavoidable
fact, namely that the time it takes to learn something in the setting of a decision
problem may have negative consequences on the expected value in that environment.
In general, we cannot guarantee that the time taken for learning does not cut agents
off from some potential expected value. For instance, in some problem domains, there
are states of the environment which are simply unreachable given the optimal joint
policy of action. In such cases, an absolutely optimal policy need not prescribe actions
that actually maximize value for such states; since they are never reached, any action
whatsoever may be assigned to them without affecting overall optimality. When agents
are learning, however, and taking sub-optimal actions along the way, they may very
well find themselves in such states of the environment, and so their final policies may
end up very different.

There is one important exception. In an ergodic, infinite-horizon Dec-MDP-Com,
every state reachable with non-zero probability by following an action policy recurs
infinitely often and aperiodically under that same policy; the set of such states is called
the recurrent set [30]. If the recurrent set for every policy comprises the entire state
space S, then the process is irreducible. It is well known that the expected value of
policies in such environments is indifferent to the exact starting state, allowing us to
establish the following.

Claim 1 (Optimality in Irreducible Dec-MDP-Coms) Let M1 be an irreducible two-
agent and two-language Dec-MDP-Com, with an infinite time horizon. Let δM1 , with
update functions Uτ1 and Uτ2, have converged at some st in M1. Then δM1 is absolutely
optimal for the shared-language version of the problem, M2; that is, for initial state s0

of M2 :

δM1 = δ∗
M2 = arg max

δ2
Vδ2(s

0).

Proof δM1 , along with Uτ1 and Uτ2, have converged at st, and so by definition,

VδM1 (st) = Vδ∗
M2 (st)(s

t), (4)

where δ∗
M2(s

t) is the policy that is optimal in the shared-language problem M2 from
point st onwards. Since M1 is irreducible and infinite-horizon, so is M2, as the prob-
lems are identical apart from the languages involved. Thus, starting at st in M2, and
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following policy δ∗
M2(s

t), we will visit original initial state s0 infinitely often. Therefore,
this policy is absolutely optimal:

δ∗
M2(s

t) = arg max
δ2

Vδ2(s
0). (5)

Equations 4 and 5 establish Claim 1. ��

Our empirical work, described in Section 7, has not generally involved problems
that are fully irreducible, nor even properly ergodic. On the other hand, to impose
natural stopping conditions on our learning algorithms, we dealt with problems in
which agents eventually encountered every state in the environment often enough to
drive their translations to a point at which those translations were in fact complete (in
the sense of Definition 15, below). In such cases, and because starting conditions for
decision tasks repeated randomly (so that there are no “dead-end” policies), it is easy
to show that the convergent policies of action with translation are in fact absolutely
optimal. We do not prove this fact here, as it is only incidental to the goals of this
paper. Rather, we note it only to point out that the choice was one of convenience:
our proposed methods require neither the special properties just mentioned, nor full
irreducibility, to succeed. For instance, we prove in Claim 6, Section 6, that a particu-
lar protocol for action and translation update converges to an optimal policy. While
this generally requires an infinite time horizon to allow enough time for learning,
irreducibility is not assumed; the convergence proven is thus that of Definition 11.

5.1.2. τ -Learning algorithms

The central feature of any attempt to solve the communication-learning problem is
an algorithm for updating translations. Here, we call such methods τ -learning algo-
rithms; an example is given in Section 6. In our work, we concentrate upon instances
in which policies of action and communication are given ahead of time. That is, the
central problem facing an agent is that of updating its translations. Once this has been
accomplished, these pre-selected policies dictate what is to be done, based upon the
current interpretation. (More details of the policy-selection process are given below.)
Of course, different τ -learning algorithms may result in different belief updates, and
can thus have differing effects upon the values of the associated policies. For example,
τ -learning algorithms that generate correct translations of only a proper subset of
messages can result in an overall system utility that is lower than would be expected if
agents were able to translate all messages properly. In other instances, however, this
may not be the case, as for instance when not all messages are actually essential to the
successful performance of the system.

In addition to a τ -learning algorithm, agents need a rule for how to choose one
meaning for a message received out of its possible translations. We give an example
of such a rule in the protocol presented in Section 6, where agents act simply upon a
meaning with maximum probability of being correct. Another reasonable assumption
about the learning process is that observations sensed after actions were taken based
upon interpreted messages are informative. While this information need not neces-
sarily tell an agent the actual correct meaning of a message, it should provide some
guidance about whether it has acted correctly or not. There may be many ways to act
right or wrong, and this observation is not required to distinguish among these. We
avoid cases in which observations provide no useful information at all. Clearly, such
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environments make language learning impossible, but this is a defect in the problems,
not in the methods for solving them. Similarly, we are not interested in cases where any
action at all, taken upon any interpretation, results in the same expected reward—in
such cases there is clearly no more benefit to be had from learning language than from
ignoring it altogether. This section focuses on some formal properties that τ -learning
algorithms may have. These properties help us understand the optimality guarantees
of learning algorithms. Two important characteristics of learning methods are the
certainty and the completeness of their outputs.

Definition 13 (A τ -learning algorithm is certain with respect to (σi, σj)) A τ -learning
algorithm is certain with respect to (σi, σj) if the algorithm is guaranteed to converge
to a translation τ such that τ(σi, σj) = 1 or τ(σi, σj) = 0.

Definition 14 (A τ -learning algorithm is ε-certain with respect to (σi, σj)) A τ -learning
algorithm is ε-certain with respect to (σi, σj) if the algorithm is guaranteed to converge
to a translation τ such that τ(σi, σj) ≥ ε, or τ(σi, σj) ≤ (1 − ε).

The latter type of learning algorithm enables us to compare levels of coordination
between multiagent systems that have learned to communicate at different ε lev-
els. This measure will thus serve us as a quantifier to compare the performances of
such systems. Furthermore, we may be able to switch between contexts when the
translations cannot be ε-certain for some ε. We leave this for future work.

Definition 15 (A τ -learning algorithm is complete) A τ -learning algorithm is complete
if it is certain with respect to all pairs of messages in �i.

An agent employing a complete τ -learning algorithm to learn how to communicate
in some language � will have converged upon a translation that is ultimately certain
in all its assignments to message-pairs. In order to use such a translation to actually
generate an optimal policy of action, it can also be necessary that agents are able to
communicate about all relevant features of the environment.

Definition 16 (Fully describable) A Dec-MDP-Com is fully describable if each agent
αi possesses a language �i sufficient to communicate both: (a) any observation made,
and (b) any available action.

The application of a complete τ -learning algorithm in a fully describable environment
allows agents to solve Dec-MDP-Coms to optimality.

Claim 2 Solving the problem of learning to communicate for a fully describable Dec-
MDP-Com

M2 = 〈S, A1, A2, �1, �2, C� , P, R, �1, �2, O, T〉
with a complete τ -learning algorithm is a sufficient condition for solving M2 optimally.

Proof Since the τ -learning algorithm is complete, it is certain with respect to all pairs
of messages. There thus exists some time t at which the agents are guaranteed to
know with certainty a mapping between messages in both languages �1 and �2. Fur-
thermore, since the Dec-MDP-Com is fully describable, completeness means that the
agents know to map any possible observation and action in Ai and �i to any action and
observation in Aj and �j. Therefore, given enough time for the learning algorithm to
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converge and without loss of generality, agent α1 can exchange messages in �2 instead
of in its original language �1. Hence, the expected value of the joint policy of action
and communication that solves M2 will be equal to the expected value of the optimal
solution to the corresponding problem with a mutually shared language. ��

While this result establishes that we can in fact solve a Dec-MDP-Com optimally
given a complete method, such a τ -learning algorithm is not a necessary condition
for optimality. A τ -learning algorithm may not be complete—that is, it may not reach
full certainty for every possible pair of messages—and nevertheless the agents’ per-
formance may be optimal. For example, this may occur when messages that do not
get translated with certainty are not relevant for the optimal solution of the problem.
Such uncertain translations cannot affect the value of the joint policy of action and
therefore, agents may behave and communicate optimally even though their transla-
tions are not complete. For example, assume a set of two agents is assigned a task of
revealing a hidden treasure. Agents need to move around a two-dimensional grid in
order to find the treasure. Agents can exchange messages about locations, for exam-
ple, instructing the other agent to move towards a certain place. Discrepancies in
the language of communication means in this example that agents do not have the
same system of coordinates and therefore need to correlate pairs of locations in both
languages. There may be some set of locations that is never used in the solution of
the problem, so the fact that one agent may not know how to interpret the names of
those locations correctly will have no effect on the quality of the solution. Similarly,
agents may achieve optimal performance using an incomplete algorithm that does not
assign complete certainty to translations, but is correct in terms of relative certainty
(so that the correct translation of any message is always the most probable). In such
a case, if agents always choose the most likely interpretation of any message as its
actual interpretation, then the lack of absolute certainty will have no effect upon the
value of those actions.

5.2. Suitability of Dec-MDP-Coms

The ability of agents to learn to communicate depends not only upon the algorithms
employed to update belief-states, but also upon features of the problem instance. In
the previous section, we identified one such feature, full describability (Definition 16);
here, we identify further properties of Dec-MDP-Coms, and discuss their usefulness
and possible necessity in the learning process. The first of these properties has to do
with the cost of communication in the system; while the general definition of a Dec-
MDP-Com allows arbitrary costs for each message sent, we are particularly interested
in cases where communication is cost-free.

Definition 17 (Freely describable) A Dec-MDP-Com is freely describable if and only
if the cost of communicating any message σ is 0.

Free communication has the potential to considerably simplify a Dec-MDP-Com,
since agents may communicate as much as they like without affecting overall system
utility. Where the system is not freely describable, optimal control policies need to
consider not only what to communicate, but when, according to a cost–benefit analysis
of the potential value of the information shared as compared to the price of commu-
nicating it. Thus, as discussed in Section 5.2.1 below, it may not be possible to generate
optimal solutions to such problem instances in an effective manner. Detailed study
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of the communication-learning problem in a non-free decentralized environment is
beyond the scope of this paper.

When combined with free communication, the ability to describe a Dec-MDP-Com
in full can radically simplify the problem at hand. For example, we have shown [1] that
when agents in fact share a common language, a Dec-MDP-Com that is both freely
and fully describable is reducible to the much simpler case of a multi-agent MDP
(MMDP). The MMDPs, in which each agent effectively observes the entire global
system state, are known to allow for polynomial algorithms that generate optimal
policies, and are thus tractable in ways that Dec-MDP-Coms are not [8]. As discussed
below, such properties also affect the possibility of optimal solutions when agents
must first learn to communicate before they can undertake their policies.

As we have pointed out, optimal action in a Dec-MDP-Com is importantly related
to agents’ ability to communicate effectively about their observations and actions.
Similarly, the ability to update belief-states so that agents learn to communicate
about such factors depends upon their capacity to discern more likely interpretations
over time. We thus define what it is for a Dec-MDP-Com to be suitable for language
learning, allowing agents in such a system to update their translation belief-states in
a monotonic fashion, so that correct translations become ever more likely. Among
other things, such monotonic updates allow agents to avoid the sorts of vicious-circle
problems discussed in [20, §4.2.2]. To define the required property, we first give some
additional notation:

Notation 1 Let M be an n-agent Dec-MDP-Com. In some state s, at time t, suppose
agent αj observes oj and intends to take action aj, communicating both facts to other
agents by messages σ o

j and σ a
j . Any agent αi then assigns a probability

Pσ
i (oj | σ o

j , β t
i ) (6)

to the possibility that αj observes oj, given message σ o
j and αi’s current belief-state β t

i .
Similarly,

Pσ
i (aj | σ a

j , β t
i ) (7)

is the probability that αj will take action aj, given message σ a
j and αi’s current belief-

state. Let maxσ
i (oj)

t and maxσ
i (aj)

t maximize (6) and (7) (i.e., the observation and
action αi considers most likely for αj).

Notation 2 Let M be an n-agent Dec-MDP-Com. In some state s, at time t, suppose
each agent αj observes oj and takes action aj, causing a transition to state s′, with
observations 〈o′

1, . . . , o′
n〉 at time t + 1. Then, for any agent αi, let

Po
i (oj | o′

i)
t+1 (8)

be the probability that agent αj previously observed oj, given that αi now observes o′
i.

Similarly,

Pa
i (aj | o′

i)
t+1 (9)

is the probability that αj took action aj given αi’s current observation.

Two observations are worth making here. First, the probabilities in each case differ
in character: where the first is essentially subjective, the second is objective. Notation 1
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identifies a probability that each agent assigns to an event, given that agent’s update
scheme and language model. Notation 2, on the other hand, identifies a probability
found in the Dec-MDP-Com model itself. As we will show, in certain circumstances
these probabilities can be made to match, so that agents do in fact employ update
schemes that capture the actual dynamics of their environment. The second important
point concerns the nature of the observation o′

i, as it appears in Notation 2. In much
research into decentralized MDP models, system-wide reward is separated from an
agent’s observations, and as such is not generally available; while the goal may be to
find policies that maximize this reward, agents do not act directly in response to these
rewards. In other research, however, agents do in fact observe system-wide reward;
work using MDP models in reinforcement learning, for instance, often uses this reward
as the primary motive force driving the agents toward optimal action over time [37]. In
some of the examples we consider, we choose the latter path, making reward directly
available to the agents. Nothing vital depends upon this choice, however, and our
examples can be replaced with ones in which reward is unobserved, and updates draw
upon other information. Further, we sometimes distinguish between components of
the observation directly related to language learning, and those related to the rest
of the environment. Again, this is just for convenience. As given in the notation, we
are concerned simply with the probabilities of certain actions and observations, given
what is observed during a state transition; if only certain features of the observation
are informative, this will not affect the relevant probabilities.

Definition 18 (Suitability) Let M be any fully describable Dec-MDP-Com in which
agents do not share a common language. In any state s at time t, let each agent αi
observe oi and take action ai, communicating both to other agents using messages σ o

i
and σ a

i . We say that M is suitable just in case for any agents αi and αj, if oj �= maxσ
i (oj)

t,
then for any time t′ ≥ t at which αj observes oj (the same observation as at time t),

Po
i (oj | o′

i)
t′+1 > Po

i (
σ

max
i

(oj)
t | o′

i)
t′+1 (10)

and similarly for aj �= maxσ
i (aj)

t,

Pa
i (aj | o′

i)
t′+1 > Pa

i (
σ

max
i

(aj)
t | o′

i)
t′+1. (11)

That is, in a suitable Dec-MDP-Com, suppose agent αj observes oj and takes action
aj, communicating both to other agents using messages σ o

j and σ a
j . However, based

upon its belief-state at that time, some other agent αi incorrectly considers a different
observation maxσ

i (oj)
t �= oj most likely for αj. In such a case, at any later state (includ-

ing the next one), αi’s resulting observation o′
i “corrects” the situation. That is, at the

next time-step, αi will now consider it more likely that αj observed oj, rather than
the incorrect observation. And, since this property holds at all future time-steps, any
time that αj happens to observe that same oj again, αi will still consider that correct
observation more likely than the one previously thought most likely. (And similarly
for the action aj taken by αj.)

This property is quite complicated to state, and may take a little time to digest.
However, while suitability is somewhat difficult to formalize precisely, we do not
consider it to be an overly strong or artificial condition. As we argue in the next
section, lack of suitability may make it simply impossible to update the probabilities
assigned to action- or observation-messages in any meaningful fashion, and in unsuit-
able environments a decision-theoretic agent may be incapable of achieving optimal
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performance. Furthermore, suitability is not necessarily an uncommon property of
Dec-MDP-Coms. Note that the property as given does not require that the actual
identity of the correct prior observation and action of other agents be determined
exactly by individual observed outcomes. Rather, it is only needed that the correct
such observation or action be to some degree more likely than ones that might have
seemed most likely before. For instance, domains in which agents have no idea what
actions others are taking, but can at least positively eliminate some incorrectly chosen
candidate—assigning it zero (0) probability given the immediate effects of the action
taken—can be suitable with respect to those actions (given the proper conditions
on communication): the evidence after any action is taken will eventually eliminate
incorrect candidates, while increasing the probability of the correct action towards
eventual certainty. Similarly, environments in which one agent observes some state
variable a time step before another can be suitable with respect to observation, since
the latter agent will eventually be given positive evidence allowing the determina-
tion of the correct observations. Lastly, we note that the pump-network example we
described in Section 2.1 can in fact be implemented as a suitable Dec-MDP-Com;
Section 7.2, where we describe experiments with implemented versions of such a
problem explains this point further.

5.2.1. Importance of the Dec-MDP-Com properties

We would argue that the three properties outlined in the previous sections—free
communication, full describability, and suitability—are not overly strong or ad hoc.
In each case, the lack of the stated property has the potential to make probabilistic
updates of translations, and optimal action based on those updates, either intracta-
ble or impossible. In the absence of such properties, then, agents will either require
additional restrictions upon the system, or must employ some completely different
form of learning algorithm in order to converge to optimal behavior. Later, we will
show an implementable technique for such convergence in the presence of all three
properties, establishing their sufficiency with respect to communication learning. For
now, we concentrate upon their necessity.

Claim 3 (Necessity of free communication) Learning to communicate and act opti-
mally in a Dec-MDP-Com that is not freely describable is generally intractable.

Claim 4 (Necessity of full describability) Learning to communicate and act optimally
in a Dec-MDP-Com that is not fully describable is generally intractable.

Claim 5 (Necessity of suitability) In the absence of suitability, agents will be generally
unable to update translation-belief probabilities so as to allow them to act optimally.

We do not prove these claims here; discussion and supporting examples are found
in [20]. For now, we only note that properly interpreting Claim 5 takes care. We do
not say that without suitability, it is generally impossible for agents to learn to act
optimally in a decentralized MDP. Rather, we simply mean that if agents are basing
their actions upon the probabilities assigned certain interpretations, in a straightfor-
ward utility-maximizing decision-theoretic manner, they will need suitability to be
able to make well-directed updates to those probabilities. This does not, then, mili-
tate against the application of completely different techniques to such problems (for
instance, some form of reinforcement learning). We would argue that such simple and
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direct learning methods, which do not focus on specific and structured interpretation
of messages, are of limited applicability to language learning in general; however, fully
comparing the advantages and possibilities of various policy-generation and learning
algorithms is beyond the scope of this paper.

6. Particular protocols and algorithms for language learning

Learning to communicate while acting requires not only an update rule (the τ -learning
algorithm), but also a protocol for coordinating communication, action and interpre-
tation. Here, we present such a protocol, allowing agents in suitable and freely describ-
able Dec-MDP-Coms to converge to optimal behavior. Following that, we describe
the use of a Bayesian update method for calculating belief updates in this context,
and describe how we have implemented that method in our tests and experiments
(see Section 7).

Definition 19 (Elementary action protocol) Let s be a state of Dec-MDP-Com M, at
time t, where agent αi observes oi. Each αi follows the elementary action protocol:

(1) αi communicates oi to the others, using message σ o
i .

(2) αi calculates the most likely observation sequence,

o	 = 〈 σ
max

i
(o1)

t, . . . , oi, . . . ,
σ

max
i

(on)t〉
and most likely state, s	 = J(o	). (In accord with joint full observability, as in
Definition 1.)

(3) Proceeding in turn, αi chooses an action by:

(a) Calculating the most likely action sub-sequence,

a	 = 〈 σ
max

i
(a1)

t, . . . ,
σ

max
i

(ai−1)
t〉.

(b) Choosing action ai that is part of some joint action maximizing value for s	

at time t:

a+ = 〈a	, ai, ai+1, . . . , an〉.
(c) Communicating ai to the others by message σ a

i .

(4) αi takes action ai after all agents complete step (3)
(5) The state transition from s to s′ caused by joint action 〈a1, . . . , an〉 generates new

observation sequence 〈o′
1, . . . , o′

n〉 and reward r′ at time t + 1. αi then updates its
belief-state so that for any messages σ o

j and σ a
j received on the prior time step,

and any observation oj and action aj, both:

Pσ
i (oj | σ o

j , β t+1
i ) = Po

i (oj | o′
i)

t+1, (12)

Pσ
i (aj | σ a

j , β t+1
i ) = Pa

i (aj | o′
i)

t+1. (13)

It is important to note three features of this protocol. First, agents choose actions
based upon the observations of all others, but the actions of only those that pre-
cede them. The reader can confirm that this allows agents that already understand
each other to coordinate optimally, avoiding the coordination problems Boutilier [8]
sketches. Agents that are still learning the language act in the way they believe
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most likely to be coordinated. Second, in the agent’s new belief-state, the probabil-
ity assigned in observation or action given the most recently received messages—in
other words, the meaning of the messages—is identical to the probability that the
other agent actually made that observation or took that action. It is assumed that the
translation of all other messages from each other agent is adjusted only to account for
normalization factors. Section 6.1 describes the use of a Bayesian Filtering algorithm
to actually accomplish these sorts of updates in practice. Finally, in general multi-agent
coordination, such a straightforward procedure is not necessarily optimal, nor even
necessarily close to optimal. As Boutilier [8] points out, correct choice of action in the
presence of unreliable or inaccurate communication must consider how each action
may affect that communication, along with the other more immediate rewards to be
had. Thus, in our case, it might sometimes be better for agents to choose their actions
based not simply upon what they thought the most likely state might be, but also upon
how certain expected outcomes would affect their translations for future instances of
the problem, perhaps trading immediate reward for expected long-term information
value.

Claim 2 showed that fully describable problems can be solved optimally when trans-
lation updates are performed with a complete algorithm. The next claim shows that
for suitable and fully describable problems, the elementary action protocol suffices to
obtain optimal behavior. Intuitively, this protocol causes the agents to choose their
actions in the right direction (because following the protocol, agents choose actions
based on the most likely ones), and since the problem is suitable this behavior leads
to optimal results.

Claim 6 Agents following the elementary action protocol in a suitable and freely
describable Dec-MDP-Com with infinite time converge upon a joint policy that is
optimal for the states encountered afterwards.

Proof As agents act at some time-step t, they choose actions based always on the
observations and actions of others that they consider most likely. That is,

1. Agent αi translates the observation- and action-messages, σ o
j and σ a

j , for other
agents αj.

2. For each such message, αi chooses the most likely translation, maxσ
i (oj)

t or
maxσ

i (aj)
t.

3. These interpretations are then used, along with αi’s own observation oi, to gener-
ate the most likely observation sequence, o	 = 〈maxσ

i (o1)
t, . . . , oi, . . . , maxσ

i (on)t〉,
and the most likely action sub-sequence, a	 = 〈maxσ

i (a1)
t, . . . , maxσ

i (ai−1)
t〉.

Now suppose, without loss of generality, that one of these observation–translations
maxσ

i (oj)
t is incorrect; that is, the prior observation of agent αj is such that oj �=

maxσ
i (oj)

t. Following the joint action a+, αi will receive its own observation o′
i and

system-wide reward r′. Then, since the problem is suitable, we have that

Po
i (oj | o′

i)
t+1 > Po

i (
σ

max
i

(oj)
t | o′

i)
t+1

(and similarly for all future time-steps). That is, the correct observation will be more
likely, given the observation, than that one previously thought most likely. Further-
more, updates of messages proceed directly in accord with these probability assign-
ments, since the protocol simply assigns

Pσ
i (oj | σ o

j , β t+1
i ) = Po

i (oj | o′
i)

t+1
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and therefore, we have that

Pσ
i (oj | σ o

j , β t+1
i ) > Pσ

i (
σ

max
i

(oj)
t | σ o

j , β t+1
i ).

That is, at all future time-steps, αi will assign the correct translation of message σ o
j

a higher probability than the prior, incorrect interpretation. Finally, once the correct
translation of any message is actually the most likely translation, it will remain so for
all future time steps. Thus, since the number of possible actions and observations for
any agent in a Dec-MDP-Com is finite by definition, agents will, when given enough
time, choose the correct entries, since these will eventually become most probable,
by process of elimination. After this point, the most likely observation and action
sequences will in fact be the actual observation and action sequences for other agents,
and αi will implement a policy that is optimal from then on, since it is now acting
based upon the actual states and next actions of the problem. (Note that the problem
is freely describable, and so utility is not affected by the constant communication
required by the protocol.) ��

Usually, work on cooperation in decentralized environments has followed one of
these approaches:

1. Agents cannot communicate [21].
2. Agents can communicate and understand each other correctly [11, 14, 15, 25].
3. Agents can communicate and learn a language until it is completely under-

stood [18, 36, 40].

Our work here takes a different point of view, since in some cases decentralized sys-
tems can cooperate optimally even though the agents may not be able to interpret
all messages exchanged fully and with certainty. In fact, cooperation may be achieved
even though there remains confusion and uncertainty about the meanings of some
messages. It follows from Claim 6 that at some point in the learning process of a suit-
able Dec-MDP-Com involving the elementary action protocol, maxσ

i (oj)
t will become

equal to oj. This may occur when Po
i (maxσ

i (oj)
t|o′

i)
t+1 = ε < 1. The corresponding

interpretation of oj will be picked by agent i so long as it is most likely, even though not
completely certain. Therefore, there exist cases when agents can effectively understand
each other even before their translations became complete. We can conclude:

Corollary 1 Optimal cooperation can be viable with an ε-certain τ -learning algorithm
(0 < ε < 1).

Note that characteristics of the environment such as symmetries could also be
exploited by the agents when interpreting messages in order to behave optimally. In
such cases, even though the probability of interpreting a pair of messages is less than
one, due to interactions between these interpretations and the actual effects of the
agents’ actions, their coordination can be optimal. This is left for future research.

6.1. Bayesian filters

In order to calculate the probability updates required, we adopt the method of
Bayesian filtering [12], used for example in robotics to handle localization [38]. Typ-
ically, agents using this method possess a set of beliefs, in the form of a probability
distribution over possible states of the environment; the filtering algorithm updates
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this distribution over time, under two basic circumstances. (1) An agent updates its
belief function based on new observations: such observations may determine the
state exactly, or imply a probability distribution over states, depending for instance
on factors like noise. (2) Agents make belief updates predictively: before taking any
action, the agent updates the probability distribution for each state in which it may
end up.

In decentralized multi-agent contexts without communication, however, these
updates are not generally feasible, as Bayesian updating cannot be performed cor-
rectly. In Dec-MDPs, observation and state-transition functions involve multiple dis-
tinct agents. That is, the observation function gives the probability O(o1, . . . , on | s,
a1, . . . , an, s′) that each agent αi observes oi when actions a1, . . . , an cause the state
transition from s to s′. Similarly, the transition function gives the probability P(s′ | s,
a1, . . . , an) of moving from state s to state s′, given joint action a1, . . . , an. Now, an
individual agent αi, wanting to update its beliefs about the state of the system, needs
to calculate both of these probabilities based solely upon its own observations and
actions: O(oi | s, ai, s′) and P(s′ | s, ai). If others chose actions according to known
probabilistic (or deterministic) strategies, these quantities could be derived using
straightforward marginalization. In general, however, such a presumption is invalid,
and αi can assign no meaningful prior probabilities to other actions aj, especially in
learning contexts where other agents are also adjusting their behaviors. (For an ap-
proach in which agents can generate such priors by modelling other agents, see [17].)
Therefore, unless special independence assumptions are made about the Dec-MDP
in question, Bayesian filtering is not suitable for updating beliefs about system states
(e.g., previous studies [3, 23] have looked at decentralized problems with indepen-
dent transitions and observations). We note also that our use of this method relies in
particular upon the ability to update beliefs based solely upon information from the
current and immediately prior time-step; as discussed in [20, Section 4.2.1], this is an
important if not universally valid assumption.

In the context of communication, however, Bayesian filtering does allow individual
agents to update their belief function appropriately. If a Dec-MDP is freely and fully
describable (Definitions 16, 17), then agents that already understand one another
can simply share their observations at all times; joint full observability (explained in
Definition 1) then makes the process of identifying global system states elementary,
since each such state is determined by the collected observations of each agent. Fur-
thermore, even where agents do not fully understand one another, Bayesian filtering
provides a method of updating translations over time. Figure 2 gives the Bayes-Filter
algorithm, as used in this work. The algorithm is presented for a pair of agents; for
n agents, the basic structure of the technique is the same, although it is more com-
plicated to present notationally and schematically. As shown in the pseudocode, the
algorithm is used to update agent αi’s belief-state distribution over translations, Pτ i(τ ),
given a received message σj, and data d, consisting of one of αi’s own observations
oi or own actions ai. In the first case, where the algorithm receives a local observa-
tion oi, it updates the distribution based on the prior probability of that observation
given each possible existing translation, normalizing as appropriate. In the second
case, when an agent is about to take an action ai, it updates the belief distribution
by projecting the probabilities of possible next translations, based upon the existing
ones, along with the message received and action to be taken. For details of how
the basic algorithm can be implemented to deal with actual problem instances (see
Section 6.3).
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Fig. 2 Bayes-filter algorithm

6.2. Bayesian filtering and the elementary action protocol

To perform the calculations described in the update algorithm, agents require two
sets of prior probabilities:

(1) A sensor model, giving P(oi | τ , σj), the probability of observation oi, given any
translation τ and message σj. This probability is used in the first, observation-
update step of the filter algorithm, when calculating the probability distribution
over translations, based upon observations and messages received.

(2) An action model, giving P(τ | τ ′, σj, ai), the probability of translation τ , follow-
ing action ai, and given translation τ ′ and message σj. This probability is used in
the second update step, when predicting the next translation distribution based
upon what is known now, and what action is intended.

The possibility of giving such models for a general Dec-MDP-Com clearly depends
upon the content of the messages σj that are sent between agents. In particular, agents
will generally need to share information about their own observations and actions in
order to perform the correct updates.

We can understand these requirements better by focussing upon the elementary
action protocol (EAP), as given in Definition 19. We note that in the EAP, agents swap
messages at each step about their current observations and intended actions. Further-
more, an agent’s translation of these messages induces probability distributions over
those observations and actions of others. Thus, when agents swap information about
their own local observations in the first step of the EAP, they can update their belief-
states about translations using the first part of the Bayesian filtering algorithm, based
upon these observations, what is known about actions at the prior time-step, and the
(marginalized) prior probabilities given by the Dec-MDP-Com model. Following this
step, agent αi can perform the second step of the EAP, calculating the most likely
observation for αj given the updated new translation, and the most likely global state
of the environment based upon that information, in combination with its own local
observation.

In the third step of the EAP, agents exchange action-messages in order, using
their current translations to choose most likely interpretations of those messages, and
choosing actions that are optimal relative to those interpretations. Again, the current
translation belief-state induces a probability distribution over the actions of the other
agent, and so αi can perform the second part of the Bayesian filtering algorithm, mak-
ing its predictive update given the chosen action. Following this update step, agents
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act jointly, a state transition occurs, and the process repeats, with new observations
shared, and new Bayesian updates are performed.

6.3. An example of the update process

One possible representation of a translation τ is a two-dimensional table where each
row in agent τi’s translation table corresponds to some atomic component of the
agent’s own language �i. Columns correspond to atomic components identified in
messages received in language �j. Entry (σi, σj) gives the probability that σj has the
same meaning as σi. The overall structure of the table corresponds to bounds on the
presumed structure of messages received, based on the assumption that cooperating
agents communicate things related to the immediate task. This radically constrains
the range of possible interpretations, in order to make communication generally fea-
sible; such constraints correspond to the use of such considerations as relevance and
context in real-world communication, in order to make interpretation easier, or even
possible.

Probabilities play two important roles. First, the filtering algorithm assigns probabil-
ities to translation tables, taken as part of the agent’s local state. Second, agents choose
actions based upon the probable meaning of recent messages, calculated according to
the overall probability that any translation is correct, and the probabilities contained
in the corresponding table. Interpretation is interleaved with action, in a process
designed to narrow down possible translations, while still acting on current ones,
however, uncertain.

To cope with particular features of this task, the basic filtering algorithm is modified
in two main ways. First, agents do not explicitly enumerate and update all possible
beliefs: since belief-states themselves contain combinations of continuous probability
distributions, there will be infinitely many available at any time. Instead, only those
states necessary are generated and updated at each step; the procedure is straight-
forward, and is sound so long as states not generated are properly taken to occur
with zero probability. Second, the set of possible belief-states changes over time: since
agents do not generally know all elements of the translated language in advance, new
components must be added to the translation-tables along the way.

As an example, consider a simple gridworld problem and a language of communi-
cation given by the agents’ observations (� = �). The environment is a 2×2 grid; to
identify locations, agents use unambiguous proper names, meaning (1) each square
in the grid has exactly one name, and (2) each name identifies exactly one square.
Suppose agent α uses the integers {1, 2, 3, 4} to name the four squares; the goal is to
find a mapping between these names and those used by another agent that uses as
names the letters {A, B, C, D}. Agents communicate grid locations using their own
naming conventions; the other agent receives the message, attempts to interpret it,
and proceeds to the most likely square. An observation follows, indicating whether
or not the agent has successfully identified the correct location.

Figure 3 shows how α adds newly received messages into its translation table. We
assume that α begins in the sole belief-state τ 0 (i.e., α assigns translation τ 0 unit prob-
ability). We see that α has previously received two messages, “A” and “B”; further,
α has successfully translated the first of these, since τ 0(A, 2) = P(A means 2) = 1.
Two more features of the table stand out. First, each column sums to 1; α knows the
components of its own language, and knows that the distribution for any message
must sum properly. Second, rows do not sum to 1; before α has seen all of the words
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Fig. 3 A new message is
added
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in the other language, it cannot know how to fill out each row of its translation table.
(Of course, in a simple example like this, α could reason out that there were only four
possible messages, and fill out the table accordingly, but this is not generally possible.)

Suppose α now receives a new message, “C”; the belief-state is then updated from
τ 0 to τ 1. A new column is added to the table: since α already knows that the name
“2” corresponds to message “A”, “C” receives a zero probability for this entry, and all
remaining entries are uniformly distributed, reflecting the proper-name model of the
language. Since “2” is translated as “A”, it will not be translated as any other name,
and so the 0 is inserted in the table; further, α has no reason to think “C” any more
likely to name one remaining square in the grid than another, and so the remaining
probability mass is distributed uniformly. Of course, for ambiguous languages, or ones
in which locations can have more than one name, the first assumption would not hold.
As well, in some cases an agent may have reason to favor one translation over another
in advance, and probabilities need not be uniformly distributed.

Having expanded the table, α now chooses an action. Since the probability that
“C” means “1”, “3”, or “4” is the same, it is indifferent which location it visits next.
Of course, this need not be true; in general, the choice of an action is computed based
on the most likely translation for the current message, weighted by the probability
assigned to each possible translation table. Assume that α chooses “1” as the most
likely translation: Fig. 4 shows the action model update of α’s belief function (the “else”
clause of the filtering algorithm in Fig. 2) before going to the square named by “1”. We
assume action outcomes are deterministic: after taking action Go(1), α is sure to end
up at the desired square. Furthermore, the observation sensed at the end of the action
determines precisely whether or not α is correct in its translation (i.e., α perceives
a particular observation if and only if it has correctly identified the chosen square).
Thus, the update process replaces τ 1 with two new possible translations, τ 2 and τ 3.

Belief-state τ 2 reflects the outcome that the translation (C means 1) is correct. In
this case, the entry (1, C) in the table is set to unit probability, and all other entries
in the row and column are set to 0. Again, this is a reflection of the unambiguous
nature of the name language; more complex update scenarios are possible. Note also
that the table in τ 2 also updates the probabilities contained in column “B”; since
we normalize all columns, the probability mass for entry (1, B) is distributed over
the remaining possibilities. Belief-state τ 3, for its part, reflects the outcome that the
translation (C means 1) is incorrect. Here, the only column affected is “C”; the entry
(1, C) is set to 0, and its probability mass distributed over the remaining entries in that
column. Lastly, α assigns predictive probabilities to these two new belief-states before
it takes action Go(1), based on what the outcome of that action can tell us about the
chosen translation. In this case, P(τ 2|τ 1, Go(1)) is simply the original probability, 1/3,
taken from table τ 1, that translation (C means 1) is correct. Similarly, the probability
of the incorrect translation is P(τ 3|τ 1, Go(1))=(1−1/3)=2/3.
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Fig. 4 The two translations
believed possible after Go(1)
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For this environment, the sensor model is also simple: α either senses appropri-
ate observation for successfully translating “C” or not. We will use the notation OR
when we refer to such an observation to distinguish from the usual observation of the
environment. If α does receive OR, belief-state τ 2 is clearly correct and post-obser-
vation probability P(τ 2|OR)=1, while P(τ 3|OR)=0 and the latter belief-state can be
discarded. If α does not receive OR, then the opposite holds. In either case, α is left
with a single belief-state on which to base its next actions. If that message is one of
“A”, “B”, or “C”, then an action chosen based upon the existing probabilities, and the
procedure shown in Fig. 4 is repeated. If it is some new message, “D”, then that mes-
sage is added to the table of translations as in Fig. 3, and the entire procedure repeats
itself. Again, we stress that for more complex cases, the relevant updates can be more
complicated. In particular, it need not be the case that α is left with but one translation
at the end of the process of action and observation, since observed rewards may not
determine single states, and actions may not have determinate outcomes. Still, the
basic principles remain the same.

7. Experimental results

We present results from experiments on two sets of different scenarios of increasing
complexity. The first scenario (first described in [19]) deals with some relatively sim-
ple examples of suitable problems, where agents do not need to communicate their
actions, only their observations. In that domain, two agents work to meet at points in
a gridworld environment, following a relatively simple procedure, with each acting in
turn, according to the best estimate of the location of the other. Messages describing
each agent’s location are exchanged, and translations of those messages are updated
after each step, depending upon whether or not the agents do in fact meet one another.
Since agents are certain after checking some location whether or not the other agent
was in fact there, the probability that the other observed that location is either 0 or 1,
and the suitability of the Dec-MDP-Com follows immediately. Messages are chosen
from the agents’ observations, and were tested with different levels of structure. The
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local policies of action were assigned based on a locally goal-oriented mechanism [24].
That is, each agent acted towards a local goal that was computed as a function of the
agent’s own local observation and the interpretation of the message received.

The second domain (first described in [1]), implements the pumping-station exam-
ple described in Section 2.1. Agents control a network of pumps, attempting to max-
imize network flow while minimizing the number of outflow ducts in use. In this case,
messages concern both observations and actions. Local policies of actions are given to
the agents based on a prior computation of the centralized solution assuming a mutual
language. Translations are again updated based on the Bayes filtering algorithm. In
both cases, the process is Markovian and therefore belief updates are based only on
the last translation and last belief-state.

We note one important fact about these examples, before considering the details.
In both sets of experiments, agents update translations until such a time as they have
completely translated one another’s languages. However, in neither case is the agent
directly rewarded for a correct or complete interpretation. That is to say, while learning
language facilitated the optimal solution of the relevant tasks, it was not in and of itself
the main motive force. In the grid-location task, for instance, our agents happened to
visit all squares of the grid over time, and so deriving optimal reward involved learning
the vocabulary covering the entire grid. Nothing would have been changed, however,
if one or both of the agents simply did not visit certain parts of the grid. In such a
case, agents would work only on translating messages they actually received; portions
of the vocabulary that covered unvisited grid-regions would not have been translated
effectively, but this would make no difference to overall reward earned. Furthermore,
as we show in consideration of the pump domain, the average rate of accumulated
reward is very nearly maximized long before the entire language of each agent is
entirely translated, suggesting a role for approximate methods that forego complete
translation where it no longer brings appreciably greater reward (see the discussion
centered around Fig. 10). In each case, then, agents are driven directly by the rewards
in their environment, not by some special class of rewards specifically tied to the form
of their translations—so far as language learning allows them to accumulate more
such reward, they update their translations, and otherwise, they do not.

7.1. Gathering example

Our initial experimental results demonstrate the basic feasibility of the given ap-
proach to the language-learning problem, and illustrate how performance is affected
by various features, such as the structure of the observations or of the language itself.
We ran a number of tests involving the basic cooperative task for two agents in a
simple gridworld environment, averaging results over 100 runs with random starting
locations. Work proceeds in turns; on even-numbered rounds:

(1) Agent 1 is the actor, randomly choosing a square and sending a message to agent
2 to that effect.3

3 It would be interesting to consider cases in which agents choose messages non-randomly. Here, if
the agents had already learned some part of the language, then they might choose locations corre-
sponding to unlearned messages (to facilitate learning), or already-learned ones (to get more reward),
instead of choosing uniformly.
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(2) Agent 2 is the translator, choosing a square based on its current translation of
agent 1’s language.

(3) Agent 2 receives an observation, OR, depending upon its choice, and updates
its beliefs accordingly.

On odd numbered-rounds, agents 1 and 2 switch roles; the task continues until one
agent has successfully translated the other’s language. Currently, this involves one
agent assigning unit probability to a complete translation table, i.e., every row con-
tains exactly one entry with probability 1 (and the rest 0). Obviously, this could be
modified to involve other, perhaps more tolerant, criteria of success.

In step (2) of the process, the choice of a square is based on the current message
and belief-state of the translator. This belief-state is a probability distribution over
translation tables; for each such table τi, let Pτi be the probability that τi is the correct
translation. Each table τi maps components of received messages to possible mean-
ings; for any complete received message σj (in the actor’s language) and meaning σk
(in the translator’s own language), let τi(σk, σj) be the probability computed from ta-
ble τi that (σj means σk). The most likely meaning of the message σj is thus calculated
as that σk satisfying: maxk

∑

i Pτi · τi(σk, σj). The various possible tables τi are chosen
based on the presumed structure of the two given languages; the probabilities Pτi are
updated using the Bayes-Filter algorithm.

Our first study involves a simple language of unambiguous names, as discussed in
the example considered in Section 6.3. Each agent assigns each square in the grid
a fixed, unambiguous name, meaning that each square has but one name, and each
name corresponds to but one square. Each agent attempts to learn the other’s map-
ping from names to squares. Observations are simple: translators sense 0 as the value
of OR for correctly identifying the square chosen, and otherwise the observation’s
value is 1; translations are updated in either case. Fig. 5 charts the average number of
turns as translator an agent takes to arrive at a complete translation for this language.
The ratio of grid size to number of turns is relatively stable: for grid size G × G, the
number of turns is roughly G2/4. We can see that agents pursue a decision-theoreti-
cally optimal course of action here. Translators initially assign messages a uniformly
distributed probability of naming squares for which the name is not already known;
further, after visiting a square, the translator knows the exact (0/1) probability that
the latest message names it, based on its observation. Once some message σi is known
to correspond to the name of square x, the translator always visits x upon receiving σi.
Conversely, the translator never visits x once it knows that current message σj cannot
name it. Finally, for messages not yet translated with certainty, the most probable
translation is chosen (breaking ties randomly). Since the translation-action strategy is
optimal with respect to expected reward, it will not in general be possible to do better
in terms of average number of attempts before achieving a complete translation. That
the algorithm does not converge a little faster is explained by the fact that the obser-
vation information gained by the translating agent is not shared with the acting agent;
the actor may thus randomly select a square multiple times, even after the translator
already knows how to translate the name given that square.

This example shows the elementary feasibility of the filtering approach, but we
are also interested in testing more complicated languages and observation structures.
Within the same gridworld context, we also investigate messages in a language of (x, y)-
coordinate pairs. Due to this structure, translation updates carry more information
than when simple names are concerned. However, the number of possible translations
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Fig. 5 Results for simple-name language

may increase drastically after each update. In the name-language, the observation
after any action determined a single possible belief-state for the translator: either the
translation of some name is known with certainty, or it is absolutely certain that one
particular translation is incorrect. In a language of coordinate pairs, with a basic suc-
cess/failure observation structure, things are not so simple. If selection of some square
is successful, of course, the translation of message (σx, σy) is known with certainty,
and any other possibilities for that pair are eliminated. If selection is unsuccessful,
however, there are three options: either both translations of σx and σy are incorrect, or
only one of them is. In the worst case, then, the essentially uninformative (0/1) obser-
vation structure can cause a large increase in the number of belief-states an agent
has to entertain, affecting overall performance. Indeed, this increase may be so great
that while translation uses a smaller number of turns to achieve certainty, overall time
spent is much worse, as agents have to update many more beliefs in any given turn (see
Table 1). In general the problem becomes potentially intractable for the combination
of the coordinate-language and an essentially uninformative observation function.

To improve the situation, we consider other possible observation structures, which
give the translator more information about what may have gone wrong. These are:
OR 0/1/2: agents observe a 0 if translation is correct, 1 if translation fails but one
coordinate is translated correctly, and 2 if failure results because both coordinates
are translated incorrectly; OR0/1/2/3: agents receive 0 if translation is correct, 1 if it
fails but σx is translated correctly, 2 if it fails but σy is translated correctly, and 3 if
failure results because both are translated incorrectly. The more informative obser-
vations greatly improve performance in terms of all problem dimensions: number of

Table 1 Two languages on a
25 × 25 grid

Language Turns Time (s) Max. beliefs

Names 156 0.5 1
Coordinates 27 119.3 13,812
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turns before translation is successful, maximum number of beliefs that an agent must
entertain at any time, and overall time of completion.

Figure 6 compares results for the name-language and for the different variations
of the coordinate-language, in a 25×25 grid. Scale is logarithmic, with values nor-
malized to the OR 0/1/2/3 case; results average over 100 random runs. In general, the
extra information provided by the coordinate-language as opposed to the name-lan-
guage significantly reduces the number of turns taken. Further, with respect to the
coordinate-language, the more informative observation functions lead to significantly
better results in terms of maximum number of belief-states ever updated in one pass
of the filtering algorithm, and thus in terms of overall time taken. Such relations
are not absolute, however. For instance, although the maximum number of beliefs is
somewhat larger for the OR 0/1/2 case than for the name-language, the increase in
information gained in the former case by using coordinates still decreases the number
of turns enough to reduce overall time. In the single case shown, and in general, the
performance of the two cases with more structured observations was essentially the
same; while the 0/1/2/3 structure led to slightly improved performance, the differences
were not significant (see Fig. 7). Finally, Fig. 8 shows the increase in the number of
turns taken as the grid grows in size for both the name-language and for the coor-
dinate-language with 0/1/2 observation structure. We did not test the name-language
for very large grids, since the time taken quickly became unmanageable; in any case,
the difference is evident for the limited range considered.

7.2. The network of pumps example

To explore the viability of our approach in more realistic settings, we implemented our
language-learning protocol for a reasonably complex Dec-MDP-Com, based on the
pumps domain discussed in Section 2.1. Each instance of the domain involves two (2)
agents, each in control of a set of n pumps and m flow-valves in a factory setting, with
parameters n and m varied to generate problem instances of different sizes. At each
time step, each agent separately observes fluid entering the system from one of two
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different inflow ducts, along with the pumps and valves under its own control. Agents
seek to maximize flow out of the system through one of several outflow ducts while
minimizing the number of ducts used. Probabilistic effects arise due to variations in
throughput for ducts and valves, dependent upon whether the particular component
was used to route flow in the prior time step. Any excess flow not routed through the
system on a given time step is considered wasted, and is dropped from consideration.
While agents in such a setting might be presumed to share an initial language for com-
munication, there are cases where this does not hold, involving for instance diagnosis
and trouble-shooting when they begin with imperfect or incomplete models of the
environment [7], or where initial specifications of the domain were incorrect. In such
cases, agents might begin with some common language, and only need to learn new
meanings for particular expressions as they arose in practice. In order to establish the
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general-purpose strength of our approach, however, our agents begin with completely
different languages.

we note that this environment, while relatively complex, is in fact an example of a
suitable Dec-MDP-Com. The problem is both freely describable, by the cost function
C� , and (for the purposes of solving the problem) fully describable, as given by the set
of messages �. Furthermore, agents are aware of the overall structure of the pumping
system, and can observe certain basic effects of each other’s actions, by observing how
many units of flow are routed through their own observable pumps and valves. These
observations, combined with the observed total reward, allow them to reason back-
wards to what those actions may have been, as well as to the total number of units of
flow entering the system through the other agent’s inflow duct. While certain actions
may fail to have the desired effect, given pump or valve failure, actions never affect
the wrong pump or valve; furthermore, no pump or valve fails permanently. Thus, the
observed effect of any action taken by the other agent will either completely confirm
which action was taken, or give the agent no evidence to update its translation of the
last message. Taken together, these conditions ensure that incorrect interpretations
are eventually eliminated in favor of correct translations. While this requires agents to
know the overall structure of the domain, this is simply the same assumption required
for usual optimal offline methods of solving such problems, and so we consider it no
real defect in our method.

Following the elementary action protocol, agents swap observation messages,
choose and communicate actions based on their current beliefs, and then act, repeat-
ing the process to converge toward mutual understanding and optimal action. These
experiments expand upon those of the previous section, both by including the lan-
guage of actions as well as observations, and by extending the method to a apprecia-
bly more complicated domain. Using their model of the environment, agents update
belief-states using the two-step Bayesian Filtering algorithm as before, first projecting
possible belief-states before acting, then updating those beliefs given the results of
their actions (see Section 6.1). Note that there is no update between the two sets of
observation- and action-messages. Rather, the agents collect all their messages, then
do the steps of the algorithm as before. That is, they first do the predictive update,
generating possible next belief-states before taking the action; then they act, and do
the retroactive update after the next observation comes in. Actions are chosen based
on the translation as it exists following the observation on the prior action step.

Agents interact until each learns the language of the other with certainty—achieved
when each agent αi reaches a belief-state βi with distribution Pτ i, and for any mes-
sage σj received from the other agent, there exists exactly one message σi such that
Pτ i(σi, σj) = 1. In this work, certainty provides a useful stopping condition, since the
domain is one in which agents do in fact learn all of each other’s messages in the course
of optimizing action. We are now investigating cases in which complete certainty is
not necessary, as when agents do not need to learn every part of another’s language
in order to achieve optimal performance, and convergence actually happens more
quickly than where the entire set of messages is learned.

Our results show that the elementary protocol converges to optimal policies in each
problem instance. Time of convergence depends upon the basic size of the problem,
and thus the vocabulary of the agents necessary to describe all actions and observa-
tions, and also upon the frequency of certain rare states or actions. As conditions vary
probabilistically, some states in the environment are encountered very infrequently,
and agents do not learn related terms in the other’s language. By design, we insured
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that all states and actions are eventually encountered; current work also investigates
cases where agents do not ever visit some parts of the state space, and so whole parts
of the language are unnecessary to optimal action.

The most interesting and suggestive results concern the rates at which agents accu-
mulate reward, relative to how much language they have learned. Figure 9 gives one
example, for a problem featuring 100 vocabulary items for each agent. The graph
shows the percentage of total accumulated reward, and total shared vocabulary, at
each time step in the process of learning and acting. In a problem of this size, agents
converge upon a complete understanding of one another, and are able to act entirely
optimally from then on, in approximately 12, 000 time steps, involving only a few
minutes of computing time.

As can be seen, the language-learning process (top, dotted line) proceeds quite
steadily. The rate of reward accumulation, on the other hand, grows with time. Ini-
tially, language learning outpaces reward gain given that knowledge, as agents still
find many actions and observations of others hard to determine. After about 2,900
time steps, fully 25% of the language has been learned, but only just over 6% of the
eventually accumulated reward. By the time 50% of the language has been learned
(≈ 6, 200 steps), things have improved somewhat, and some 27% of the reward has
been earned. As time goes on, the rate of accumulation of reward actually increases to
the point that it narrows the gap considerably, as agents now know much of what they
need to communicate, and spend more time accumulating reward in already famil-
iar circumstances, without learning anything new about the language of the other
agent. Essentially the same curves, although differing in their time of convergence,
are exhibited by problem instances of all sizes.

Figure 10 plots normalized average rate of reward accumulation over time. As can
be seen, by far the largest proportion of the overall reward is accumulated early in
the learning process. Such performance profiles reveal the possibility of approximate
approaches, which may decide to stop the learning process early without sacrificing
much in overall value. Such approximations are open topics for future research.
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It is to be stressed that these results are first steps in the process of dealing with
the problem of learning to communicate in decentralized settings. In particular, there
are presently no ready candidates for comparison between different algorithms, since
the communication-learning problem is somewhat new. Note also, that giving upper
and lower baselines for these results is straightforward, but uninteresting. The lower
bound on performance is given by agents who do not communicate at all. In such
cases, since we are not working on solving the problem of learning how to act at
the same time as learning how to translate, there is nothing more for the agents to
learn. Given their model of initial starting conditions, they will simply choose actions
maximizing expected value, and performance will be constant. (For instance, in the
gridworld problems, agents will simply pick a square at random, guessing where the
other agent is; for a grid of n squares in total, the expected average reward over time
is then the constant function n−2.) While it would be interesting to extend our work
to cases in which agents still had learning to do even in the absence of learning about
language, this would generally make the problem of translation updates prohibitively
difficult; therefore, we leave that aside in the current work. Similar considerations
apply to the case of upper bounds, given by agents who already share a language of
communication. In such cases, as we have shown, the fully and freely describable na-
ture of the problems makes generating optimal solutions straightforward, and agents
will simply accumulate maximum expected average reward at all times. Again the plot
of this reward will be a simple constant function. (For instance, the reward plotted
for the pump-world case as shown in Fig. 10 would simply be the unit line, which the
learning case already shown would converge towards.) Again, if we added learning
how to act into our problems, this would be more interesting, but for now it is not.

8. Related work

We approach the problem of learning to communicate by integrating it into a gen-
eral decentralized control process. Agents learn to interpret messages while acting
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toward some global objective. We are interested in a learning process that will im-
prove the agents’ interpretations of each other’s messages, leading consequently to
optimal choices of action. This is a different approach from the reinforcement learn-
ing approach taken by Yanco [42] and Yanco and Stein [43] where a reinforcement
signal is given explicitly for the interpretation of the messages. Moreover, her com-
munication learning occurs in a stateless environment. We reinforce the agents only
for their actions, which implicitly are chosen according to the agents’ interpretation
of the messages received. Our approach is thus more general and it can handle more
complex language structures. We have also shown necessary and sufficient conditions
under which learning to communicate can lead to optimal behavior. Yanco’s work
does not provide any finite convergence proof. Her tests, based on the interval-esti-
mation algorithm [26] consider the frequency of the positive reinforcement obtained
for messages and the actions taken as a consequence. Balch and Arkin [2] also study
robotic communication. Their approach is inspired by biological models and refers
to specific tasks such as foraging, consumption, and grazing. Agents are assumed to
share a language, since their aim was not to study the language-learning problem.

Studies on the evolution of language in humans [5] and machines [28] have been re-
cently pursued using computational models. Komarova and Niyogi [27] study how one
language can be affected by other languages evolving in the same population. They
also consider languages as probabilistic associations between form and meaning. Al-
though agents are embedded in some world, the process of learning to communicate
is not related directly to the agents’ actions. In our work, on the contrary, this is fun-
damental, as agents learn to interpret each others’ messages with respect to goals or
some other coordinated behavior.

At the intersection between cognitive science and computational simulations,
research has studied the evolution of lexicons and the problem of learning a language
from positive examples [16, 39]. Here, we study how agents can learn to interpret
each other’s messages in order to improve global performance. Adaptive language
games [36] and the anchoring problem ([9] and the cites therein) are also relevant
areas of study. In particular, the latter work raises questions concerning formal models
for the study of the problem. We present such a formal framework and a solution to
the problem, formalizing the communication-learning problem as one of decentral-
ized control. Our previous research has focused on the computation of optimal joint
policies when a shared language of communication is assumed (in particular, when
and what agents should communicate) [23]. Here, agents must learn such a language
to optimize their joint behavior.

The distributed artificial intelligence community has studied how autonomous
agents can coordinate their actions while acting in the same environment (e.g., see [13,
25, 35]). A known and fixed language of communication was assumed when commu-
nication was allowed. KQML [15] is an example of one standard designed to pre-set
the possible communication between the agents. We believe that robust decentralized
systems require that agents adapt their communication language when new situations
arise or when miscoordination occurs possibly due to misunderstandings. Such misco-
ordination can either be revealed in practice, or in simulation, and serves as a signal
for reinterpretation of messages received.

Other work has proposed that rational and self-interested agents can negotiate to
evolve a shared communication language [18]. In such a context, conflicts arise because
each agent prefers a distinct communication language, based on the cost of employing
it and the local utility it may yield. We are interested instead in communication that
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enables efficient coordination of agents toward a mutual goal. Communication serves
to increase the overall utility of the system as a whole; the particular language learned
will thus be directly related to this system-wide utility, rather than to the individual
cost of using that language.

Our work relies on the idea that agents treat communicated messages as having
some sort of meaningful structure. Initially, agents presume that others involved in
a shared cooperative task are communicating information relevant to that task. This
reduces the number of possible interpretations an agent has to consider, making the
learning process more manageable. As well, treating messages as having meaningful
structure speeds learning and allows for generalizations between various environ-
ments. Our experiments confirm the advantages and complications of this approach.
Treating messages as having some semantic structure can allow agents to learn their
meanings more quickly; at the same time, the specification of this structure and the
learning updates related to it can become more difficult. The concentration on seman-
tics distinguishes our approach from such as [40], in which a generalization of the per-
ceptron algorithm was proposed to allow a multi-agent system to collectively learn a
single shared concept, in a process that does not consider semantic structure explicitly.

Game theorists also consider the benefits of communication between players, al-
though the focus is not usually on learning language. For example, Wärneryd [41],
and Blume and Sobel [6] study how the receiver of a message may alter its actions in
games where only one agent can send a single message at no cost.

Finally, philosophically, this work stems from thought originating with the Ameri-
can philosophers Quine, Davidson, and Putnam. Quine [32] argues that interpreting
speakers of foreign languages is essentially the same as interpreting speakers of our
own. On this view, we are always constructing “translation manuals” between one
another’s utterances, and we understand others by relating what they say and do
to what we ourselves would say and do in the context of our shared environment.
Further, translation is always under-determined by available evidence, and there are
often multiple competing possible translations of another’s language. Davidson [10]
and Putnam [31] extend these ideas, considering how all understanding of others is
a fundamentally indeterminate procedure of making and adjusting predictions about
their behavior, and how changing context can alter the meaning of even apparently
well-understood terms in a language. Together, these ideas suggest that designers of
communicative agents must allow that even well-defined protocols and languages can
lead to cases in which the interpretation of messages become ambiguous or error-
laden, and must be adjusted in order to make coordination possible.

9. Conclusions and future work

The design of genuinely autonomous agents requires that those agents have the abil-
ity to learn how to interpret each other’s messages, and consequently act adaptively.
Multi-agent systems can be made more robust if they can autonomously overcome
problems of miscoordination, arising when they encounter new situations or receive
messages that are not completely understood. This paper presents and analyzes a
formal framework in which agents learn to communicate while they are acting to max-
imize some global objective. Specifically, we have combined the problem of learning to
communicate with that of maximizing overall system utility in a decentralized decision
problem. We have explained how agents can, in general, improve their coordination
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while improving their interpretation of messages exchanged in languages that they do
not initially share. This model involves the notion of a translation between languages,
and solves the problem of learning to communicate by adjusting these translations
using probabilistic updating schemes. We lay the groundwork for further investigation
by presenting and analyzing a formal decision-theoretic model of the problem, and
by initiating empirical studies into algorithmic methods for solving it.

As shown, agents employing such update schemes can achieve value-maximizing
policies so long as the decision problems they are working with have other important
features. Prior work on decentralized MDP and communication has focused on mes-
sages that are composed simply of basic elements of the model, such as observations
and actions. We have shown that even for such simple languages elements, the process
of learning to interpret these messages in a desirable manner can become very difficult
if our problem instances do not have the right structural properties. These features,
such as free and full describability, along with our defined notion of suitability, are both
necessary to, and sufficient for, the feasibility and success of the updates and learning
methods we present, at least for the purposes of learning to communicate in languages
composed of agents’ observations and actions. We are interested in further research
into more complex languages, allowing agents to convey other forms of information
about the problems they are attempting to solve. While such richer languages may
allow optimal policies to be enacted in a more efficient manner, they present additional
difficulties for the learning process. We would like to investigate the possible benefits
arising from more complex languages, and look at what new features of problem
instances may be necessary if communication in such languages is to be learned.

Finally, our work so far has involved translation updates which converge to cer-
tainty, and lead to action policies that are optimal for all points encountered from the
point of convergence onwards. This raises interesting questions. In particular, we are
interested in the possibility of optimal behavior even in the absence of certainty about
translation. Similarly, we are interested in the possibility of near-optimal behavior,
and the trade-offs between optimality and certainty in the translation process. Our
experimental results suggest that in many problems it will be possible to achieve very
nearly optimal results without certainty about large portions of the language of com-
munication. We are therefore interested in investigating approximate approaches to
the problem of learning to communicate.
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