
Event-Detecting Multi-Agent MDPs:
Complexity and Constant-Factor Approximation

Akshat Kumar
Department of Computer Science

University of Massachusetts, Amherst
akshat@cs.umass.edu

Shlomo Zilberstein
Department of Computer Science

University of Massachusetts, Amherst
shlomo@cs.umass.edu

Abstract
Planning under uncertainty for multiple agents has
grown rapidly with the development of formal
models such as multi-agent MDPs and decentral-
ized MDPs. But despite their richness, the applica-
bility of these models remains limited due to their
computational complexity. We present the class of
event-detecting multi-agent MDPs (eMMDPs), de-
signed to detect multiple mobile targets by a team
of sensor agents. We show that eMMDPs are NP-
Hard and present a scalable 2-approximation algo-
rithm for solving them using matroid theory and
constraint optimization. The complexity of the al-
gorithm is linear in the state-space and number of
agents, quadratic in the horizon, and exponential
only in a small parameter that depends on the in-
teraction among the agents. Despite the worst-case
approximation ratio of 2, experimental results show
that the algorithm produces near-optimal policies
for a range of test problems.

1 Introduction
Planning under uncertainty for a team of agents has seen
much progress thanks to the development of such models as
multi-agent MDPs (MMDPs) [Boutilier, 1999] and decentral-
ized MDPs [Bernstein et al., 2002]. Despite rapid progress,
the practical application of these models remains limited due
to their computational complexity. MMDPs are conceptu-
ally simple, but their complexity is exponential in the num-
ber of agents. For DEC-MDPs and POMDPs, optimal algo-
rithms have been shown to be NEXP-Complete even for two
agents [Bernstein et al., 2002].

To overcome this computational barrier, research has fo-
cussed on domains that exhibit certain structure, such as tran-
sition independence [Becker, 2006], structured interaction
among agents and decomposable reward functions [Guestrin
et al., 2001; Nair et al., 2005]. Sensor networks have emerged
as a particularly relevant application domain where coor-
dination among sensors is required to track or detect mul-
tiple stochastically moving targets over some finite hori-
zon [Lesser et al., 2003]. Sensors often interact only through
a joint reward function and they exhibit locality of interac-
tion–each sensor interacts with a limited number of neigh-

boring sensors. Significant scalability has been demonstrated
for noisy sensors with partial observability using the ND-
POMDP model [Nair et al., 2005; Kumar and Zilberstein,
2009], a restricted class of DEC-POMDPs.

Our proposed model, event-detecting multi-agent MDP
(eMMDP), is a specialized framework for early outbreak de-
tection of stochastically evolving events or targets in a dis-
tributed sensor network. A key feature of the model is that
detection requires collaboration among agents, but even with
perfect collaboration agents may fail to detect an event with
certain probability. In addition, the network is resource con-
strained, not allowing all the events to be detected simultane-
ously. Agents receive a joint reward for successfully detect-
ing an event and their goal is to maximize the accumulated
reward over a finite horizon. Rewards for an event have a
certain structure which is detailed below.

The eMMDP model is motivated by several real-world ap-
plications. One example is a sensor network application, Dis-
tributed Collaborative Adaptive Sensing (DCAS) [Pepyne et
al., 2008], where a network of radars collaboratively sense the
earth’s atmosphere for weather phenomena, such as storms
and tornadoes [Manfredi and Kurose, 2007]. Events in DCAS
are the stochastically moving storms and detection implies
extracting the storm’s physical attributes such as velocity or
moisture content. Coordination among radars is required
for this task, and the overall goal is to find the policy (sec-
tor scan strategy) for radars such that storms are detected as
early as possible, providing critical information about their
attributes. A similar problem is that of containing virus prop-
agation in a water distribution network [Ostfeld et al., 2006;
Leskovec et al., 2007]. In such water sensor networks,
the detection involves containing the spread of viruses as
soon as possible to minimize the size of affected population.
Several other physical phenomena share these early detec-
tion/containment characteristics such as the spread of fire in a
building or in wilderness. The goal of early detection makes
the reward structure inherently non-increasing. That is, the
reward for detection does not increase with the horizon. We
exploit this reward structure to design an efficient algorithm
for eMMDPs with a guaranteed approximation bound.

A key contribution of our work lies in establishing con-
nections between decision-theoretic planning for multi-agent
systems, algorithmic concepts such as matroids and sub-
modularity, and constraint optimization. The algorithm we

present for solving eMMDPs, locally greedy submodular
maximization (LGM), uses these key concepts: a matroid rep-
resentation of the policy search space, submodularity of the
policy value function, and constraint optimization to exploit
the locality of interaction and avoid exponential complexity
in the number of agents (which MMDPs suffer from). LGM
is based on a generic approximation algorithm for submodu-
lar function maximization [Fisher et al., 1978]. Unlike other
heuristics, it provides strong theoretical guarantee of a factor-
2 approximation, which is the worst case ratio between the
optimal value and the value produced by the algorithm.

Using submodularity, we also provide a much tighter on-
line bound for any eMMDP algorithm, and use it to show that
policies produced by LGM are provably near-optimal on a
number of sensor network configurations. Furthermore, ma-
troids and submodularity are very general concepts not neces-
sarily limited to eMMDPs. Thus, the ideas developed in this
paper can become useful in other practical applications too.

2 Event-detecting MMDPs
An eMMDP is a tuple 〈A, L, T , S, P,A, {Rt

i}, d〉, where
A is a set of n stationary sensor agents (analogous to radars)
L is a set of locations
T is a set of k targets (storms) which move stochastically

between the L locations
S is a system state space: S = ×k

i=1Si, where Si ⊆ L
is the set of locations where target i can be. It must be
noted that we use the term detection in a richer sense
than merely modeling the location of targets, which state-
space represents. In many applications, such as DCAS,
state can be easily tracked using a specialized tracker ap-
plication [Manfredi and Kurose, 2007].

P is a state transition probability: if s = 〈s1, . . . , sk〉 is a
joint state, P (s′|s) =

∏k
i=1 P (s′i|si), assuming transition

independence of targets
A is a joint action space: A = ×n

i=1Ai, where Ai is the set
of actions for agent i. An agent’s action can be to scan a
location (i.e. Ai ⊆ L) or to idle using the nop action

{Rt
i} = {{Rt

1}, . . . , {Rt
k}} is a set of reward functions for

k targets. Rt
i is the reward for detecting target i at time

step t. The reward is nonincreasing with time, that is ∀i :
R1

i ≥ R2
i ≥ . . . ≥ RT

i , indicating that targets should be
detected as early as possible to maximize the reward.

We define the following interaction hypergraph, G = (V,E),
to describe the interactions among the agents. There is a node
for each agent i. There is a hyper-edge for each location l,
which connects the nodes of all the agents that can scan l. Let
A(l) = {i|l ∈ Ai} denote that set of agents for location l. To
detect a target present in l, any subset of d agents from A(l)
must scan it. A successful detection produces the associated
reward, otherwise the reward is 0. While d can be arbitrary,
we assume for simplicity that it is the same for all targets.
Clearly, coordination among agents plays an important role
in solving eMMDPs. The next section describes the policy
structure and its value function.

2.1 Policy structure and value function
At each state st, the choice of targets to detect must come
from the power set 2T . The joint policy π maps each state
st ∈ S × T to a set τ ∈ 2T of targets to detect, i.e., π :
S × T → 2T . Hiding the actual state-action mapping for
agents under this representation helps provide insights about
the problem and becomes useful in proving theoretical results
later. In section 3.5, we describe how to extract the underlying
policy (state-action mapping) and deal with the exponential
size of the power set.

Since targets are independent, the policy and its value can
be decomposed over the k targets: V (π) =

∑k
i=1 V (πi),

where πi : S × T → {0, 1}. If target i is detectable by
the joint policy, i.e., i ∈ π(st), then πi(st) = 1, else 0. We
define each V (πi) as follows. Let pt

i(πi) be the probability of
detecting target i at time t according to πi. It is given by:

pt
i(πi) =

∑
s∈S

πi(st) · P (st)

The probability P (st) of being in state s at time t can be cal-
culated easily using the given transition function and is condi-
tioned on the initial state or belief. Further, if each detection is
successful only with a certain probability, P (success), then
each term of the above summation is multiplied by it. We use
a shorthand of pt

i for pt
i(πi) and define V (πi) as follows:

V (πi) = p1
i R

1
i + (1− p1

i)p
2
i R

2
i + . . .

. . . + (1− p1
i) · · · (1− pT−1

i)pT
i RT

i

=
T∑

t=1

t−1∏
t′=1

(1− pt′

i) · pt
i ·Rt

i

Let qt
i be the product

∏t−1
t′=1(1 − pt′

i) with q1
i = 1. This

product denotes the probability that target i is not detected
before time t. This notation further simplifies the value func-
tion:

V (πi) =
T∑

t=1

qt
i · pt

i ·Rt
i.

The goal of solving an eMMDP is to find the joint policy π
with the highest expected value V (π).

2.2 Hardness of eMMDPs
Theorem 1. Solving an eMMDP is NP-Hard.

Proof. We reduce the NP-Complete weighted k-Set Packing
problem to eMMDP. Given a collection X1, . . . , Xq of sets
of cardinality at most k, with real weights for each set, the
k-set packing problem is that of finding a collection of pair-
wise disjoint sets of maximum total weight. The reduction
efficiently maps it to the tuple 〈L,A, T , A, {Ri}, d〉.

The set L include q locations, one for each Xi. Let X =
∪q

i=1Xi. The set A includes one agent for each element x of
X . The action set Ax for agent Ax includes actions to scan
all locations lXi such that x ∈ Xi, i.e. Ax = {lXi : x ∈ Xi}.
One target is present in each location lXi in the initial state,
with associated reward equal to the weight of the set Xi. To
detect the target in location lXi , |Xi| surrounding agents need

to scan it. The time horizon for the problem is 1. Clearly,
this reduction is polynomial time. The k in k-set packing
signifies that for detecting a target, a fixed number of agents
are required (parameter d in eMMDP). Finally we need to
show that there exists a collection of disjoint sets with total
weight W for the given k-set packing problem if and only if
the corresponding eMMDP has a policy with value W .

(⇒) Let Xi1, . . . , Xic be a disjoint collection with weight
W . Corresponding to a target in location lXij

, assign action
lXij

to each agent Ax : x ∈ Xij . Clearly, |Xij | agents scan
location lXij

, as required by eMMDP. This policy also pre-
vents conflicts among agents in scanning assignment. That is,
each agent scans at most one location. To prove this, suppose,
Ax has to scan two locations lXij

and lXij′ . By the construc-
tion of the action set for Ax, to scan locations lXij and lXij′ ,
both Xij and Xij′ must contain x (i.e., Xij ∩Xij′ 6= φ). But,
this is a contradiction because Xij , Xij′ are disjoint. The
value of the policy is W because the detected targets have the
same rewards as the weights of their corresponding sets.

(⇐) Let the detected targets be in locations lXi1 , . . . , lXic ,
and the policy value be W . Then the sets in the packing prob-
lem are Xi1, . . . , Xic. Their total weight is W and they are
disjoint. Otherwise, for any shared element x ∈ Xij ∩Xij′ ,
Ax has to scan both locations lXij

and lXij′ to detect the re-
spective targets, which is impossible.

3 Matroids and eMMDPs
Let E be a finite ground set and F be a non-empty collection
of subsets of E. The systemM = (E,F) is a matroid if is
satisfies the following two properties.
• The hereditary property: F1 ∈ F ∧ F2 ⊂ F1 ⇒ F2 ∈ F .

In other words, all the subsets of F1 must be in F .
• The exchange property: ∀F1, F2 ∈ F :
|F1| < |F2| ⇒ ∃x ∈ F2\F1 ; F1 ∪ {x} ∈ F .

The members of F are also called independent sets. Matroids
are useful combinatorial structures, an example of which is
the graphic matroid, where E is the set of all edges in a graph
and F is the family of all acyclic subsets of edges.

A set F ∈ F is called maximal if there is no x ∈ E such
that F ∪ {x} ∈ F . Many combinatorial optimization prob-
lems can be modeled as a matroid, with the optimal solution
equivalent to finding the maximal, maximum weight indepen-
dent set. A classical example on the graphic matroid is find-
ing the maximum weight forest (equivalent to the minimum
spanning tree when edge weights are subtracted from a large
positive constant). Such set is maximal (i.e., adding an edge
to a spanning tree creates a cycle) and maximum weight.

For a ground set partitioned as E = E1 ∪ E2 ∪ . . . ∪ Ek,
the family of subsets F = {F ⊆ E : ∀i; |F ∩ Ei| ≤ 1}
forms a matroid called a partition matroid. This family sim-
ply denotes that any independent set can include at most one
element from each ground set partition. We show in the fol-
lowing sections that any eMMDP can be mapped to a parti-
tion matroid, where the collectionF denotes the policy search
space of the eMMDP. The set evaluation function z : 2E → <
for this matroid is similar to the eMMDP policy evaluation
function. Finding an optimal policy for an eMMDP is equiv-

….

S×T partitions

….
st

{1}, {2}, …, {1,2,3}

choice of targets

Figure 1: A partitioned view of an eMMDP policy

alent to finding the maximal, maximum weight independent
set under z.

3.1 eMMDP as a partition matroid
The policy for an eMMDP can be viewed as a collection of
|S| × T partitions. Each partition denotes a unique state-time
pair st. The policy, π : S×T → 2T , constrains each partition
to make sure that it is filled by exactly one element from the
power set. Fig. 1 illustrates this with target set T = {1, 2, 3}.
This notion is formalized below as a partitioned ground set.

Let E = ∪stEst , where Est = {(st, τ) : τ ∈ 2T },
be a ground set. The subset system F = {F ⊆ E :
∀st; |F ∩ Est | ≤ 1} forms a partition matroid. A member
(st, τ) ∈ E denotes that the policy in state st is to detect the
targets in the set τ . The policy constraint is also modeled by
the partition matroid. Clearly, the independent sets are the
partial policies for eMMDP and the maximal independent set
specifies the complete policy. The maximum weight, maxi-
mal set represents the optimal eMMDP policy. The weight
criterion z, intuitively enough, is the evaluation function of
the policy an independent set represents.

3.2 Set evaluation function
The evaluation function z : 2E → < is defined for any subset
of E. For the independent sets, z is the same as the evaluation
function of the policy it represents. For partial policies, we
assume no targets are detected in unspecified partitions.

Sets F which violate the matroid constraint, i.e., ∃Est :
|F ∩Est | > 1, do not represent a valid policy as they include
more than one element from a ground set partition. The func-
tion π then becomes a relation. For such invalid policies, the
only change occurs in specifying the policy πi for each target
i, with

πi(st) =
{

1 if ∃τ ∈ 2T s.t. π(st, τ) ∧ i ∈ τ

0

The detection probability for each target and the final value
can be calculated using this modified policy as in Section 2.1.

3.3 Monotonicity and submodularity
If the evaluation function z is linear in the weight of each el-
ement, then the greedy approach, which starts with an empty
set and chooses the next best element, is optimal; this is ex-
actly how Kruskal’s algorithm for MST works. However, for
eMMDPs, we show that z is submodular and monotone in-
stead of linear. Surprisingly, a similar greedy approach gives
factor-2 approximation [Fisher et al., 1978]. Goundan and
Schulz [2007] provide a good overview of these concepts,
which we summarize below. A set function z is said to be
• monotone, if z(F1) ≤ z(F2) whenever F1 ⊆ F2

• submodular, if z(F1∪{e})−z(F1) ≤ z(F2∪{e})−z(F2)
for all F2 ⊆ F1 ⊆ E and e ∈ E \ F1

Submodularity is similar to the law of diminishing returns.
As a set grows, the marginal gain of each subsequent element
decreases. The marginal gain of an element e ∈ E \ F to F
is ρe(F) = z(F ∪ {e})− z(F). Equivalently, submodularity
implies ρe(F1) ≤ ρe(F2),∀F2 ⊆ F1.

For eMMDPs, this implies that extending a smaller par-
tial policy leads to a higher increase in reward than extending
its superset. Intuitively, in a smaller policy there are at least
as many undetected targets as in its superset, possibly more.
Therefore, the chance that a new target will be detected pro-
viding extra reward is higher when the smaller policy is ex-
tended.
Theorem 2. The evaluation function for an eMMDP is mono-
tone and submodular.

Proof. For monotonicity, it suffices to show ρe(F1) ≥ 0. For
eMMDPs, adding e = (st, τ) can never decrease the proba-
bility of detecting any target, thus, ρe(F1) ≥ 0.

Consider the sets F1 ⊆ F2 ⊆ E, and an element e =
(st+1, τ) ∈ E \ F2. Intuitively, we are extending the par-
tial policy F2 by specifying targets to detect in state st+1.
Given, V (π) =

∑k
i=1 V (πi), we will show that each V (πi)

is submodular; submodularity of the joint policy follows by
the property that a positive linear combination of submodular
functions is also submodular.

With πF2
i we represent the underlying policy of set F2.

V (πF2
i) =

∑T
t=1 qt

i · pt
i · Rt

i . We can represent the above
summation as a sum of values obtained from time step 1 to t
(= vt

1), the value at step t + 1, and the remaining value from
step t + 2 to the end (vT

t+2). Thus,

V (πF2
i) = vt

1 + qt+1
i pt+1

i Rt+1
i + qt+1

i (1− pt+1
i)vT

t+2 (1)

Consider the set F2 ∪ {e = (st+1, τ)}. If target i /∈ τ ,
then ρe(F2) = 0, and proving submodularity is trivial as
ρe(F1) ≥ 0 = ρe(F2) by monotonicity. Thus, we consider
the nontrivial case when i ∈ τ . In Eq. (1), only the middle
and the last term will change by including e. Specifically, the
probability of detecting target i at time t + 1 will increase by
P (st+1), the probability of state s at time t+1, which can be
calculated easily from the input parameters. Thus, we have

V (πF2
i ∪ {e}) = vt

1 + qt+1
i (pt+1

i + P (st+1))Rt+1
i +

qt+1
i (1− pt+1

i − P (st+1))vT
t+2 (2)

ρe(F2) is given by subtracting Eq. (1) from Eq. (2):

ρe(F2) = qt+1
i P (st+1)Rt+1

i − qt+1
i P (st+1)vT

t+2 (3)
Similarly, ρe(F1) is given by

ρe(F1) = qt+1
i P (st+1)Rt+1

i − qt+1
i P (st+1)vT

t+2 (4)
To show submodularity, we must prove ρe(F1)−ρe(F2) ≥ 0.
Since, F1 is a subset of F2, the value of the sub-policy from
time step t + 2 until T in πF2

i cannot be less than πF1
i , that is

vT
t+2(π

F2
i) ≥ vT

t+2(π
F1
i). To get an upper bound on ρe(F2),

we substitute vT
t+2(π

F2
i) = vT

t+2(π
F1
i). We get

ρe(F1)− ρe(F2) =

P (st+1) · (qt+1
i (πF1

i)− qt+1
i (πF2

i)) · (Rt+1
i − vT

t+2) (5)

Algorithm 1: Locally Greedy Submodular Maximization

AG ← φ1

for st ∈ S × T do2

e? ← arg maxe∈Est
ρe(AG)3

AG ← AG ∪ e?4

return AG5

Since, πF1
i is a subpolicy of πF2

i , the probability of not de-
tecting target i is higher in πF1

i than πF2
i , i.e. qt+1

i (πF1
i) ≥

qt+1
i (πF2

i). Also, from the reward dependence on the time
horizon we have vT

t+2 ≤ Rt+2
i ≤ Rt+1

i . Thus, all the terms
in Eq. (5) are ≥ 0. Hence, ρe(F1) − ρe(F2) ≥ 0, imply-
ing submodularity. Note that these results hold even when
F2 represents a non-valid policy. The proof is similar, but
omitted due to space constraints.

3.4 A submodular greedy algorithm
This section describes the 2-approximation greedy algorithm,
LGM, for solving eMMDPs. It is based on an approach for
maximizing submodular functions over a partition matroid.
For details and proof of approximation quality guarantee we
refer to Fisher et al. [1978] and a recent survey by Goundan
and Schulz [2007]. The worst-case bound may seem loose,
but using submodularity, we also provide a way to calculate
much tighter online bounds, which we discuss later.

The surprisingly simple and efficient LGM technique, de-
tailed in Algorithm 1 above, iteratively builds the policy AG.
Starting with an empty set, the algorithm iterates over the pol-
icy partitions (as Fig. 1 depicts). In each iteration, it selects
the element from the current partition which maximizes the
marginal gain. The ordering of the partitions does not affect
the quality guarantee, though a good ordering may provide a
better solution.

It should be noted that LGM is not a myopic algorithm in
the sense that it does take into account the sequential nature
of the eMMDP policy. During the initial iterations, when AG

is relatively sparsely filled, it has some myopic nature, but as
the policy AG gets built progressively, the marginal gain step
will take into account which targets already have high detec-
tion probability and focus the next iteration on targets with
low current detection probability. This step combined with
the submodularity of eMMDPs is the key to the strong quality
guarantees provided by LGM. Other myopic heuristics–such
as detecting targets that provide maximum immediate reward
in each state using constraint optimization–cannot provide
such quality guarantees.

Complexity
The complexity of LGM depends upon the number of parti-
tions and the complexity of selecting the best element e? from
a partition. The number of partitions is |S| · T , linear in the
state-space and horizon. However, maximizing the marginal
gain requires iterating over 2|T | alternatives, which is expo-
nential in the number of targets. To address this, we transform
the problem below into a constraint optimization problem,

which can be solved much faster in O(n · |Ai|m) time and
space using the bucket elimination approach [Dechter, 1999].
Ai is the action set for an agent, n is the number of agents, and
m is the induced width of the chosen depth-first search (DFS)
ordering of the variables in the constraint formulation. The
constraint graph we construct is similar to the agent interac-
tion graph defined earlier–a hyper-edge can be simulated us-
ing an n-ary constraint involving all agents on the edge. Such
formulation makes the complexity linear in the number of
agents, a significant contribution that increases the scalabil-
ity of the approach to large multi-agent systems. In loosely-
coupled systems, the induced width is low, making the con-
straint formulation particularly easy to solve. Setting up the
constraint formulation requires calculating marginal gain of
each target, which can be calculated in O(T) time. Hence,
the overall complexity of LGM is O(|S|T (|T |T +n|Ai|m))).

3.5 Maximizing the marginal gain
Before presenting the constraint formulation, we prove the
following theorem. Intuitively, it states that the marginal gain
for detecting a group of j targets in state st can be factored
and represented as a sum of gains provided by each target.

Theorem 3. Let F ⊆ E and e = (st, τ) is an element of
E \ F , where τ = {i1, . . . , ij} represents the choice of j

targets to detect in state st. Then, ρe(F) =
∑j

c=1 ρec(F),
where ec = (st, {ic}).

Proof. First note that ρe(F) = z(F ∪ (st, τ))− z(F), which
can be written as a telescoping series with τc = {i1, . . . , ic}

ρe(F) =
j∑

c=1

{ z(F ∪ (st, τc))− z(F ∪ (st, τc−1)) } (6)

Each term on the RHS of Eq. (6) can be further decomposed
with respect to the targets c′ ∈ T which do not occur in τc; for
them the policy valuation remains unchanged, and the targets
in τc; for which the valuation changes.

z(F ∪ (st, τc)) =
∑

c′∈T \τc

V (πF
c′) +

∑
c′∈τc

V (πF
c′ ∪ ec′)

z(F ∪ (st, τc−1)) =
∑

c′∈T \τc−1

V (πF
c′) +

∑
c′∈τc−1

V (πF
c′ ∪ ec′)

Subtracting the latter equation from the previous one gives

z(F ∪ (st, τc))− z(F ∪ (st, τc−1)) =

−V (πF
c) + V (πF

c ∪ ec) = ρec(F)

The theorem follows immediately by substituting this result
with the right hand side of Eq. (6).

We conclude from Theorem 3 that if e = (st, {i1, . . . , ij}),
then maximizing the marginal gain is equivalent to finding
e? ← arg maxe

∑j
c=1 ρec(A

G). Constraint optimization al-
gorithms can efficiently solve this problem. Further, con-
straint optimization provides the actual policy (state-action
mapping) for each agent in addition to maximizing marginal
gain.

The constraint formulation
A constraint optimization problem (COP) is defined by a set
of variables X = {X1, ..., Xn} and a set of constraint func-
tionsF = {f1, ..., fm}. Each variable Xi has a domain Di of
possible values. Each constraint fj involves some subset of
variables and specifies a reward for each value of the subset.
The solution is the complete assignment X ∗ for the variables
that maximizes the global reward.

Variables and domain: For each target i ∈ T , let li ∈ L
be its location in state st. A(li) denotes the agents which can
scan li. The constraint network includes a variable for each
agent in the group A(li) (and for all targets i), but without
any duplicates. The domain of each variable is the action set
of the corresponding agent.

Constraints: To detect a target i and claim the reward, d
agents from A(li) must scan li. To ensure this coordination,
an n-ary constraint fi is created among all the variables, say
X(li), corresponding to agents A(li) (and for all targets i).
The valuation for the joint assignment x to X(li) is defined
below. Xd denotes a group of d variables and xX is the pro-
jection of assignment x on variable X .

fi(x) =
{

ρ(st,{i})(AG) if ∃Xd ⊆ X(li) : ∀X ∈ Xd xX = li
0 otherwise

The above constraint valuation ensures that reward is only
given when at least d agents fromA(li) scan location li. This
formulation maximizes

∑k
i=1 fi, where k is the number of

targets. Clearly, the optimal solution includes detecting those
targets which maximize this sum, which is also the maximum
marginal gain. The group of detected targets can be extracted
from solution X ∗ by examining each fi, and including target
i in e? for which fi 6= 0 under X ∗. Furthermore, the solution
X ∗ denotes which action each agent must take, hence pro-
vides the actual policy for agents at state st. If an agent is not
included in X ∗, then it takes the nop action.

3.6 Online bounds
Theorem 4. Let AG be a policy returned by some arbitrary
eMMDP algorithm, and A? be the optimal policy. Then,
z(A?) ≤ z(AG) +

∑
Est

ρ?
Est

(AG), where ρ?
Est

(AG) =
maxe∈Est ρe(AG) is the maximum marginal gain any ele-
ment of the partition Est can provide.

Proof. The proof is based on the following property of sub-
modular functions. If S and T are any subsets of the ground
set E, then z(T) ≤ z(S) +

∑
e∈T−S ρe(S). If we substitute

T = A? and S = AG, then we get

z(A?) ≤ z(AG) +
∑

e∈A?−AG

ρe(AG).

The optimal solution A? is unknown, but we know it
must respect the eMMDP partition matroid constraint, i.e.,
it must pick only 1 element from each partition. Thus,∑

e∈A?−AG ρe(AG) ≤
∑

Est
ρ?

Est
(AG). From this, the the-

orem follows.
This property provides tight bounds for any eMMDP algo-

rithm and, as the experiments show, is quite useful in practice.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f O
pt

im
al

Instance

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f O
pt

im
al

Instance

(b)

 80

 85

 90

 95

 100

 2 3 4 5 6 7 8

%
 o

f O
pt

im
al

Horizon

(c)

Figure 2: Solution quality for (a) 5P and (b) 11-Helix, for horizon 5. (c) Dependence of solution quality on horizon for 11-helix.

4 Experiments
We performed experiments on multiple sensor network con-
figurations using a 2.4GHz dual-core Mac, with 512MB al-
lotted to JVM. We used a publicly available constraint solver
for implementing the marginal gain maximization step of
LGM [Petcu and Faltings, 2005].

Fig. 3 shows the first two configurations from [Nair et al.,
2005]. Each sensor can scan in four directions. Every square
shaped region between sensors represents a location where
a target can be. To detect a target, two sensors must scan
the location. For the 5P domain, we had three stochastically
moving targets. A target can appear in any location with some
probability (chosen randomly for each simulation), moves to
the next location with probability 0.8 and remains at the cur-
rent location with probability 0.2 (as in [Nair et al., 2005]).
Clearly, not all targets can be detected at the same time: only
one among the two targets in the same vertical column can
be detected. For each simulation, rewards were selected from
the range [50, 200]. We generated 100 random instance with
horizon 5. Fig. 2(a) shows the quality of approximation for
each instance. Clearly, the algorithm proves very effective
in this case, producing near-optimal results for all input in-
stances. The average quality achieved was 94.8 ± 0.3% of
the optimal (the error term denotes 95% confidence interval).
Average runtime was 53 ms.

Fig. 2(b) shows the approximation ratios for the larger 11-
Helix configuration with horizon 5. There were 6 targets,
with a state-space of 729 and action-space of 411. Again,
the algorithm was able to produce near-optimal results for
all the 100 random problem instances. Average quality was
92 ± 0.6% and average runtime was 426 ms. Despite an
action-space of 411, our results show that the constraint for-
mulation made it possible to solve the problem efficiently by
exploiting the locality of interactions among the agents, and

on the sensor network domain provided in Section 2. Our first ex-
perimental result focuses on providing a head-to-head comparison
of FANS with different heuristics, against SPIDER, since SPIDER
is the latest algorithm for ND-PODMPs, and also because it uses
branch-and-bound search using an MDP heuristic. The comparison
uses some of the sensor network configurations presented in [14],
and an additional “7-H” configuration as shown in Figure 3. In this
experiment, we limit the number of agents to less than 10, in order
to allow SPIDER to run.

4-Chain

5-Star 5-P

7-H 11-Helix15-3D

Figure 3: Sensor network configurations

Figure 4 shows a comparison of runtime of SPIDER vs. FANS
with different heuristics. The x-axis shows the different sensor net-
work domain configurations, and the y-axis plots the runtime in
log-scale (in all our experiments, we imposed a 10000 second cut-
off on runtime). Also, we chose a time horizon of 3 for policy
computation, to be consistent with the results shown in [14]. For
the node heuristic, we chose k = 1/2; we discuss this choice of k
later on. We can observe that (i) SPIDER is the slowest of all of
the different algorithms considered and it hits the 10000 sec cut-
off in the 5-P and 7-H cases; (ii) The Node and Link heuristics
are the two fastest in all cases; (iii) Unfortunately, Searcher’s extra
search over FSMs appears have a significant runtime penalty; (iv)
The Equality and Fairness heuristics are the two worst perform-
ing heuristics; (v) Surprisingly, the Greedy heuristic matches the
performance of the Link heuristic for the 5-P and 7-H cases. The
key conclusion from this graph is that FANS with either the Node,
Link or Greedy heuristic is able to provide more than two orders of
magnitude speedup over SPIDER.

Figure 4: Runtime comparison of SPIDER vs. FANS

Next, we show scale up in terms of time horizon for policy com-
putation, and also provide a comparison of FANS against the LID-
JESP algorithm, a locally optimal algorithm for ND-POMDPs [10].
Runtime results for LID-JESP are available up to T=6, as shown
below. Figure 5 shows a plot of the runtime as we increase the

time horizon. The x-axis shows the time horizon, and the y-axis
plots the runtime in log-scale. Runtime values for different time
horizons are shown for LID-JESP and FANS with Node heuristic
(k = 1/2), for the 4-chain and 5P configurations. The key obser-
vations here are that FANS is able to provide orders of magnitude
speedup over LID-JESP for higher time horizons. For example, for
the 4-chain configuration with T=6, LID-JESP runs for 309 s, while
FANS terminates in 0.73 s, thus providing a 423-fold speedup over
LID-JESP. Moreover, for the 5-P configuration, a speedup of more
than 1 order of magnitude is visible for T=5. We discuss solution
quality in detail later, but for both 4-chain and 5-P, the Node heuris-
tic with k = 1/2 appears to match the quality of the global optimal
solution.

Figure 5: Runtime comparison of FANS with LID-JESP

Figure 6(a) shows a comparison of runtime of FANS with dif-
ferent heuristics as we scale-up the number of agents. The x-axis
shows the different sensor network domain configurations2 (see
Figure 3), and the y-axis plots the runtime in log-scale (again, in
all our experiments, we imposed a 10000 second cutoff on run-
time). Also, the time horizon for policy computation is 3 and we
again choose k = 1/2 for the Node heuristic. We can make the
following observations: (i) The Equality and Searcher heuristics
are not able to terminate within the cutoff time of 10000 s; (ii)
The Node heuristic still remains the best for all configurations, but
Greedy beats Link in the 15-3D domain. Thus FANS can scale up
to as many as 15 agents, triple the number of agents SPIDER could
handle.

The next set of experiments examine tradeoffs in solution quality
and provide analysis of these speedups. Table 1 shows a compar-
ison of solution quality for SPIDER and FANS with select heuris-
tics. The rows show all agent configurations considered so far while
the columns show the algorithm used to obtain the solution quality.
We can observe the following:(i) For the 4-chain and 5-star do-
mains, FANS (even with its faster Greedy heuristic) is able to reach
the same quality as SPIDER, which is the global optimum. For
the 5-P configuration, only an upper bound on the solution quality
is provided in [14], and FANS is able to obtain a solution quality
within 5% of the upper bound obtained by SPIDER. (ii) The Equal-
ity heuristic obtains the highest solution quality in all cases; (iii)
For domains of less than 10 agents, the Link heuristic matches the
quality of the Equality heuristic (it loses less than 1% quality and
less than 10% of quality in the 5-star and 7H domains respectively);
(iv) As we scale up the Network, none of the three fastest heuristics
(Link, Node, Greedy) can keep up to the solution quality provided
by Equality or Searcher; (v) Even though the Equality and Searcher

2Configuration 15-mod is a modification to the 15-3D configura-
tion with different target paths.

(a)

on the sensor network domain provided in Section 2. Our first ex-
perimental result focuses on providing a head-to-head comparison
of FANS with different heuristics, against SPIDER, since SPIDER
is the latest algorithm for ND-PODMPs, and also because it uses
branch-and-bound search using an MDP heuristic. The comparison
uses some of the sensor network configurations presented in [14],
and an additional “7-H” configuration as shown in Figure 3. In this
experiment, we limit the number of agents to less than 10, in order
to allow SPIDER to run.

4-Chain

5-Star 5-P

7-H 11-Helix15-3D

Figure 3: Sensor network configurations

Figure 4 shows a comparison of runtime of SPIDER vs. FANS
with different heuristics. The x-axis shows the different sensor net-
work domain configurations, and the y-axis plots the runtime in
log-scale (in all our experiments, we imposed a 10000 second cut-
off on runtime). Also, we chose a time horizon of 3 for policy
computation, to be consistent with the results shown in [14]. For
the node heuristic, we chose k = 1/2; we discuss this choice of k
later on. We can observe that (i) SPIDER is the slowest of all of
the different algorithms considered and it hits the 10000 sec cut-
off in the 5-P and 7-H cases; (ii) The Node and Link heuristics
are the two fastest in all cases; (iii) Unfortunately, Searcher’s extra
search over FSMs appears have a significant runtime penalty; (iv)
The Equality and Fairness heuristics are the two worst perform-
ing heuristics; (v) Surprisingly, the Greedy heuristic matches the
performance of the Link heuristic for the 5-P and 7-H cases. The
key conclusion from this graph is that FANS with either the Node,
Link or Greedy heuristic is able to provide more than two orders of
magnitude speedup over SPIDER.

Figure 4: Runtime comparison of SPIDER vs. FANS

Next, we show scale up in terms of time horizon for policy com-
putation, and also provide a comparison of FANS against the LID-
JESP algorithm, a locally optimal algorithm for ND-POMDPs [10].
Runtime results for LID-JESP are available up to T=6, as shown
below. Figure 5 shows a plot of the runtime as we increase the

time horizon. The x-axis shows the time horizon, and the y-axis
plots the runtime in log-scale. Runtime values for different time
horizons are shown for LID-JESP and FANS with Node heuristic
(k = 1/2), for the 4-chain and 5P configurations. The key obser-
vations here are that FANS is able to provide orders of magnitude
speedup over LID-JESP for higher time horizons. For example, for
the 4-chain configuration with T=6, LID-JESP runs for 309 s, while
FANS terminates in 0.73 s, thus providing a 423-fold speedup over
LID-JESP. Moreover, for the 5-P configuration, a speedup of more
than 1 order of magnitude is visible for T=5. We discuss solution
quality in detail later, but for both 4-chain and 5-P, the Node heuris-
tic with k = 1/2 appears to match the quality of the global optimal
solution.

Figure 5: Runtime comparison of FANS with LID-JESP

Figure 6(a) shows a comparison of runtime of FANS with dif-
ferent heuristics as we scale-up the number of agents. The x-axis
shows the different sensor network domain configurations2 (see
Figure 3), and the y-axis plots the runtime in log-scale (again, in
all our experiments, we imposed a 10000 second cutoff on run-
time). Also, the time horizon for policy computation is 3 and we
again choose k = 1/2 for the Node heuristic. We can make the
following observations: (i) The Equality and Searcher heuristics
are not able to terminate within the cutoff time of 10000 s; (ii)
The Node heuristic still remains the best for all configurations, but
Greedy beats Link in the 15-3D domain. Thus FANS can scale up
to as many as 15 agents, triple the number of agents SPIDER could
handle.

The next set of experiments examine tradeoffs in solution quality
and provide analysis of these speedups. Table 1 shows a compar-
ison of solution quality for SPIDER and FANS with select heuris-
tics. The rows show all agent configurations considered so far while
the columns show the algorithm used to obtain the solution quality.
We can observe the following:(i) For the 4-chain and 5-star do-
mains, FANS (even with its faster Greedy heuristic) is able to reach
the same quality as SPIDER, which is the global optimum. For
the 5-P configuration, only an upper bound on the solution quality
is provided in [14], and FANS is able to obtain a solution quality
within 5% of the upper bound obtained by SPIDER. (ii) The Equal-
ity heuristic obtains the highest solution quality in all cases; (iii)
For domains of less than 10 agents, the Link heuristic matches the
quality of the Equality heuristic (it loses less than 1% quality and
less than 10% of quality in the 5-star and 7H domains respectively);
(iv) As we scale up the Network, none of the three fastest heuristics
(Link, Node, Greedy) can keep up to the solution quality provided
by Equality or Searcher; (v) Even though the Equality and Searcher

2Configuration 15-mod is a modification to the 15-3D configura-
tion with different target paths.

(b)

Figure 3: 5P and 11-Helix sensor network configurations

Horizon 2 3 4 5 8
Time (ms) 163 247 334 426 717

Table 1: Horizon versus runtime for 11-Helix

LGM was able to produce near-optimal solutions by exploit-
ing the submodularity of eMMDPs.

Fig. 2(c) shows how solution quality varies with the hori-
zon. Each result is an average over 100 random instances,
shown along with 95% confidence intervals. The graph
clearly reflects the submodular nature of eMMDP policies.
For the smaller horizons, the error term in the formulation of
Theorem 4,

∑
Est

ρ?
Est

(AG), is higher as the policy size is
small. The error decreases as the policy size increases with
the horizon–exhibiting the property of diminishing returns.
Nevertheless, we were able to achieve very high quality for
each horizon. Table 1 shows the runtime for each horizon.
The runtime clearly increases polynomially with the horizon,
confirming the good scalability of our approach.

For the next set of experiments, we used a much larger
configuration–a dodecahedron with 20 nodes and 30 edges
(or locations for targets). There were 7 stochastically mov-
ing targets and two adjacent agents were required to detect a
target. The configuration and sample trajectories are shown
in Fig. 4(a). In this configuration, 4 targets can appear in the
innermost pentagon with randomly chosen probability and 3
in the outermost. The edges adjacent to the top left inner-
most node (shown in green) are the possible initial locations
of a target. Targets can move stochastically to an adjacent
edge, or jump to an edge on the outer pentagon with ran-
domly chosen probabilities. With 0.2 probability targets re-
main at a location connecting two regions. The rewards were
chose randomly for each instance. Similar trajectories were
defined for each of the 7 targets such that targets in the in-
nermost pentagon stochastically move to an outer pentagon,
and targets in outer pentagons move to an inner pentagon.
This makes the problem combinatorially complicated, as it
presents agents with many alternatives that they must eval-
uate. The size of the state-space is 78,125 and the actions-
space is 320. Using reachability analysis, it was possible to
reduce the state-space to an average of 16,000 per instance.
Fig. 4(b) shows the approximation quality for each of the 100
instances. Again, LGM produced near-optimal results. The
average quality was 95 ± 0.4%. The average runtime was

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120

%
 o

f O
pt

im
al

Instance

(b)

Figure 4: (a) The larger 20D sensor network configuration,
and (b) approximation quality for horizon 5

66±1.7 sec. These results clearly demonstrate the scalability
and approximation quality of our approach for large state and
action spaces. Because the complexity is linear in the state-
space, based on these experiments we could solve a problem
with 1 million states in just over an hour, which is a major
improvement over the state-of-the-art.

For comparison purposes, we implemented another heuris-
tic approach. In this approach, the group of targets which
maximize the immediate joint reward are selected for detec-
tion in each state, instead of the ones which maximize the
marginal gain. Clearly, this is suboptimal as it completely
disregards the sequential and stochastic nature of eMMDPs.
For randomly generated instances, as expected, LGM always
produces better value than this heuristic. The gain in solution
quality provided by LGM varies due to the random nature of
these experiments. On average, LGM provided 20-30% gain,
and in many instances it nearly doubled the heuristic value on
the 11-Helix domain.

5 Conclusion
Sensor networks often require coordination of several sensors
to detect and identify target phenomena such as weather con-
ditions. As the size of these networks grow, the complexity of
coordinating the sensors and the sequential nature of the deci-
sion process makes it hard to achieve good performance. We
present a formal framework, eMMDP, to study the general
problem of outbreak detection and showed that it is NP-Hard.
The main contributions of this work are: (1) showing that
eMMDPs exhibit submodularity, and (2) establishing their
connection with matroids to provide a simple, principled ap-
proximation algorithm for solving them. The approximation
algorithm provides strong theoretical guarantee of factor-2 in
the worst-case. Using submodularity we also provided much
tighter online bound for any eMMDP algorithm and use it to
show that LGM produces near-optimal policies.

To improve the scalability of the algorithm, a key step
was reformulated as a constraint optimization problem. This
made the complexity linear in the number of agents and expo-
nential only in the induced tree-width of the interaction graph,
which is often much smaller than the number of agents.

Matroids and submodularity are very general concepts that
are likely to be useful in other contexts and help develop
practical approximation algorithms. For example, any MDP
and some classes of decentralized MDPs (such as transition-
independent DEC-MDPs) can be easily modeled as a parti-

tion matroid. Identifying domains that exhibit submodularity
for these classes will allow a straightforward application of
LGM and provide efficient approximation with similar strong
theoretical guarantees.

Acknowledgments
This work was funded in part by the National Science Foun-
dation under grant IIS-0812149 and by the Air Force Office
of Scientific Research under grant FA9550-08-1-0181.

References
[Becker, 2006] R. Becker. Exploiting Structure in Decentralized

Markov Decision Processes. PhD thesis, University of Mas-
sachusetts Amherst, 2006.

[Bernstein et al., 2002] D. S. Bernstein, R. Givan, N. Immerman,
and S. Zilberstein. The complexity of decentralized control
of Markov decision processes. Mathematics of Operations Re-
search, 27:819–840, 2002.

[Boutilier, 1999] C. Boutilier. Sequential optimality and coordina-
tion in multiagent systems. In IJCAI, pages 478–485, 1999.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence, 113(1-2):41–85, 1999.

[Fisher et al., 1978] M. L. Fisher, G. Nemhauser, and L. A. Wolsey.
An analysis of approximations for maximizing submodular set
functions-II. Mathematical Programming Study, 8:73–87, 1978.

[Goundan and Schulz, 2007] P. R. Goundan and A. S. Schulz. Re-
visiting the greedy approach to submodular set function maxi-
mization. In Optimization online, 2007.

[Guestrin et al., 2001] C. Guestrin, D. Koller, and R. Parr. Multia-
gent planning with factored MDPs. In NIPS, pages 1523–1530,
2001.

[Kumar and Zilberstein, 2009] Akshat Kumar and Shlomo Zilber-
stein. Constraint-based dynamic programming for decentralized
POMDPs with structured interactions. In AAMAS, 2009.

[Leskovec et al., 2007] Jure Leskovec, Andreas Krause, Chris-
tos Faloutsos Carlos Guestrin and, Jeanne VanBriesen, and Na-
talie Glance. Cost-effective outbreak detection in networks. In
KDD, pages 420–429, 2007.

[Lesser et al., 2003] V. Lesser, M. Tambe, and C. L. Ortiz, editors.
Distributed Sensor Networks: A Multiagent Perspective. Kluwer
Academic Publishers, Norwell, MA, USA, 2003.

[Manfredi and Kurose, 2007] V. Manfredi and J. Kurose. Scan
strategies for adaptive meteorological radars. In NIPS, pages
993–1000, 2007.

[Nair et al., 2005] R. Nair, P. Varakantham, M. Tambe, and
M. Yokoo. Networked distributed POMDPs: A synthesis of dis-
tributed constraint optimization and POMDPs. In AAAI, pages
133–139, 2005.

[Ostfeld et al., 2006] A. Ostfeld, J. G. Uber, and E. Salomons. Bat-
tle of water sensor networks: : A design challenge for engineers
and algorithms. In WDSA, 2006.

[Pepyne et al., 2008] D. Pepyne, D. Westbrook, B. Philips,
E. Lyons, M. Zink, and J. Kurose. Distributed collaborative adap-
tive sensor networks for remote sensing applications. In Ameri-
can Control Conference (ACC), pages 4167–4172, 2008.

[Petcu and Faltings, 2005] Adrian Petcu and Boi Faltings. DPOP:
A scalable method for multiagent constraint optimization. In IJ-
CAI, pages 266–271, 2005.

