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ABSTRACT
Decentralized control of a cooperative multi-agent system is
the problem faced by multiple decision-makers that share
a common set of objectives. The decision-makers may be
robots placed at separate geographical locations or compu-
tational processes distributed in an information space. It
may be impossible or undesirable for these decision-makers
to share all their knowledge all the time. Furthermore, ex-
changing information may incur a cost associated with the
required bandwidth or with the risk of revealing it to com-
peting agents. Assuming that communication may not be
reliable adds another dimension of complexity to the prob-
lem.

This paper develops a decision-theoretic solution to this
problem, treating both standard actions and communication
as explicit choices that the decision maker must consider.
The goal is to derive both action policies and communica-
tion policies that together optimize a global value function.
We present an analytical model to evaluate the trade-off
between the cost of communication and the value of the in-
formation received. Finally, to address the complexity of
this hard optimization problem, we develop a practical ap-
proximation technique based on myopic meta-level control
of communication.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence, Control Methods; G.3 [Mathematics of Com-
puting]: Probability and Statistics — Markov processes,
Stochastic processes.

General Terms
Algorithms, Design, Performance, Theory.

Keywords
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1. INTRODUCTION
Conceptually, it is possible to separate the planning in-

volved in a multi-agent system into two stages: 1) the plan-
ning that occurs before execution starts (sometimes referred
to as off-line) and 2) the planning that occurs during execu-
tion time (sometimes referred to as on-line). Each of those
cases can be done in a centralized or decentralized manner
leading to four possible approaches.

The first approach considers centralized MAS, where both
the off-line planning stage and the on-line stage are con-
trolled by a central entity, or by all the agents in the system,
who are assumed to have full observability (e.g., MMDPs [2]).
In the DAI literature, cooperative systems were usually as-
sociated with this approach. The other well studied ap-
proach to cooperative MAS is located at the other extreme,
where planning and execution are done in a completely dis-
tributed manner. These are distributed cooperative MAS.
Each agent decides on its own actions based on its local
knowledge and any other information it may obtain from the
other agents (e.g., AMMs [7], [13] where observability of the
other agents’ behaviors may be obtained at execution time
from feedback estimators, and [14] where individual agents
learn independent policies). This class of systems has been
mostly studied in non-cooperative scenarios [12, 11] where
self-interested agents could not have been assumed to syn-
chronize their actions before they start operating.

Our work focuses on the third approach: decentralized
cooperative MAS. Agents in most cooperative MAS are lim-
ited by not being able to fully communicate during execution
(due to the distributed aspect of the MAS), but due to the
cooperative nature of the MAS, in many situations these
constraints do not apply to the pre-execution stage. Thus,
cooperative agents are able to share information at the off-
line planning stage as if they were centrally controlled. But
unlike the first approach, these agents will be acting in real-
time in a decentralized manner. The agents take this into
account while planning off-line. If planning is possible on-
line, it will also be done in a decentralized manner.1 For
example, robots that are cooperatively programmed may be
deployed to perform independent missions, although they
may need to exchange local information from time to time

1The fourth approach that is decentralized before execution
and centralized during execution has received little atten-
tion. This is also an interesting case in which agents work
in a decentralized manner on a plan and then they imple-
ment it in a centralized manner assuming full-observability
during execution.



to coordinate more efficiently and to achieve better perfor-
mance as a group.

Claus and Boutilier [3] studied a simple case of decentral-
ized control where agents have full observability of the other
agent’s actions during the off-line planning stage. The so-
lution presented in their example includes a joint policy of
a single action for each agent to be followed in a stateless
environment. The agents learn which equilibrium to play.
In our model, partial observability is assumed and the sce-
narios studied are more complex and include states. There
are no solutions to the general decentralized control problem
with communication, which is addressed in this paper.

In all the above cases, when agents can communicate,
a certain fixed communication language is assumed to be
known to the agents. Recent work on language evolution [17,
6] produced algorithms for agents to develop their own lan-
guages of communication. The agents in Wang and Gasser’s
model learn a mutual concept and they do not consider the
problem of learning the language in the framework of plan-
ning their control actions. Agents in [6] learn ontologies
related to their actions, but the language problem is studied
separately from the control problem.

Real life situations involving more than one decision-maker
are frequently characterized by time-constrained operation
and uncertainty. Examples include autonomous exploration
or monitoring of a target environment, rejoining units acting
in unknown territories, factory operation where machines
may act independently with some need for planning and co-
ordination, and rescue operations where agents decide dy-
namically what areas to cover for searching and mapping.

While much progress has been made in the area of rea-
soning under uncertainty by a single decision-maker, there
are no adequate solutions for the decentralized version of
the problem. This paper focuses on cooperative multi-agent
systems where the agents share a common goal. In order to
achieve the global goal of the system (e.g., load-balancing of
a system, achieve greater efficiency in resource allocation, or
achieve physical coordination of robots) the agents may need
to communicate to synchronize their information. However,
it may be impossible or undesirable for these agents to share
all their knowledge all the time. Exchanging information
may incur a cost associated with the required bandwidth or
with the risk of revealing it to competing agents. Communi-
cation may also be unreliable. This paper focuses on agents
that may need some of this information to get synchronized
from time to time, but they cannot assume that communi-
cation is free and information can be exchanged at each mo-
ment. Most current systems rely on ad-hoc heuristics (e.g.,
[8]), or they rely on the assumption that knowledge can be
shared constantly (e.g., [4, 10, 5]). Xuan et al.[18] address
the problem of combining communication acts into the deci-
sion problem of a group of cooperative agents. Their frame-
work is similar to ours but their approach is heuristic. We
are interested in the most comprehensive case where coop-
erative agents must determine which messages they should
transmit, and when they should transmit them, assuming
communication incurs a cost.

Section 2 presents our formal approach to decentralized
control with communication and discusses the relevant as-
pects of choosing different types of messages. A communica-
tion language together with communication acts are added
to the decentralized model for partially observable Markov
Decision Processes[1]. The larger goal of this research is to

address the design of languages of communication, including
their semantics and their complexity (e.g., agents may trans-
mit only signals or state-observations, or they may commu-
nicate at higher levels of reasoning such as sending strategies
of behaviors).

The COM-MTDP model [15] offers a framework that con-
siders the uncertainties and costs in real-world scenarios,
addressing some of the deficiencies of BDI systems. The
authors compare complexity results when either free com-
munication, no communication or general communication is
assumed. While the model accounts for the cost of com-
munication, it does not consider the different cost models
that we examine in this work. We give a formal statement
of the problem when a certain language and semantics are
assumed, including the full formulation of the value of an
optimal policy of action and of communication. Pynadath
and Tambe applied a single case of communication, which
allows an agent to send a single message indicating that a
certain goal has been achieved. Our work studies a more
general problem: the agents optimize the timing and fre-
quency of communication, and are allowed to communicate
more than once. We are interested in problems where agents
may act independently to achieve their own tasks, but may
need to synchronize their knowledge from time to time to
coordinate in more efficient ways. This includes each agent
deciding when and what to communicate.

Section 3 presents a practical and feasible approach to
the communication control problem in decentralized coop-
erative MAS aimed at finding approximate solutions based
on a myopic approximation. The greedy approach optimizes
the choice of a single message ignoring future messages and
iterates on this policy to find an approximate solution to
the general problem. The resulting joint value of the ac-
tions and communication policies with multiple transmis-
sions of messages depends on the cost incurred by sending
a message, and the cost of taking a control action. The em-
pirical results show the range in utility values that can be
attained at worst when no communication is assumed and a
single fixed goal is given and at best when constant and free
communication is assumed. Within this range, we describe
the performance of our approximation algorithm compared
to a heuristic case based on sub-goal communication inde-
pendent of its cost. For larger costs of communication the
approximation attained by iterating on an optimal single
communication may lead to suboptimal solutions, for which
some deterministic policy of communication may be more
beneficial if the right parameters are known. In case that
the optimal parameters for the heuristic are not known, the
greedy approach yields higher joint utility values.

Optimizing both the control actions and the communica-
tion policy is a very complex problem as supported by [1]
and [15]. The framework presented in Section 2 also em-
phasizes the amount of information that is required from an
agent to compute analytically a joint policy. However, it
remains to be verified whether other attempts may find a
tractable solution to the decentralized control with commu-
nication problem. This paper is one of the few formal studies
done to tackle this hard problem. It presents a promising
direction based on greedy meta-level control of communi-
cation that has also proved useful in meta-level control of
computation (e.g., [16]) and information gathering [9], in
which non-myopic control is extremely difficult.



2. THE THEORETICAL FRAMEWORK
We present a formal model for decentralized control that is

based on an extension of the decentralized partially-observable
Markov Decision Process. Within the model, cooperative
agents are represented by finite state controllers, whose ac-
tions control the process. We focus on a special type of
decentralized partially-observable Markov Decision Process
with communication, Dec POMDP Com, defined as fol-
lows:2 Mcom =< S, A1, A2, Σ, CΣ, P, R, Ω1, Ω2, O, T > where:

• S is a finite set of states. s0 is the initial state of the
system. Each state s = (s1, s2) where si ∈ Si, i =
{1, 2} are the local states of the corresponding agents.

• A1 and A2 are finite sets of control actions. ai denotes
the action performed by agent i.

• Σ is the alphabet of messages. σi ∈ Σ denotes an
atomic message sent by agent i. σi is a sequence of
atomic messages sent by agent i. A special message
that belongs to Σ is the null message which is denoted
by εσ. This message is sent by an agent that does not
want to transmit anything to the other agents. The
agents do not incur any cost in sending a null message.

• CΣ is the cost of transmitting an atomic message.
CΣ(εσ) = 0, CΣ : Σ → <.

• P is the transition probability function. P (s, a1, a2, s
′)

is the probability of moving from state s to state s’
when agents 1 and 2 perform actions a1 and a2.

• R is the reward function. R(s, a1, σ1, a2, σ2, s
′) repre-

sents the reward obtained by the system as a whole,
when agent 1 executes action a1 and sends message σ1,
and agent 2 executes action a2 and sends message σ2

in state s resulting in a transition to state s’.

• Ω1 and Ω2 are finite sets of observations.

• O is the observation function. O(s, a1, a2, s
′, o1, o2) is

the probability of observing o1 and o2 (respectively by
the two agents) when in state s agent 1 takes action
a1 and agent 2 takes action a2, resulting is state s′.

• T is a positive integer representing the horizon.

A Dec POMDP Com is jointly fully-observable if there
exists a mapping J : Ω1 × Ω2 → S such that whenever
O(s, a1, a2, s

′, o1, o2) is non-zero then J(o1, o2) = s′.
In addition to this notion known for general Dec POMDP s,

we consider another property of our framework due to the
communication involved. A Dec POMDP Com is jointly
synchronized if both agents have the same knowledge about
the global state, and none of the agents separately has more
knowledge than this. This knowledge is not necessarily the
global state itself. Joint full observability is a special case of
joint synchronization. Agents may be jointly synchronized
if they both know with certainty some features of the global
state. Note that in our model, communication is the only
means of achieving synchronization. There is no other way
in which a single agent will perform an action and will be
able to get the other agent’s observation.

Agents may need histories of observations to become syn-
chronized. The information corresponding to the union of
the histories of observations give the agents information
about their current global state.

We describe the interaction among the agents as a pro-
cess in which agents perform an action, then they observe

2This paper is restricted to a case with two agents. The
model can be extended to any number of agents.

their environment, and then send a message that is instan-
taneously received by the other agent.3 Then, we can define
the local policies of the controlling agents as well as the
resulting joint policy whose value we are interested in opti-
mizing. A local policy δ is composed of two policies, δA that
determines the actions of the agent, and δΣ that states the
communication policy.

Definition 1. A local policy for action for agent i, δA
i is

a mapping from local histories of observations oi = oi1 , . . . , oit

over Ωi and histories of messages σj = σj1 , . . . , σjt
received

(j 6= i) since the last time the agents were synchronized to
actions in Ai.

δA
i : S × Ω∗ × Σ∗ → Ai

Definition 2. A local policy for communication for agent
i, δΣ

i is a mapping from local histories of observations oi =
oi1 , . . . , oit

and o, the last observation perceived after per-
forming the last local action, over Ωi and histories of mes-
sages σj = σj1 , . . . , σjt

received (j 6= i) since the last time
the agents were synchronized to messages in Σ.

δΣ

i : S × Ω∗o × Σ∗ → Σ

Definition 3. A joint policy δ =< δ1, δ2 > is defined to
be a pair of local policies, one for each agent, where each δi

is composed of the communication and the action policy for
agent i.

2.1 Characteristics of the Model
The model studied in this paper is further characterized

by including decomposable actions, i.e., both the transi-
tions and the observations are independent: P (s′1|s1, a1) =
P (s′1|s1, s2, a1, a2) and O(o1|s, a1, a2, s

′) = O(o1|s1, a1, s
′

1)
where si and s2 correspond to each agent’s partial view of
the global state, meaning that the agents do not affect the
distribution of the outcome states of each other nor their
observations (notice that this assumption does not mean
that the problem the agents are solving is decomposable),
reliable messages (i.e., any message σi sent by agent i is re-
liably received by the other agent). We assume that both
agents remember the sequences of atomic messages received
(i.e., both agents store histories of messages). This may be
beneficial when the agents do not have complete joint ob-
servability even when they synchronize. Agents send their
messages in a broadcast way, all of the agents receive all of
the messages sent. Finally, communication is the only means
of achieving joint full observability and joint synchronizabil-
ity. The model presented so far can be specialized along
three different dimensions:

• The language Σ — What are the messages that the
agents can transmit to each other?

• The types of communication among the agents — How
is the reward function of the Dec POMDP Com af-
fected by the cost model of the communication?

• The communication protocols — The general control
problem optimizes over all possible protocols, but this
framework allows also the analysis of certain families
of protocols.

3When agents exchange information there is a question
whether information is obtained instantaneously or there are
delays. For simplicity of exposition we assume no delays in
the system.



2.2 The communication language Σ

The semantics of a message can be attached explicitly by
the agents’ designer. In addition to this explicit semantics,
there exists an implicit semantics for each message, given by
the context in which this message was received. The con-
text of a message sent by agent j is a pair consisting of 1)
the last synchronized state when the agents exchanged their
information, and 2) the sequence of observations observed
by agent i when agent j sent this message to him. A local
policy defines implicitly the triplets of synchronized states,
observation sequences and messages, and therefore the table
of instantiations of the δ mapping gives us all the possible
meanings for the language Σ. In this paper, we assume that
agents communicate messages of the same length and that
the agents understand the messages received. These restric-
tions may be relaxed when solving the general problem of
decentralized control with communication. Two cases can
be distinguished when studying a Dec POMDP Com:
1. The general case — Σ is the most general language,
i.e., an explicit semantics was not given a-priori. The decen-
tralized control problem with unrestricted-semantics com-
munication can be defined as follows:

Problem 1. Find a joint policy that maximizes the ex-
pected total reward over the finite horizon. Solving for this
policy embeds the optimal meanings of the messages chosen
to be communicated.

Since semantics are given by the context in which the mes-
sages are sent, the empty message may have more than one
meaning. However, this null message does not incur a cost
when transmitting it. This fact raises interesting research
questions with respect to agents that can optimize their ac-
tions also when they do not receive any message. Agent i
decides not to send a message considering that agent j may
understand i’s state even though j does not receive any mes-
sage from i. Notice also that even though no fixed semantics
are assumed, the context of a message can serve as a signal
for an agent to take some action.
2. Σ has a fixed semantics — Designers that set a fixed
semantics to a given language Σ allow the agents to achieve
performance of certain actions by exchanging messages with
known meanings. More complex studies of these languages
may allow for agents to reason at a meta-level of these given
semantics. That is, agents may take an action following a
message they have received, and move eventually to a new
state. Observing this new state, may lead the agent to take
an additional action that was not the original aim of the
message sent, but it is the result of an effect the sender of
the message had on the resulting state. One example of a
language with fixed semantics is the language of observa-
tions (i.e., Σi = Ωi), where the agents communicate their
observations. The decentralized control problem with fixed-
semantics communication can be defined as follows:

Problem 2. Find a joint policy that maximizes the ex-
pected total reward over the finite horizon that consists of the
policy of actions and policy of communications given the se-
mantics fixed for the language of communication.

2.2.1 Types of Messages
In this paper, we focus on informative messages. Infor-

mative messages affect the decision of the hearer when he
chooses its next action. This is expressed in the δA

i function.

δA
i is a function of the last synchronized state, the last ob-

servation o and all the r messages received so far from agent
j. These last messages affect directly the decision of agent i.
On the other hand, informative messages do not affect the
outcome of the action chosen by the hearer. This results
from the definition of the transition probability function,
P (s, a1, a2, s

′), which depends only on the actions performed
by the agents, and not on the messages transmitted.

Other types of messages include the following:
1. Commitments — a message sent by an agent express-
ing its commitment to doing a certain action at a certain
time, or its request for a commitment.
2. Reward/punishment — an encouraging or punishing
signal that is sent to another agent, which can be eventually
considered for learning adaptive behaviors.
3. World information — Both agents are assumed to
have prior knowledge about the model of the world. But
agents may be willing to exchange information regarding
their policies of actions for the future, for example.

Finding optimal joint policies that consider these last kinds
of messages remain for future research.

2.3 Types of Communication
Types of communication determine the flow of the infor-

mation exchange and the cost of this communication. We
describe three possible cost models that can be framed in
the Dec POMDP Com model. In Section 3 the two-way
communication model was implemented.
1. One-way communication occurs when agent i sends
information to agent j. The information flow is unidirec-
tional. If both agents communicate at the same state, then
they will incur two costs for achieving this communication.
2. Two-way communication necessarily leads to joint
exchange of messages. Both agents incur just one cost to
attain the information.
3. Acknowledged communication requires a confirma-
tion should be sent for every message that was received.
This acknowledgment can be understood as an agreement
on the part of the hearer agent to the message sent, and its
consent to act as expected. More generally, this acknowl-
edgment assures that the hearer has received the message
sent to it when communication may be unreliable.

2.4 Communication Protocols
Communication protocols determine when the agents should

communicate and what information should they transmit.
Solving the general decision problem should also solve for
the optimal protocol. But a simpler decision question can
be answered for a given protocol as is shown in Section 3.2
for a special case in which agents exchange information when
a sub-goal is achieved.

2.5 The Value of the Optimal Joint Policy
Following the model presented in Section 2, we solve for

the value of a state in the Dec POMDP Com. The optimal
joint policy that stipulates for each decision-maker how it
should behave and when it should communicate with other
agents is the policy that maximizes the value of the initial
state of the Dec POMDP Com.

In order to refer to a sequence of messages sent by an
agent, two auxiliary functions are defined: f i

1 are the first i
messages sent by agent 1 with length equal to i. Similarly, f i

2

is defined for the messages sent by agent 2. f i
1 is a function



of 1) the state in which the last message is sent, 2) the
sequence of observations seen by agent 1 (when |o1| = i, is
denoted by o1

i), and 3) the sequence of messages received
from agent 2. These functions can be recursively defined:

f0

1 = δΣ

1 (s, ε, ε) f0

2 = δΣ

2 (s, ε, ε)

f i
1 = δΣ

1 (s, o1

i−1, f i−1

2 ) · f i−1

1

f i
2 = δΣ

2 (s, o2

i−1, f i−1

1 ) · f i−1

2

Definition 4. The probability of transitioning from a state
s to a state s’ following the joint policy δ =< δ1, δ2 >
while agent 1 sees observation sequence o1o1 and receives se-
quences of messages σ2, and agent 2 sees o2o2 and receives
σ1 of the same length, written Pδ(s, o1o1, σ2, o2o2, σ1, s

′) can
be defined recursively:4

1. Pδ(s, ε, ε, ε, ε, s) = 1

2. Pδ(s, o1o1, σ2σ2, o2o2, σ1σ1, s
′) =

�

q∈S

Pδ(s, o1, σ2, o2, σ1, q).

P (q, δA
1 (s, o1, σ2), δ

A
2 (s, o2, σ1), s

′).

O(q, δA
1 (s, o1, σ2), δ

A
2 (s, o2, σ1), s

′, o1, o2)

such that δΣ

1 (s, o1o1, σ2) = σ1 ∧ δΣ

2 (s, o2o2, σ1) = σ2.

Then, the value of a state s in the Dec POMDP Com
from following a joint policy δ for T steps can be defined as
follows:

Definition 5. The value V T
δ (s) of following policy δ =<

δ1, δ2 > from state s for T steps is given by:

V T
δ (s) =

�

<o1o1,o2o2>

�

q∈S

�

s′∈S

Pδ(s, o1, f
i
2, o2, f

i
1, q).

P (q, δA
1 (s, o1, f

i
2), δ

A
2 (s, o2, f

i
1), s

′).

R(q, δA
1 (s, o1, f

i
2), δ

Σ

1 (s, o1o1, f
i
2), δ

A
2 (s, o2, f

i
1), δ

Σ

2 (s, o2o2, f
i
1), s

′)

where the observation and the message sequences are of
length at most T−1, and both sequences of observations are
of the same length i. The sequences of messages will then be
of length i + 1 because they considered the last observation
resulting from the control action previous to communicating.

Problem 3. The decentralized control problem with com-
munication is to find an optimal joint policy δ∗ for action
and for communication such that δ∗ = argmaxδV

T
δ (s0).

The finite horizon problem has been proved to be NEXP-
complete [1] and the infinite version of the problem is known
to be undecidable.

3. MYOPIC GREEDY COMMUNICATION
The complexity analysis done for decentralized control

in the framework of Dec POMDP s [1] covers the worst
case scenarios which also include communication among the

4The notation o = o1, . . . , ot and oo represents the sequence
o1, . . . , oto. Similarly, the notation for sequences of mes-
sages: σiσ represents the sequence σi1 , . . . , σit

σ.

agents at a prohibitively expensive cost. In the other ex-
treme, assuming free communication at every moment trans-
forms the decentralized control problem into a Markov Deci-
sion Process control problem, which is known to be tractable.

The gap between these two extreme cases is worth study-
ing for reasonable costs of communication. Real-life appli-
cations that involve the need for information exchange have
usually a bounded cost that measures real bandwidth cost
or it may measure the risk attached to the communication
act. We study how to trade off the cost or risk of com-
munication with its benefits. In terms of complexity, the
Dec POMDP Com approach is closer to the MDP extreme
rather than to the general decentralized POMDP with pro-
hibitively high cost of communication. Therefore, we expect
that our approach will indeed find tractable optimal as well
as approximate solutions to the decentralized control prob-
lem when communication is explicitly modeled and feasible.

3.1 Meeting under Uncertainty Example
The first problem studied as a Dec POMDP Com in-

volves two agents that have to meet at some location as
early as possible. The environment is represented by a 2D
grid with discrete locations. Both agents know each other’s
location at time t0. They set the meeting point Gt0 at the
middle of their Manhattan distance d0. Each agent can move
towards Gt0 following the optimal policy of action each can
compute. We assume each agent moves independently in the
environment. In this setting, there is uncertainty regarding
the outcomes of the agents’ actions, i.e., with probability Pu,
an agent arrives at the desired location after having taken a
move action, but with probability 1−Pu the agent remains
at the same location. Due to this uncertainty in the agents’
actions’ effects, it is not clear that setting a predetermined
meeting point to which the agents will optimally move is
the best strategy for designing these agents. Agents may be
able to meet faster if they change their meeting place after
realizing their actual locations. This can be achieved by ex-
changing information about the locations of the agents, that
otherwise are not observable.

We study the case where agents can communicate their
observations (i.e., their actual locations), incurring a cost
CΣ. Both agents become synchronized if at any time t, at
least one agent initiates communication. Joint-exchange of
messages is assumed (see Section 2.3). The agents will set a
new goal Gt that is computed as the middle of the distance
between the agents revealed at time t. The utility attained
by both agents in the following four different scenarios are
compared:

1. No-Communication — Each agent follows its optimal
policy of action without communication. The meeting
point is fixed at time t0 and cannot be changed.

2. Ideal — Assuming CΣ = 0, and the agents communi-
cate at each time step, this is the highest joint utility
both agents can attain. Notice, though, that this is not
the optimal solution we are looking for, because we do
assume that communication is not free. Nevertheless,
the difference in the utility obtained in these first two
cases shed light on the trade-off that can be achieved
by implementing non-free communication policies.

3. Communicate Sub-Goals — A heuristic solution which
assumes that the agents have a notion of sub-goals.
They notify each other when these sub-goals are achieved,
eventually leading the agents to meet.



4. Greedy Approach — Agents act myopically optimizing
the choice of when to send a message, assuming no ad-
ditional communication is possible. For each possible
distance between the agents, a policy of communica-
tion is computed such that it stipulates when it is the
best time to send that message. By iterating on this
policy agents are able to communicate more than once
and thus approximate the optimal solution to the de-
centralized control with communication problem.

3.2 Experiments
The No-Communication case consists of the agents setting

a fixed goal at the middle of the distance between them at
time t0. Both agents move optimally towards this goal.5

This problem can be solved analytically by computing the
expected cost6 Θnc(A, d1, d2) incurred by two agents located
at distances d1 and d2 respectively from the goal at time t0.
Θnc(A, 0, 0) = 0 and in general:7

Θnc(A, d1, d2) =

1

Pu(2 − Pu)
[2Ra + P 2

uΘnc(A, d1 − 1, d2 − 1) +

Pu(1 − Pu)Θnc(A, d1 − 1, d2) +

(1 − Pu)PuΘnc(A, d1−, d2 − 1)]

Θnc(A, 0, d2) = 1

Pu

[2Ra + PuΘnc(A, 0, d2 − 1)]

Θnc(A, d1, d0) = 1

Pu

[2Ra + PuΘnc(A, d1 − 1, 0)]
In the Ideal case, a set of 1000 experiments was run in

which the cost of communication was assumed to be zero.
Agents communicate their locations at every instance, and
update the location of the meeting place accordingly. Agents
move optimally to the last synchronized meeting location.

For the third case tested (Communicate Sub-Goals) a sub-
goal was defined by the cells of the grid with distance equal
to p ∗ d/2 from the fixed current meeting point. d expresses
the Manhattan distance between the two agents, this value is
accurate only when the agents synchronize their knowledge.
That is at time t0 the agents determine the first sub-goal as
the area bounded by a radius of p ∗ d0/2 and which center
is located at d0/2 from each one of the agents. Each time t
that the agents synchronize their information through com-
munication, a new sub-goal is determined at p ∗ dt/2. p is a
parameter of the problem that determines the radius of the
circle that will be considered a sub-goal and therefore in-
duces the communication strategy. Figure 1 shows how new
sub-goals are set when the agents transmit their actual loca-
tion once they reached a sub-goal area. The meeting point is
dynamically set to be at the middle of the last synchronized
Manhattan distance between the agents.

Experiments were run for the Communicate Sub-Goals
case for different uncertainty values and different costs of
communication. These results show that agents can obtain
higher utility by adjusting the meeting point dynamically
rather than having set one fixed meeting point. Agents can
synchronize their knowledge and thus they can set a new

5Each agent has an associated MDP in the given model.
6Cost and utility are used interchangeably as appropriate
meaning cost is minimized and utility is maximized.
7The cost of taking one control action is Ra. The agents
aiming at meeting, are trying to minimize the time to meet.
Therefore, the agents incur a cost of R = 2Ra as long as
they have not actually met (i.e., even though only one of
the agents might have reached the goal first).

A1

A2

A1

A2

Time t A new subgoal is set after agent 2 arrived
at the subgoal set at time t.

Figure 1: Goal decomposition into sub-goal areas.

meeting location instead of acting as two independent MDPs
that do not communicate and move towards a fixed meeting
point (see Figure 2). Notice that there are still cases for
certain values of p where the joint utility of the agents is
actually smaller than the joint utility achieved in the No
Communication case (2 MDPs). This points out the need to
empirically tune the parameters needed in the implemented
heuristic, as opposed to a formal approach to approximate
the solution to the problem as is shown in the Greedy case.
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Figure 2: The average joint utility obtained when
sub-goals are communicated.

In the Greedy case, we design the agents to optimize the
time when a message will be sent assuming that they can
communicate only once. At the off-line planning stage, the
agents compute their expected joint cost, Θc(A, d, t), for ev-
ery possible distance that can occur between the two agents,
and for every time t (up to some maximal constant).

Θc(A, d, t) is the expected joint cost from taking control
actions during t time steps, communicating at time t + 1 if
the agents have not met so far, and following the optimal
policy of control actions towards the expected goal with-
out communicating (at an expected cost of Θnc(A, d1, d2)
as computed for the No-Communication case). In the case
that the agents met before the t time steps, then the ex-



pected cost considers the relevant expected joint cost that
the agents incur until they met, i.e., less than t.
Θc(A, d, t) = � t

i=0
� t

j=0 � t

i � � t

j � P i
uP j

u(1−Pu)t−i(1−Pu)t−jΦ(i, j)

The function Φ(i, j) is the total cost that the agents incur
after succeeding in moving i times for agent 1 and j times
for agent 2. Φ(i, j) = 2Raτ (i, j)+Θnc(A, d1, d2)+CΣF lagc.
τ (i, j) is either t if the agents did not meet yet and otherwise
we compute the expected number of time steps smaller than
i and j when the agents succeeded to meet. d1 and d2 are
updated based on the values of i and j.8 F lagc is 1 if the
agents have not met during the t time steps and therefore
will incur a cost of CΣ at time t + 1, and 0 otherwise.

At each time t, each one of the agents know a meeting lo-
cation, that is the last goal location that was synchronized.
Each agent optimally moves towards this goal. In addi-
tion the optimal policy for single-communication is found
by computing the earliest time t, for which Θc(A, d, t) <
Θnc(A, d1, d2), that is what is the best time to communi-
cate such that the expected cost is the least. The optimal
policy of communication is a table where each row speci-
fies a time t when to communicate given a known distance
between the agents.

We found the optimal single-communication policies for
agents solving the meeting under uncertainty problem given
that Pu takes the following values: 0.2, 0.4, 0.6, 0.8, the cost
of taking a control action is Ra = −1.0 and the cost of com-
municating CΣ = −0.1,−1.0,−10.0. For the smallest cost
tested, it is always beneficial to communicate rather early,
no matter the uncertainty in the environment, and almost
no matter what is d0 (the differences in time are between
2 and 4). For larger costs of communication for a given
Pu, agents will communicate later as long as their distance
is larger (e.g., when Pu = 0.4,CΣ = −1 and d = 5, agents
should communicate at time 4, but if CΣ = −10, they should
communicate at time 9). For a given CΣ as long as the dis-
tance is larger the agents will communicate later (e.g., when
Pu = 0.4,CΣ = −10 and d = 5, agents should communi-
cate at time 9, but if d = 12, they should communicate at
time 16). The results from averaging over 1000 runs show
that for a given cost CΣ as long as Pu decreases (the agent
is more uncertain about its actions’ outcomes), the agents
communicate more times.

In the 1000 experiments run, agents start at an initial
state which is synchronized and therefore d0 is known to
both agents. The agents exchange information about their
actual locations at the best time that was myopically found
for d0. After they communicate, they know the actual dis-
tance between them, denote it by dt. The agents follow the
same optimal single-communication policy to find the next
time when they should communicate if they did not meet.
This time is the best time that was found by the greedy
algorithm given that the distance between the agents was
dt. Iteratively, the agents approximate the optimal solution
to the decentralized control problem with communication
by following their independent optimal policies of action,
and the myopic policy for single-communication. Results
obtained from averaging the joint utility attained after 1000
experiments show that these greedy agents perform better
than agents who communicate sub-goals (that is a more ef-
ficient approach than no communicating at all). The results
for CΣ = −0.1 are presented in Tables 1 and 2.

8Due to space limits we do not include the details here.

Average Joint Utility
Pu No-Comm. Ideal SubGoals9 Greedy

0.2 -104.925 -62.872 -64.7399 -63.76
0.4 -51.4522 -37.33 -38.172 -37.338
0.6 -33.4955 -26.444 -27.232 -26.666
0.8 -24.3202 -20.584 -20.852 -20.704

Table 1: CΣ = −0.10,Ra = −1.0.

The Greedy approach attained utilities significantly greater
than those obtained by the heuristic case when CΣ = −0.1.
Ideal always attained higher utilities than Greedy, but when
CΣ = −0.1 and Pu = 0.4 both values were not significantly
different with probability 98%. When CΣ = −1 the utili-
ties attained for the Greedy approach when Pu < 0.8 are
significantly greater than the results obtained in the heuris-
tic case and for Pu = 0.8, the heuristic case for the best
p was found to be better than Greedy (Greedy obtained
-21.3, and the Subgoals with p = 0.1 attained -21.05 (vari-
ance=2.18)). The utilities attained by the Greedy agents,
when CΣ = −10 and Pu = 0.2, 0.4, were not significantly dif-
ferent than the SubGoals case for the best p with probabili-
ties 61% and 82%, respectively. However, the heuristic case
yielded smaller costs for the other values of Pu = 0.6, 0.8.
One important point to notice is that these results consider
the best p found for the heuristic, in general if a designer
does not know this value then all the utilities obtained by
Greedy were higher than the utilities attained for the worst
p in the SubGoals case.

Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 SubGoals Greedy

0.2 0 31.436 5.4 21.096
0.4 0 18.665 1 11.962
0.6 0 13.426 1 8.323
0.8 0 10.292 1 4.579

Table 2: CΣ = −0.10,Ra = −1.0.

For the same parameters tested so far, experiments were
run with two deadlines, T = 8, 15. In general, the greedy
policy found by a myopic agent may instruct the agent not
to communicate if Θnc < Θc, i.e., had the agents commu-
nicated, unnecessary information had been exchanged. On
the other hand, this policy may instruct an agent not to
communicate, if given a deadline, the agent is not going to
be able to reach the goal. In the first case, limiting the dead-
line to be earlier, results in policies of communication that
stipulate that the agent should communicate earlier than in
the case when no deadlines are added (for large values of
d0 with low uncertainties Pu). When no deadlines are as-
sumed, the agents may benefit from exchanging information
later. When a short deadline is assumed, if the agents have
the chance to meet without communication given a later
deadline, they will need to communicate earlier if the time
stipulated in the policy with no deadlines is larger than the
deadline. If the deadline is large enough for these agents to
meet, they do not need to communicate at all. For shorter
d values if the policy with no deadline allows the agent to
communicate at a time smaller than the deadline the same
policy holds.

9The results are presented for the best p, found empirically.



In the second case, the agents may not communicate if
they may not meet at all by the stipulated deadline. The em-
pirical results show that by extending the deadline, agents
benefit from communicating at a time that is later than the
time found by the myopic policy when no deadlines were as-
sumed. Since, there is a chance of not meeting at all, agents
need to wait until it becomes beneficial to communicate.

4. CONCLUSIONS
We have developed a theoretical formal model for de-

centralized control with communication extending current
models based on Markov Decision Processes. This model
enables the study of the trade-off between the cost of in-
formation and the value of the information acquired in the
communication process and its influence on the joint utility
of the agents. We have also discussed aspects relevant to the
study of decentralized control with communication, such as
languages of communication and cost models of communi-
cation. The analysis raises interesting questions regarding
the design of communication languages, their semantics and
their impact on the complexity of coordination. These open
questions remain the focus of further study.

This paper represents one of the few formal studies of
the hard problem deriving both actions and communication
policies for decentralized cooperative multi-agent systems.
We develop a precise formal definition of the value func-
tion and the optimization problem. A practical contribution
of the paper is the development of a greedy meta-level ap-
proach to communication. This paper evaluates the greedy
approach and shows that it produces near-optimal solutions
in a simple testbed. Although a heuristic approach may per-
form well, it requires the correct tuning of its parameters in
contrast to the greedy approach which requires none. More-
over, the greedy algorithm always outperforms the heuristic
with the worst setting. Given the complexity of the problem
of computing communication policies in general, we believe
this is a promising direction to pursue in more complex do-
mains. We are currently testing additional scenarios and
aspects of the problem presented in this paper, including
more complex models of deadlines, asymmetric uncertain-
ties, and messages with partial information.
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