Anytime Planning for Decentralized POMDPs using Expectation Maximization

Akshat Kumar and Shlomo Zilberstein. Anytime Planning for Decentralized POMDPs using Expectation Maximization. Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI), 294-301, Catalina Island, California, 2010.

Abstract

Decentralized POMDPs provide an expressive framework for multi-agent sequential decision making. While finite-horizon DEC-POMDPs have enjoyed significant success, progress remains slow for the infinite-horizon case mainly due to the inherent complexity of optimizing stochastic controllers representing agent policies. We present a promising new class of algorithms for the infinite-horizon case, which recasts the optimization problem as inference in a mixture of DBNs. An attractive feature of this approach is the straightforward adoption of existing inference techniques in DBNs for solving DEC-POMDPs and supporting richer representations such as factored or continuous states and actions. We also derive the Expectation Maximization (EM) algorithm to optimize the joint policy represented as DBNs. Experiments on benchmark domains show that EM compares favorably against the state-of-the-art solvers.

Bibtex entry:

@inproceedings{KZuai10,
  author	= {Akshat Kumar and Shlomo Zilberstein},
  title		= {Anytime Planning for Decentralized {POMDP}s using 
                   Expectation Maximization},
  booktitle     = {Proceedings of the Twenty-Sixth Conference on Uncertainty in 
		   Artificial Intelligence},
  year		= {2010},
  pages		= {294-301},
  address       = {Catalina Island, California},
  url		= {http://rbr.cs.umass.edu/shlomo/papers/KZuai10.html}
}

shlomo@cs.umass.edu
UMass Amherst