
Mechanism Design for Communication in Cooperative
Systems

Claudia V. Goldman
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

clag@cs.umass.edu

Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

shlomo@cs.umass.edu

ABSTRACT
Distributed systems are characterized by having partial ob-
servability of the global state during execution. Neverthe-
less, when these systems comprise cooperative agents, they
should attain global objectives. Planning for these decen-
tralized systems is a very complex task. Exchange of local
information through communication can alleviate this com-
plexity by allowing the agents to be synchronized from time
to time. Due to costs associated with real-world communi-
cation, agents may not be able to continuously obtain full
observability of the system. We examine mechanisms that
result in the decomposition of the global problem into lo-
cal simpler problems that are applied each time the agents
exchange information. The communication policies are com-
puted with respect to a given mechanism and policy of ac-
tion. This paper presents a framework to study these mech-
anisms and evaluation criteria to compare them. We also
review related work on mechanism design and compare the
approaches.

1. INTRODUCTION
Decentralized control is essential when a group of collab-

orating decision-makers can perform disjoint actions, with
each having only partial information about the global state.
Of particular interest are activities in which global objec-
tives should be attained without the possibility of continu-
ous communication. We are interested in this type of decen-
tralized cooperative multi-agent systems (MAS) composed
of multiple, resource-bounded decision-makers that share a
common set of objectives. In principle, these agents are
able to share their knowledge, although communication has
a cost associated due to the risk in revealing the informa-
tion to competing agents, or due to the bandwidth neces-
sary to transmit the information or due to the complexity of
computing the information to be transmitted. Therefore, it
may be impossible or undesirable for these decision-makers
to share all their knowledge all the time.
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In decentralized cooperative MAS, agents are indeed able
to freely share information at the off-line planning stage due
to the cooperative characteristic of the system. However,
during the on-line stage of execution these agents will be
acting in a decentralized manner, where full observability
of the whole system state cannot be assumed, and where
communication of information (e.g., regarding each agent’s
local state) incurs some cost. Controlling decentralized co-
operative MAS includes considering these behaviors while
planning off-line.

Controlling multi-agent systems that arrive at coordinated
and cooperative behaviors has been extensively studied in
the distributed artificial intelligence literature. We take a
formal approach which is mainly concerned with optimal
policies of action and of communication. It is different from
centralized approaches taken to solve problems in multi-
agent systems where both the off-line planning stage and
the on-line stage are controlled by a central entity, or by
all the agents in the system, who are assumed to have full
observability (e.g., MMDPs [3]). It is also different from the
distributed cooperative MAS that were studied at the other
extreme, i.e., both off-line planning and on-line execution
are done in a completely distributed manner (e.g., [22, 10,
18]). Examples of non-cooperative distributed systems were
studied by Littman [16] and by Hu and Wellman [14].

The research done so far has assumed a known and fixed
language of communication when communication was rel-
evant [6, 13]. For example, a known standard for agents
communication is the Knowledge and Query Manipulation
Language (KQML [7]) where the messages format and the
message-handling protocol are determined at the system de-
sign stage. Two exceptions are the work done by Gmy-
trasiewicz et al. [9] and by Wang and Gasser [28].

Gmytrasiewicz et al. [9] study the evolution of a com-
munication language between knowledge-based and rational
agents through a process of negotiation. Their assumption
is that the agents have conflicts of interest because each
agent would prefer a communication language that is easier
and less expensive to use from its individual perspective. A
failure in translating a message from the agent’s own rep-
resentation language to the agent communication language
is a signal to start a negotiation with the other agent. The
negotiation process assumes that agents can point at objects
to negotiate over labels to these objects or over relations be-
tween them (expressed by the set of objects that follow that
relation). The agents negotiate over the cost of implement-
ing these new knowledge structures and the expected values



of exchanging this information.
Wang and Gasser [28] study how agents collectively learn

a single concept. They show the convergence of a perceptron-
algorithm adapted to mutual learning of a concept by mul-
tiple agents. This single-learned concept does not have any
semantics and its learning was not related to any planning
process. We are interested in the exchange of messages that
have a certain meaning and affect the agents’ plans.

The formal framework underlying the study of commu-
nication and decentralized control is based on decentralized
partially-observable Markov Decision Process (Dec-POMDP) [2].
We extended this Dec-POMDP framework to include a lan-
guage of communication with the corresponding cost. Fol-
lowing the complexity analyzes done by Bernstein et al. [2]
and by Pynadath and Tambe [23], the worst case complexity
is in the NEXP class. Assuming that the agents can commu-
nicate and fully synchronize their partial views of the global
state at free cost, transforms the Dec-POMDP problem into
an MDP scenario which is known to be tractable. We are
interested in computing optimal policies of action and opti-
mal policies of communication for a decentralized controlled
cooperative MAS. The framework in which we study de-
centralized control is described in Section 2. Our recent
research [12] has taken a meta-level approach to communi-
cation in the framework of decentralized control. In order
to reduce complexity, we have assumed that a mechanism
can be applied on the global problem to decompose it into
simpler local problems which can be solved independently
by each agent. We also assume that agents exchange in-
formation in order to achieve cooperation. In this paper,
we study mechanism design for communication in collabo-
rative multi-agent systems. How does the information ob-
tained through communication affect each agent’s policy of
action and near term behavior? This paper provides a for-
mal framework to study these mechanisms, as well as criteria
to evaluate them. In Section 3, we present a formal analysis
of the mechanisms we propose for communication in coop-
erative multi-agent systems. Mechanism design is a known
research area in game theory and Economics where a center
designs the rules of a game for self-interested agents [21]. Re-
cently, social-laws [25, 11] and negotiation mechanisms [24]
were developed for multi-agent systems as mechanisms for
social-coordination. These approaches are explained and
compared in Section 4. We conclude in Section 5.

2. DECENTRALIZED CONTROL WITH
COMMUNICATION

The formal framework in which we study the problem of
decentralized control with communication is a decentralized
partially-observable Markov Decision Process with commu-
nication, Dec-POMDP-Com, defined below. For simplicity
of exposition, the framework is presented for two agents, but
it can be extended to any number of agents.1

Mcom =< S, A1, A2, Σ, CΣ, P, R, Ω1, Ω2, O, T > where:

• S is a finite set of global states. s0 denotes the initial
state of the system.

• A1 and A2 are finite sets of control actions.

1The model is similar to the COM-MTDP model[23], al-
though Pynadath and Tambe did not present an algorithm
for solving the problem of decentralized control with com-
munication.

• Σ is the alphabet of messages. σi ∈ Σ denotes an
atomic message sent by agent i. A special message that
belongs to Σ is the null message, εσ. This message
is sent by an agent that does not want to transmit
anything to the other agents. The agents do not incur
any cost in sending a null message.

• CΣ is the cost of transmitting an atomic message.
CΣ(εσ) = 0, CΣ : Σ→ <.

• P is the transition probability function. P (s, a1, a2, s
′)

is the probability of moving from state s to state s’
when agents 1 and 2 perform actions a1 and a2.

• R is the reward function. R(s, a1, σ1, a2, σ2, s
′) repre-

sents the reward obtained by the system as a whole,
when agent 1 executes action a1 and sends message σ1,
and agent 2 executes action a2 and sends message σ2

in state s resulting in a transition to state s’.

• Ω1 and Ω2 are finite sets of observations.

• O is the observation function. O(s, a1, a2, s
′, o1, o2) is

the probability of observing o1 and o2 (respectively by
the two agents) when in state s agent 1 takes action
a1 and agent 2 takes action a2, resulting is state s′.

• T is a positive integer representing the horizon. In
general, the Dec-POMDP-Com can be defined with
an infinite horizon.

A Dec-POMDP-Com is jointly fully-observable if there
exists a mapping J : Ω1 × Ω2 → S such that whenever
O(s, a1, a2, s

′, o1, o2) is non-zero then J(o1, o2) = s′. In
other words, joint full-observability means that the combi-
nation of the agents’ partial views of the system state com-
prises the system state. Still, each agent has partial observ-
ability of the system state. We denote by Dec-MDP-Com
a Dec-POMDP-Com with joint full-observability. A Dec-
POMDP-Com is jointly synchronized if both agents have
the same knowledge about the global state, and none of the
agents separately has more knowledge than this. Communi-
cation is the only means to obtain information about other
agents’ observations.

We describe the interaction among the agents as a pro-
cess in which agents perform an action, then they observe
their environment, and then send a message that is instan-
taneously received by the other agent. We assume no delays
in the system. Each agent’s behavior is determined by its
local policy δ composed of two policies: a policy of action
δA, and a policy of communication δΣ.

Definition 1. A local policy for action for agent i, δA
i is

a mapping from local histories of observations oi = oi1 , . . . , oit

over Ωi and histories of messages σj = σj1 , . . . , σjt
received

(j 6= i) since the last time the agents were synchronized to
actions in Ai. δA

i : S × Ω∗ × Σ∗ → Ai

Definition 2. A local policy for communication for agent
i, δΣ

i is a mapping from local histories of observations oi =
oi1 , . . . , oit

and o, the last observation perceived after per-
forming the last local action, over Ωi and histories of mes-
sages σj = σj1 , . . . , σjt

received (j 6= i) since the last time
the agents were synchronized to messages in Σ. δΣ

i : S ×
Ω∗o× Σ∗ → Σ

Definition 3. A joint policy δ =< δ1, δ2 > is defined to
be a pair of local policies, one for each agent, where each δi

is composed of the communication and the action policy for
agent i.



2.1 The Language of Communication
The model presented allows for a general setting of de-

centralized control, when the semantics or the syntax of the
messages may not be shared by the agents and when the
semantics are fixed or implicit. Learning to communicate
is another separate line of research that we are looking at.
The semantics are fixed when they are determined by the
designer. They are implicit when they are given by the con-
text in which a message is transmitted. The context of a
message sent by agent j is a pair consisting of 1) the last
synchronized state when the agents exchanged their infor-
mation, and 2) the sequence of observations observed by
agent i when agent j sent this message to him. A local
policy defines implicitly the triplets of synchronized states,
observation sequences and messages, and therefore the table
of instantiations of the δ mapping gives us all the possible
meanings for the language Σ.

The problem we are interested in here - how to design
mechanisms for communication - is relevant for any type of
messages that will be exchanged when agents communicate
(e.g., informative, commitments, signals of reward or pun-
ishment and more complex world information). Even when
agents do share the semantics and the syntax of messages
they need to have conventions about how to interpret these
messages and how to combine this information with their
own local information to derive near-term policies of action.

In this paper, we assume that the language of communica-
tion is fixed ahead of time, and it is shared by all the agents.
In particular we focus on informative messages which affect
the decision of the hearer when he chooses its next action.
The policy that instructs an agent to perform a control ac-
tion, δA

i , is a function of the last synchronized state, the
last observation o and all the r messages received so far
from agent j. These messages affect directly the decision of
agent i. Informative messages, on the other hand, do not af-
fect the outcome of the action chosen by the hearer because
the probability transition function, P (s, a1, a2, s

′), depends
only on the actions performed by the agents, and it does
not depend on the messages transmitted. One example of a
language with fixed semantics that is composed of informa-
tive messages is the language of observations (i.e., Σi = Ωi),
where the agents communicate their observations.

3. MECHANISMS FOR COMMUNICATION
We are concerned with mechanism design for communication-

based control of decentralized cooperative processes. The
first algorithm that optimally solves the sub-class of transition-
independent and factored decentralized control problems has
been recently published by Becker et al. [1]. However, no
algorithm is known that optimally solves both the decen-
tralized control and communication problem where agents
are allowed to exchange local information to attain a syn-
chronized view of the system. Goldman and Zilberstein [12]
developed the analytical expression for the value of a state
in a Dec-POMDP-Com from following a joint policy δ for T
steps. Then, an algorithm that solves the problem in ques-
tion needs to find the optimal joint policy δ∗ for action and
for communication such that δ∗ = argmaxδV

T
δ (s0), where

s0 is the initial global state of the Dec-POMDP-Com. The
value function V T

δ (s0) is given as follows where: 1)f i
j are the

first i messages sent by agent j with length equal to i. 2)
Pδ(s, o1, σ2, o2, σ1, s

′) is the probability of transitioning from

a state s to a state s’ following the joint policy δ =< δ1, δ2 >
while agent 1 sees observation sequence o1 and receives se-
quences of messages σ2, and agent 2 sees o2 and receives
σ1 of the same length. 3) The observation and the message
sequences are of length at most T−1. The actions depend
on a sequence of observations of length i, and the messages
depend on sequences of observations of length i + 1 because
the message is sent after an action was performed and the
resulting observation was observed.

V T
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In order to reduce the complexity of solving the general
problem, we propose to design mechanisms for decentraliz-
ing the control by allowing the agents to synchronize their lo-
cal information from time to time through communication.2

These mechanisms enable the agents to operate separately
for certain periods of time. The policy of communication
is designed at the meta-level of the Dec-POMDP-Com, and
it instructs the agents when they should exchange informa-
tion (e.g., information about each agent’s observations). We
focus on Dec-POMDP-Coms with four characteristics:

1. The state space S is factored : every combination of
local states taken from S1 and S2 respectively deter-
mines a single global state.

2. The transition probability P is transition independent ,
i.e., P (s′i|si, ai) = P (s′i|si, sj , ai, aj) when agents i and
j took actions ai and aj at states si and sj respectively.

3. The Dec-POMDP-Com is jointly-fully observable, that
is a Dec-MDP-Com.

4. The observations are independent: O = O1 ×O2.

A mechanism for decentralizing control MDC is a mapping
from a decentralized process to two single-agent Markov pro-
cesses. In particular, we define a mechanism MDC that
decomposes a Dec-MDP-Com into two single-agent (local)
MDPs built as follows:

MDC :< S, A1, A2, Σ, CΣ, P, R >→

[< S1, A1, Σ, CΣ, P1, R1 >,< S2, A2, Σ, CΣ, P2, R2 >]

Our Dec-POMDP-Com framework and mechanisms are
general to capture models with discounted infinite horizon
where the agents’ objective is to maximize their joint re-
ward. It also captures scenarios with goal-oriented agents,
where even if the horizon is infinite, there is a probability
of one of achieving a goal state. The cost of communica-
tion CΣ may include in addition to the actual cost incurred

2We are interested in mechanisms that are applied each time
the agents exchange information by communication. Never-
theless, the mechanism could also be considered by designers
of systems where synchronization is not attained necessar-
ily by direct exchange of communication (e.g., synchroniza-
tion may be attained when a common enviromental feature’s
value can serve as a signal for the agents). We call our mech-
anisms, mechanisms for communication because they are ap-
plied when communication occurrs and the problems they
create are based on this synchronized information attained
by this communication.



by the communication, the cost resulting from the complex-
ity of computing the decomposition (i.e., by applying the
mechanism) as well as the cost resulting from the complex-
ity of computing the agents’ local policies. R1 and R2 are
the local reward functions of the corresponding MDPs. One
of the main concerns of the mechanism is to find a “good”
decomposition of the joint reward R into two local rewards
such that the local policies of action will lead the agents
to maximize the global reward R. In the simplest case, the
Dec-POMDP-Com is reward independent, i.e., R1 and R2

are clearly summed up to output R. In the general case,
the Dec-POMDP-Com is not reward independent, and R is
given by a function of the local rewards that may add in a
non-additive way (e.g., sub-additive or super-additive) de-
pending on both agents doing complementary or redundant
actions.

An approach to decentralized control with mechanisms
for communication —.We assume that the agents are
fully-synchronized when they start operating. Then, the
mechanism MDC is applied on the global problem (with the
synchronized information) resulting in two local problems
(each one is a single agent MDP). Since we assume that
the policy of communication of each agent is at the meta-
level of control, any agent may initiate communication while
solving this local problem. These policies of communication
trade-off the cost of communication with the value of the
information obtained. Whenever the agents exchange their
local information, they become fully-synchronized. Then,
they apply the mechanism and work on their possibly new
local problems. The agents’ policies of communication are
computed assuming a certain mechanism for decentraliza-
tion is given. The mechanism decomposes the decentralized
MDP problem into two local MDP problems: each agent’s
local policy of action δA

i is computed based on its local re-
ward function Ri, and the policy of communication δΣ

i is
computed based on the joint reward R and based on the
agents local policies of actions given a mechanism.

Figure 1 shows how both policies of action and commu-
nication are computed off-line, and then executed on-line.
The optimal policy of action is found by solving the MDP
resulting from applying the mechanism on the decentralized
problem. SolveComm is a function that computes the pol-
icy of communication (either an approximation or an opti-
mal policy).3 The communication policy is computed based
on this local policy of action, evaluated with the joint reward
of the system. During the on-line stage, each time that an
agent communicates based on this policy, both agents be-
come fully-synchronized. At that point the mechanism is
applied again and the corresponding optimal policy of ac-
tion will be executed.

3.1 Evaluation Criteria
In this section we characterize the possible mechanisms

for communication. We distinguish between characteristics
of a mechanism that are relevant to the decomposition it-
self, and those of a mechanism that depend on a policy of
communication assumed. In the related areas (reviewed in
Section 4), efficiency is captured as maximizing the utility

3Sometimes, it is not necessary to actually solve the local
MDPs in order to compute the policy of communication.
This can be done analytically knowing how the mechanism
works (e.g. see [12]).

Off-line
SolveDec(Dec-MDP-Com,Agenti){
/∗ Dec-MDP-Com=
<S = S1 × S2, A1, A2, P = P1 × P2, R, Σ, CΣ > ∗/

MDPi = MDC(Dec-MDP-Com)
δA∗

i ← Solve(MDPi)
δΣ

i ← SolveComm(P, R, Σ, CΣ, δA∗

i )
}

On-line
Execute(Dec-MDP-Com){

Do{
MDPi = MDC(Dec-MDP-Com)
While (δΣ

i = ∅){
Execute δA∗

i

}
Communicate si

Until Done
}

Figure 1: Off-line and On-line application of a mech-
anism for communication

of the system. When designing mechanisms for communica-
tion, we should also consider the relation between temporary
goals adopted or the near-term accumulated rewards and the
global goal or optimization function of the system. We em-
phasize here the cooperative characteristic of the systems
we are interested in and the fact that agents are exchanging
information to achieve a joint goal or to optimize a joint
global reward function.

The first group of features that characterize any mecha-
nism is as follows:

• Stationary — A mechanism is stationary if for any
state on which it is applied, it always results in the
same decomposition of sub-problems. The result of
applying a mechanism is not time-dependent.

• Feasible — A mechanism is feasible if it is applicable,
i.e., the states, language and goal states (if relevant)
do exist in the agents’ specifications. The mechanism
should be implementable on any possible global state.

• Computational complexity — The computation of
the MDC mapping should be practical for resource-
bounded agents so that they can actually communicate
and coordinate their actions. There is a trade-off be-
tween the complexity of computing a mechanism and
the joint reward of the system. There may not be a
simple way to split the Dec-POMDP into two separate
processes.

• One-Pass — After the exchange of information has
occurred, (which lead to the application of the mecha-
nism) a one-pass mechanism does not require any ad-
ditional information for the agents to fully determine
their local MDPs. For example, if each MDP has a
single local goal to work on, then the mechanism that
decomposed the global problem into these MDPs is
indeed one-pass. Otherwise, agents may need to nego-
tiate over which MDP each one should solve. A mech-
anism is, in general, a way to decompose one problem
into two local problems. If this decomposition is am-
biguous then the mechanism is not one-pass.

The remaining properties depend on the mechanism as



well as on the communication policy.

• Complete — If the Dec-POMDP-Com has a set of
goal states, then a mechanism is complete if there ex-
ists a communication policy such that it guarantees
that the agents reach one of these goals whenever it is
possible.

• Bounded — Given a problem domain with goals then
a mechanism is bounded if there exists a communica-
tion policy that can be applied at most k times for
some given k.

• Efficient — A mechanism MDC1 is more efficient
than another mechanism MDC2 if there exists a com-
munication policy such that the joint reward attained
by the system when MDC1 is implemented is larger
than the joint reward attained by the system when
MDC2 is implemented for any communication policy.
The policy of communication takes into account the
cost of computing the mechanism and solving each
MDP. A mechanism is optimal for a certain problem
if it is more efficient than any other mechanism.

In the infinite-horizon case, every complete mechanism is
bounded for some k. If T is the finite horizon of the Dec-
POMDP-Com, then every complete mechanism is bounded
for some k ≤ T .

In [12], we have introduced the Meeting under Uncertainty
scenario, where two agents that cannot recognize each other
need to meet at some location in a two-dimensional grid.
Each agent’s actions include movements to the east, west,
north and south from its current location. Each action suc-
ceeds with a given probability P , and it fails with probability
1−P leaving the agent at the same location where it per-
formed the action. Whenever the agents communicate, the
information exchanged consists of each agent’s observation
that is given by their location coordinates.

A mechanism that can be applied to this decentralized
control problem enables each agent to adopt a local goal
and optimally move towards it based on its MDP. We have
implemented the mechanism that lead the agents to adopt a
local goal that is located at the middle of the agents’ Man-
hattan distance. This mechanism is stationary, feasible, has
low computation complexity (each agent computes the loca-
tion at the middle of the Manhattan distance between them
with the information acquired by communication), and it is
a one-pass. Once this goal location is determined, each agent
can solve its own MDP and reach that location. We show in
[12] one myopic-greedy policy of communication for which
this mechanism is complete and bounded, each agent indeed
can reach its local goal, and the mechanism and the policy
of communication are applied a finite number of times. We
claim that letting the agents meet at the middle of their
Manhattan distance in a two dimensional grid without ob-
stacles is the most efficient mechanism. The joint expected
time to meet was computed for any pair of distances possi-
ble between the two agents. The minimal value is attained
when these distances are equal. The joint expected time to
meet, Θ, when agent 1 is at distance d1 from the meeting
location, agent 2 is at distance d2 from that location, and
there is a cost of 1 for each time unit that passes and the
agents have not met, is given by the following formula: (P
is the transition probability of the Dec-POMDP-Com)

Θ(0, 0) = 0

Θ(d1, 0) = P (−1 + Θ(d1−1, 0)) + (1−P )(−1 + Θ(d1, 0))

Θ(0, d2) = P (−1 + Θ(0, d2−1)) + (1−P )(−1 + Θ(0, d2))

Θ(d1, d2) = P 2(−1 + Θ(d1−1, d2−1)) + P (1−P )(−1 + Θ(d1−1, d2))+

+(1−P )P (−1 + Θ(d1, d2−1)) + (1−P )2(−1 + Θ(d1, d2))

When the grid is of size 10 × 10, the minimal expected
time to meet is obtained when d1 = d2 = 9 and the expected
value is −12.16.

The value of a centralized fully-observable solution can
serve as an upper bound to the optimal decentralized solu-
tion. We have also started to identify sufficient conditions
under which an optimal mechanism exist.

4. MECHANISM DESIGN - RELATED WORK
Mechanism design was originally studied in Game Theory

to design games that yield outcomes with certain character-
istics. Later, research in Computer Science has looked at
adapting this approach to achieve social coordination and
optimization of social welfare in distributed systems. We
are interested in mechanisms that result in near-term be-
haviors that produce good approximations to the optimal
control of a decentralized cooperative system. Here, we re-
view the classic approach to mechanism design, and then
follow with later studies done for computational systems.

4.1 The Economic Approach
Mechanism design or implementation theory is studied in

Game Theory [21] in order to find rules for a game with
certain characteristics. The players in this game, have each
a preference function over the outcomes of the game. Given
a choice rule from profiles of preferences to a subset of feasi-
ble outcomes, the question is whether a game can implement
this choice rule in a such a way that a certain solution con-
cept is attained (e.g., the Nash equilibrium is reached). The
players are self-interested and therefore information about
their own preferences is kept private. A designer of the game
looks for a mechanism that will produce the desired outcome
(e.g., a Nash equilibrium) when the players reveal some part
of their information as input to the designer. Notice that
following our approach, each time that the agents apply the
mechanism MDC, they are faced with a problem to solve.
In the economic approach the mechanism itself solves the
problem.

An algorithmic view to mechanism design is found in [20].
The mechanism designer sets the algorithm for interaction
among the agents and a payment structure that motivates
the agents to participate in the interaction. Again, this lit-
erature is concerned with agents that are self-interested and
may hold privately known information about their prefer-
ences. Thus, the main question handled by a designer of
a mechanism is to combine the private preferences of the
players into an outcome state that corresponds to the “so-
cial choice”. Since Nisan and Ronen took an algorithmic
approach to mechanism design, they were interested in poly-
time computable mechanisms, i.e., mechanisms whose out-
put and payment functions are computable in polynomial
time.

Following this economic approach agents are self-interested
and are not willing to reveal their private information that



may help their competitors to take advantage of their ac-
tions. Therefore, an important notion in this approach is
whether the mechanism is truthfully-implementable, i.e., whether
the implementation will induce the agents to report their
true types and preferences. An example of a truthful im-
plementable mechanism is the known Clarke mechanism [5],
where a set of compensation rules is given as an incentive
structure leading the agents to reveal their true preferences
as their optimal strategies. In cooperative decentralized sys-
tems, it is clear that any mechanism for communication is
truthfully-implementable. However, an interesting feature
of these mechanisms is that the whole system may benefit if
one of the agents does not send its actual observation, but
a function of it. The hearer may take an action following
the message received, and move eventually to a new state.
Observing this new state, may lead the agent to take an
additional action that was not the original aim of the mes-
sage sent, but it is the result of an effect the sender of the
message had on the resulting state. So, even though agents
are truthful they may benefit by changing the content of
the messages set by the designer. Notice that the contents
of the messages are not set by the mechanism. The mech-
anism assumes that the agents are programmed knowing
which are the messages they can exchange. Another inter-
esting research area is to study the design of languages of
communications for decentralized control.

Based on Wellman’s definition of multi-agent systems [29],
the role of a mechanism in a cooperative system (with global
objectives) is “to coordinate local decisions and disseminate
local information in order to promote these global objec-
tives.” We study mechanisms that will lead each agent
to face possibly new local problems which are simpler to
compute. At the meta-level the agents also compute a pol-
icy of communication that enables the agents to coordinate
their local information attained by their local policies. The
achievement of the global objectives of the system is a result
of a process which interleaves the application of the mech-
anism which leads to near-term local behaviors and the ex-
change of information through communication from time to
time that will induce the application of the mechanism and
so forth.

4.2 Social Laws
The areas related to mechanism design in distributed ar-

tificial intelligence are social laws and negotiation mecha-
nisms. Social laws were defined as mechanisms of coordi-
nation. Two approaches were studied. Shoham and Ten-
nenholtz [25] define social laws as constraints on the agents’
actions. Goldman and Rosenschein [11] define social laws as
extensions to the agents’ local plans of actions.

Shoham and Tennenholtz study social laws as mechanisms
for coordination that will induce agents to avoid conflicts be-
tween their actions. A social law is a predicate over a local
state prohibiting some of the agent’s actions that it is in-
deed capable of performing. Once the social law is imposed
on a multi-agent scenario, its effects are transparent to the
agents. A modified multi-agent system is created in which
only the permitted actions and the corresponding transi-
tions are allowed. When designing mechanisms for com-
munication, the agents are actively applying the convention
and eventually may solve new local problems. In our case,
agents’ plans of actions can be affected due to messages re-
ceived on-line. In the social-laws analysis, once the law is

imposed, the agents find a plan of action that is not going
to change anymore because of the law. They consider a spe-
cial set of states denoted by the focal states. A useful social
law induces legal plans such that every plan execution that
includes a focal state s1 will also include another focal state
s2, for any focal states. A legal plan is one that does not
choose prohibited actions. For a given multi-agent system
and a given set of focal states, it was proved that finding
a useful social law or announcing that it does not exist is
NP-complete [25].

More recently [26], a rational social-law was defined as-
suming that the agents play a game g, and that a social law
sl induces a sub-game gsl of g that includes only the actions
that are not prohibited by sl.4 In a game theoretical sense,
rational agents are captured as utility maximizers. As such,
the solutions that will be preferred by the agents in such
settings will be either the maximin strategies, Nash equilib-
rium, or Pareto Optimal strategies(see [26] for more details
about these solutions). For any such solution concept vari-
able V , V (g) will denote the value of that variable in the
game g.

Definition 4. (adapted from [26]) Let g be a game, V
a game variable (i.e., maximin strategy, Nash equilibrium
or Pareto optimality), and < and ordering on the possible
values of this variable. A social law sl is rational with respect
to g and V if V (g) < V (gsl).

Goldman and Rosenschein [11] define social laws as exten-
sions to the agents’ local plans of actions. Social laws are
intended to transform the world state (global state) for the
benefit of the whole system. Each agent is assigned a level
of cooperation value that determines how much effort the
agent will invest in extending its own plan in order to follow
the law. This parameter can lead different agents to either
not follow the law or to do it at different levels. The so-
cial law in this case was studied as a simpler (less complex)
means to reach coordination instead of computing the opti-
mal multi-agent joint plan. Mechanisms for communication
are also introduced to reduce the complexity of solving the
complete decentralized control problem with communication
in the sense that local policies are affected by information
obtained by exchange of information and eventually lead to
approximations of the global optimal behavior. This paper
deals with local optimization problems that are affected by
information received from other agents. Social laws are more
strict in the sense that either they prohibit the execution of
certain actions, or demand the execution of longer plans in
order to follow the social rule. In our case, the information
exchanged by the agents together with the mechanisms im-
ply two local problems that need to be optimally solved by
each one of the agents with their own set of actions. The
mechanism that determines the local problems depends on
the communication of different messages and on their tim-
ing.

The implementation of social laws in the two approaches
aforementioned is aimed at improving the coordination level
of the multi-agent system. Flexible social laws were studied
by Briggs and Cook [4]. Agents are allowed to choose from
laws with various levels of strictness starting with the most
strict and moving to more lenient laws when they cannot

4A social convention [26] is a social law that restricts the
agents’ behaviors to one particular strategy.



succeed in finding a plan. These social laws follow the ap-
proach taken by Shoham and Tennenholtz as restrictions to
the agents’ actions to reduce the chance of interaction be-
tween the agents. Mechanisms for communication are not
intended to avoid interactions, the assumption is that for
certain costs of communication, the exchange of informa-
tion is indeed beneficial. The mechanisms for communica-
tion will induce the agents to interpret the messages received
in order to better coordinate and thus attain increased joint
utility. The works explained so far assume that the social
laws are designed off-line. Another line of research study
the emergence of these conventions [27, 26].

In the cases described above, the motivation for the agents
to follow these social laws is implicit in the fact that the
agents comprise a cooperative system, and therefore it is in
their benefit to implement the law. In the next section, we
describe work done on self-interested agents who need to be
motivated to follow a social mechanism.

4.3 Negotiation Mechanisms
Self-interested agents need to be motivated to follow a cer-

tain interaction mechanism (similarly to the economic ap-
proach). Negotiation mechanisms were developed by Zlotkin
and Rosenschein [24]. They suggested a negotiation proto-
col over possible joint deals. This protocol can either end
in reaching the conflict deal (i.e., no cooperation is benefi-
cial and each agent ends up performing its initially locally
assigned deals) or the negotiation ends with an agreement
that is some division of the set of both agents’ deals. In this
process the goal-oriented agents are interested in achieving
their pre-set local goals at the minimum cost through pos-
sible cooperation and resolution of conflicts if they exist.
The goal of this line of research is to find distributed con-
sensus mechanisms such that agents that follow simple and
stable strategies will obtain efficient (Pareto Optimal [17]5)
outcomes.

This work does not deal with sequential decision making.
The agreements could be over a set of many tasks that even-
tually will be performed in a sequence, but the negotiation
process is over all the possible deals as one decision. All
the possible deals are already known when the negotiation
mechanism is applied. In our case, we are interested in ap-
plying the communication convention as part of the control
process in order to optimally behave and communicate.

The negotiation mechanism studied in [24] is monotonic
and therefore ensure convergence to a deal. They also stud-
ied incentive-compatible mechanisms, and show that whether
an agent will benefit from lying or not depends on the do-
main characteristics (e.g., concave/sub-additive/modular Task
Oriented Domains). For example, it was proved that any lie
(i.e., hidden, phantom or decoy) is not beneficial in any en-
counter of two agents in concave6 Task Oriented Domains
with any optimal negotiation mechanisms over all-or-nothing
deals.

4.4 Evaluation Criteria
Mechanism designers in Economics (e.g., [19, 21]) are in-

5A deal is Pareto optimal if it cannot be improved for one
agent without decreasing the utility of another agent from
the same deal.
6A Task Oriented Domain is concave if for all finite sets of
tasks X ⊆ Y, Z ⊆ T, c(Y � Z)− c(Y ) ≤ c(X � Z)− c(X). c
is the cost function.

terested in stable mechanisms so that the self-interested agents
will not be able to manipulate them for their own bene-
fit. Thus, mechanisms are sought to implement a solution
concept such as dominant strategies or Nash equilibrium
for example. Economists are also interested in truthfully-
implementable mechanisms that will induce the players to
report their true preferences to the system designer. A
good mechanism should have the following characteristics:
strategy-proof , efficient and budget-balanced [15]. A mech-
anism is strategy-proof if the agents are motivated to par-
ticipate in it and will reveal their true preferences. A mech-
anism is efficient if its output state maximizes the utility
of the system (i.e., the social-welfare is optimized taking
into account the individual selfish utilities of the agents). A
mechanism is budget-balanced if the total monetary transfer
from the agents to the center (the system designer) is non-
negative. Kfir-Dahav et al. show [15] that the procedures
of the Clarke mechanism used to optimize the social welfare
are NP-hard and they suggest a heuristic that will main-
tain the strategy-proof and budget-balanced features at the
expense of social-welfare efficiency.

According to the economic approach, an optimal social-
law is one that attains maximal utility at the system level.
When social-laws are applied to multi-agent systems, this
optimality definition lacks the features of flexibility and use-
fulness. Useful social-laws enable the agents to work indi-
vidually in a mutually-compatible manner [8]. Optimality
is then seen as maximal flexibility of the agents to react
to unpredictable changes in their environment while main-
taining the ability to reach their original goals. The two
features for evaluating social laws based on [8] are minimal-
ity and simplicity: Minimal social-laws restrict the agents’
set of actions to the extent that it is necessary. Since re-
stricting these actions limit the freedom of the agent to plan
its behavior, a “good” social-law needs to balance this free-
dom with the need to avoid collisions between the agents’
actions. Still, the agent needs some freedom to be able of
finding a feasible plan, that is the law should impose the
minimal number of constraints as possible on the agent’s
actions. A simpler social law is easier to implement.

The features discussed in [11] for cooperative state-changing
rules include the following. A rule is: 1) guaranteed if there
is certain that it will not increase global work. 2) reversible
if its effects can be undone. 3) redundant if performing the
extra work will cause the agent to remain in the same state.
4) resource-dependent if following the rule implies the use of
consumable resources. 5) state-dependent if the rule can be
apply only in a certain state.

Negotiation mechanisms [24] were evaluated based on the
following criteria: 1) Symmetric distribution, i.e., no agent
is to have a special role in the negotiation mechanism. In
our case, since the agents are cooperative we do not risk hav-
ing manipulating malevolent agents. However, the designer
may want a more capable agent to have more influence on
another agent when it communicates (e.g., by sending an in-
struction message). 2) Efficiency , i.e., the solution arrived
at through negotiation should be efficient (e.g., satisfy the
criterion of Pareto Optimality). 3) The strategies should be
stable (e.g., strict Nash equilibrium where no single agent
can benefit by changing its strategy, though a group might).
4) Simplicity , i.e., there should be low communication cost
to the mechanism as well as relatively low computational
complexity.



We are concerned with the design of mechanisms for com-
munication in cooperative decentralized systems. Intuitively,
agents exchange information to synchronize their knowledge
and obtain full observability of the global state. Since com-
munication has a cost associated with it, agents could only
be synchronized from time to time. In between these pe-
riods agents work in a local manner on problems set by a
mechanism such that eventually the agents approximate the
actual global objective. Each local solution is computed op-
timally, and the policy of communication is an approximate
or an optimal solution given a mechanism. In other words,
the mechanism for communication is a means to interpret
messages received and translate them into near-term prob-
lems that can be optimally solved locally. Notice that the
communication in our case is not in the form of KQML com-
mands where the reaction to a message received is the clear
and expected response action to the performative command.

In a figurative manner, we can see why these approaches
are different (see Figure 2):
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Figure 2: A comparison between mechanism design
approaches.

Cases (a) and (d) — Economic agents are self-interested.
The agents send their state-worth functions to the center
who outputs a state and a payment structure. The agents’
input to the center states how much they are willing to pay
for a certain output-state (i.e., how desirable that state is
with regard to the goal the agent intends to achieve). A
mechanism sets the rules for a game; in our approach, a
mechanism decomposes a global problem into two tempo-
rary local problems which need to be optimized to solve
the original global problem. The agents may communicate
based on the policy of communication found given the mech-
anism, in which case, the mechanism will be applied again.
The game-theoretic approach sets the game to be played
by the agents; in our case, the mechanism only determines
temporary near-term problems which all together will com-

pose the solution to the long-term problem. In the economic
view, the mechanism itself is the computation of the solu-
tion. In the communication case, the agents need to find the
optimal solution to each problem they are faced with.
Cases (b)(Goldman and Rosenschein approach) and
(d) — Although the convention induces the agents to change
a global state, by adopting a temporary local subgoal, the
parameters of the law are based on the features of the agent’s
own observations, and not as a result of another agent send-
ing its observations.
Cases (b)(Shoham and Tennenholtz approach) and
(d) — This approach imposes a social law on the multi-
agent system and then a transformed system is obtained
whose set of actions is restricted to only those that are al-
lowed by the law. From then on, the agents plan as usual.
In our case the convention is actively applied by the agents
while they compute their optimal policies of action and com-
munication. The convention is based on the messages sent
by the agents along the process.
Cases (c) and (d) — The mechanism is applied once and it
provides the agents with the solution of a joint plan. Agents
are self-interested and they negotiate assuming that both
agents have fully-observable information (although it may
not be reliable).

5. CONCLUSIONS
This paper has introduced the notion of mechanism design

for communication in collaborative multi-agent systems. No
algorithm is known today that can optimally solve the de-
centralized control problem with communication. Mecha-
nism design is a means that enables the designer of a decen-
tralized system to decompose a complex multi-agent prob-
lem into temporary, simpler, local problems. In addition,
the agents compute a policy of communication that will al-
low them to synchronize their local information from time
to time, based on the trade-off between the cost of this com-
munication and the value of the information acquired. This
paper presents the first steps that complements our research
on decentralized control with communication, by formally
presenting a framework where different mechanisms can be
designed and further analyzed.

We have compared the mechanism design approach for
communication with mechanism design studied in economy
and distributed artificial intelligence (social laws and negoti-
ation mechanisms). We have compared the approaches and
have also proposed a set of criteria to evaluate the mecha-
nisms for communication. The complexity analysis of solv-
ing the Dec-POMDP-Com with and without a mechanism
for communication remains an open research question. Ana-
lyzing the competitive ratio of the algorithm that solves the
decentralized control problem with mechanisms for commu-
nication is open as well (i.e., what the mechanisms are that
will always attain a joint utility that is at most distant by a
constant c from the maximal value of the optimal joint pol-
icy). We are also interested in the learning process where
agents dynamically adapt the conventions for communica-
tion.
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