Optimal Scheduling of Dynamic Progressive Processing
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Abstract. Progressive processing allows a system to satisfy a set of
requests under time pressure by limiting the amount of processing
allocated to each task based on a predefined hierarchical task struc-
ture. It is a useful model for a variety of real-time Al tasks such as
diagnosis and planning in which it is necessary to trade-off compu-
tational resources for quality of results. This paper addresses pro-
gressive processing of information retrieval requests that are charac-
terized by high duration uncertainty associated with each computa-
tional unit and dynamic operation allowing new requests to be added
at run-time. We introduce a new approach to scheduling the process-
ing units by constructing and solving a particular Markov decision
problem. The resulting policy is an optimal schedule for the pro-
gressive processing problem. Finally, we evaluate the technique and
show that it offers a significant improvement over existing heuristic
scheduling techniques.

1 Introduction

Progressive processing is a resource-bounded reasoning technique
that allows a system to satisfy a set of requests under time pres-
sure [9, 10]. The technique is based on structuring each problem-
solving component as a hierarchy of levels, each of which contributes
the the overall quality of the result. The technique is suitable for a
wide range of applications such as hierarchical planning [7] and
model-based diagnosis [1]. The ability to trade off computational re-
sources against quality of results is shared by other resource-bounded
reasoning techniques such as flexible computation [5], anytime al-
gorithms [13], imprecise computation [8, 6] and design-to-time [3].
However, the distinctive hierarchical structure of progressive pro-
cessing facilitates an efficient management of computational resources.

This paper presents a novel approach to meta-level control of pro-
gressive processing. The meta-level control problem is the problem
of deciding how much computational time should be allocated to
each progressive processing unit (PRU). We assume that each PRU
is an independent problem solving task that needs to be executed.
Each PRU has a fixed number of computational components, called
levels, each of which contributes to the overall quality of the result.
The complexity of the scheduling problem is related to three major
aspects of the problem: (1) the environment is dynamic with new
PRUs being constantly added, (2) each PRU has its own deadline,
and (3) there is uncertainty regarding the duration of each problem
solving component (level). When the system cannot provide optimal
responses to all the PRUs, the task of the scheduler is to maximize
the overall quality of responses under time constraints.

In previous work, Mouaddib and Zilberstein [11] presented an in-
cremental scheduler that addresses the static version of the problem
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(afixed set of PRUS). In this paper we present a solution that can han-
dle a dynamic environment and provides better solutions (for both
the static and dynamic cases). The solution is based on formulating
the scheduling problem as a Markov Decision Process (MDP) and
finding an optimal policy (or schedule). A similar approach has been
developed by Hansen and Zilberstein [4] for control of interruptible
anytime algorithms.

We demonstrate the applicability of the MDP scheduler and eval-
uate its characteristics in the domain of intelligent information re-
trieval. Over the past few years there has been a substantial growth in
the number of real-time information servers (databanks) over the in-
ternet providing a wide range of scientific, economic, and social ser-
vices. The response to an information request involves a local search
process to find relevant information, filtering the results to adapt them
to the user needs, and preparing the final response. In an attempt
to provide high-quality information, the information providers may
need to allocate a considerable amount of computational resources
to each request. The vast majority of today’s information providers
are using a static strategy in order to prepare the response so that the
user receives the same data regardless of the load on the system and
the cost of satisfying the request. As a result, some requests must
be rejected or ignored when the server is faced with a high load. A
progressive processing approach to the problem leads to substantial
performance benefits.

The rest of this paper describes our solution in detail and eval-
uates the implementation of the scheduler. Section 2 describes the
application and how a problem instance is mapped into a progres-
sive processing unit. Section 3 shows how a progressive process-
ing problem can be mapped into a corresponding Markov decision
problem and solved using an efficient policy construction algorithm.
Section 4 describes the model of execution we used and extends the
MDP scheduling approach to the case of a dynamic environment.
Section 5 illustrates and evaluates the implementation of the sched-
uler. We conclude with a summary of the benefits of this approach
and further work.

2 Progressive processing of information requests

Many real-time Al tasks can benefit from a progressive processing
approach that addresses duration uncertainty and dynamic environ-
ments. Specifically, in the domain of real-time intelligent informa-
tion retrieval, each type of information request can be mapped into
a progressive processing unit in such a way that the lowest level of
the PRU generates a response of minimal quality and each additional
level improves the quality of the result. For example, a request for
publications in a certain area defined by keywords (e.g., anytime and
progressive processing) can be satisfied by a PRU with two levels:
the first level (that is mandatory) will search for information that in-
cludes only title, authors’ names, and link to content, while the sec-



ond level will retrieve the abstract of each article and the publication
in which it appeared and perform more intelligent filtering.

Quality improvement may be along several different dimensions:
the degree of relevance (filtering information that is not likely to be
relevant), the level of detail (adding more information to relevant data
already included in the response), and representation of the result
(e.g., as a graph rather than a table). Each level of processing can be
assigned a quality that is defined either by some subjective estimate
of its contribution to the response or by a monetary charge that the
user has to pay for quality improvement. In addition, each request
will have its own deadline that is defined either by a fixed allowable
processing time associated with the request or by the actual deadline
imposed by the consumer of the information. The latter case would
allow different users to bid for information offering to pay a certain
amount of money that depends on both the quality of the result and
meeting the deadline.

The progressive processing approach offers several obvious ad-
vantages since it allows the system to trade off computational re-
sources against the quality of the response. When operating under
high load, the system can exhibit robustness and fairness, produc-
ing a response to every request with a minimal quality. The system
can also maximize the return to the server if quality attached to each
level of processing represents monetary rewards. The rest of this sec-
tion defines the progressive processing problem representation more
formally.

The (dynamic) progressive processing task consists of a set P
={P,..., P,} of individual problems (information requests) such
that:

e P isconstructed dynamically: an old problem is removed from the
set when a response is sent, and a new problem is added to the set
when a new request arrives,

e each problem P; has a deadline D; to respect,

e each problem P; could be solved at varying levels through a pro-

gressive processing unit « based on a hierarchy of processing lev-

els {11,12,13,...,1%}, and

each processing level L is characterized by the tuple (C(L), q(L)).

C(L) is a discrete distribution of the duration of processing. This

distribution is represented by a set of tuples {(AL,p1), (A2, p»)

,o oy (AL, pi)}, where (A%, pr,) means the level L takes A¥ units

time with the probability py. ¢(L) represents the quality improve-

ment of the overall response when the level is executed.

Given P, the problem is how to construct a schedule of the PRUs
that maximizes the comprehensive utility of the system and how to
revise that schedule when new problems are added. The following
two sections answer these questions.

3 Constructing an optimal schedule

The problem of scheduling and monitoring progressive processing
can be viewed as a control problem of a Markov Decision Process
(MDP). The states of the MDP represent the current state of the
computation in terms of the unit/level being executed and the time.
The rewards associate with a state are simply the rewards for exe-
cuting each level or a unit. The two possible actions are to execute
the next level of the current unit or to move to the next processing
unit. The transition model is defined by the duration uncertainty as-
sociated with the level selected for execution. This section gives a
formal definition of the resulting MDP and describes an algorithm
for constructing an optimal policy for action selection.
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3.1 Staterepresentation

Let 2/ be a set of units {u1, us,...u,} and l{ is the j-th processing
level of unit w;. Each unit u; in the set I/ has a deadline D; for
finishing its processing. The units in Z{ are sorted by their deadlines.
A{f is a random variable representing the duration of processing level
1. We model the execution of the entire set of units as a stochastic
automaton with a finite set of world states S = {[I7,¢]lus € U}
where 0 < j < MaxLevel(u;) and ¢ > 0 represents the remaining
time to the deadline of ;. When the system is in state [/, #], the j-th
level of unit u; has been executed (since the first level is 1, j = 0 is
used to indicate the fact that no level has been executed).

3.2 Transition mode

The initial state of the MDP is [I9, D; — T where T is the current
time. This state indicates that the system is ready to start executing
the first level of the first unit. The terminal states are all the states of
the form: [14,, 0] or [I7, t] where m is the last level of the last unit n.
The former set includes states that reach the deadline of the last unit
and the latter set includes states that complete the execution of the
last unit (possibly before the deadline).

In every nonterminal state there are two possible actions: E (ex-
ecute) and M (move). The E action continues the execution of the
next level of the current PRU and the M action moves to the initial
state of the next PRU. Note that by limiting the actions to this set we
exclude the possibility of executing levels of previous PRUSs, even if
the deadlines allow such actions. In other words, we make the mono-
tonicity assumption that execution is performed PRU by PRU in the
order of their deadlines. This assumption is reasonable for applica-
tions characterized by high time pressure and rapid change such as
the information retrieval problem. In such applications, it is desirable
to report the best result generated for a particular request as soon as
the system completes its work on the request.

The transition model is a mapping from S x {E, M } to a discrete
probability distribution over S. Equations 1-3 define the transition
probabilities for a given nonterminal state [/ ¢]:

The M action is deterministic. It moves the MDP to the next pro-
cessing unit and updates the remaining time to the deadline of the
new unit.

Pr([l{41,Diy1 — Di +t] | [I/,8],M) = 1 €y

The E action is probabilistic. The actual duration defines the new
state. Equation 2 determines the transitions following successful ex-
ecution and Equation 3 determines the transition to the next PRU
when the deadline of the current PRU is reached.

Pr(*h, ¢ =8| [],1], B) = Pr(AJ* =4) ifo<t (2

Pr([l?+laDi+1 - Dl] | [l{,t],E) = P’”(AgH > t) (3)

3.3 Rewardsand the value function

Rewards are associated with each state based on the quality gain by

executing the most recent level. Recall that each level of a unit has a

predetermined quality. Therefore,
R([I7,1)) =0 (4)
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R(1E},]) = q() ®)
Now, we can define the value function (expected reward-to-go) for
nonterminal states of the MDP as follows [12]:

V(s) = R(s) + max P(s'|s,a)V(s") (6)
Using our former notation we get V ([IZ, t]) =
V([i41, Diy1 — Di + 1))

R([t}, t]) + max Y]

Pr(A{*’l > #)V([l&_l, DH—I — D))+
e, PrOMT = V([ 6 — 8]

The top expression is the value of a move action and the bottom
line is the expected value of an execute action. Note that in states of
the form [1%, ¢] it is not possible to execute a move action to the next
unit and hence their value function is simply the result of attempting
to execute the next level.

Finally, we need to define the value function for terminal states:

V([lw's 1) = R([2", 1) ®)

and

V([%,,0]) = R([t},0]) )

3.4 Optimal schedule

The above MDP is a case of a finite-horizon MDP with no loops.
This is due to the fact that every transition moves “forward” in the
state space by always incrementing the unit/level number. This class
of MDPs can be solved easily for relatively large state spaces be-
cause the value function can be calculated in one sweep of the state
space (backwards, starting with terminal states). In addition, substan-
tial computational savings result from the fact that each processing
unit has its own deadline and because many states of the MDP are
not reachable by an optimal policy. By solving the MDP we get the
following result.

Theorem 1 Given a monotonic progressive processing problem P,
the optimal policy for the corresponding MDP is an optimal schedule
for P.

Proof: Monotonicity of the progressive reasoning problem (see Sec-
tion 3.2) limits the space of possible schedules to exactly the space of
transitions of the corresponding MDP. The expected value of a given
schedule is the same as the sum of the rewards over the states of the
MDP. Therefore, the optimal policy represents an optimal schedule
for P.

We have implemented a recursive algorithm that computes the
value function and the optimal policy. Figure 1 shows a simple ex-
ample of a set of two PRUs and the resulting policy. The states of
the policy are denoted by circles on grids (one grid per PRU) with
horizontal axis showing the remaining time to the deadline of the
PRU and vertical axis showing the level and its value. Each state
includes the best action (E or M) and the expected utility (reward-to-
go). Outgoing arrows show the transitions with small circles show-
ing the probability of each transition. The duration is implicit in the
graph (by counting the number of time steps for each transition). The
dashed lines indicate termination of execution of a PRU. Transitions
marked with an F represent failure of an execute action (e.g. duration
exceeds the deadline) in which case execution of the level is aborted
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Figurel. An optimal monitoring policy with 2 PRUs.

and control is moved to the next PRU. The initial state is the bottom
left state with an expected utility of 8.0. Note that the utility of each
state is calculated using Equation 7.

4 Execution and monitoring of dynamic policies

In the previous section we presented an optimal solution to the con-
trol problem of progressive processing. However, our solution did not
address two fundamental issues. First, our system must operate in a
dynamic environment with new requests for information constantly
arriving. As a result, the existing policy needs to be revised to in-
corporate the new requests. Second, the time needed to construct the
policy is short but not negligible. To resolve the latter problem, we
assume that policy construction is done in parallel to policy execu-
tion using a dedicated processor. The rest of this section presents our
solution to the former problem of continuous operation in a dynamic
environment.

4.1 Policy revision requests

In order to handle a dynamic environment we modified the policy
construction algorithm so that it can handle revision requests. Each
revision request includes:

o T, the earliest start time of the revised policy.
o T the latest start time of the policy.
o A list of new PRUs to be added to the policy.

To and T, reflect the uncertainty regarding the time at which the
controller will start using the new policy. In general, the difference
between Tp (earliest start time) and the deadline of the last PRU (lat-
est completion time) is limited by a system parameter which is the
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largest allowable scheduling horizon. The time and space complexity
of the policy revision algorithm grows linearly with this constant.

4.2 Generating a new policy

Once a revision request is generated, the policy revision algorithm
sorts the new and existing PRUs by deadline and recomputes the pol-
icy (backwards). If there are n new PRUs and the n-th PRU (with the
latest deadline) is inserted at position z, then it is necessary to re-
compute the policy for PRUs 1... only. This observation can yield
substantial computational savings over a complete reconstruction of
the policy for the current set of PRUs. However, our first implementa-
tion simply reconstructs the policy after each revision request, since
the overall computation time of a new policy is sufficiently small.

4.3 Execution model

The execution model defines the interaction between the two paral-
lel processes of policy construction and control of the progressive
processing units. In particular, the execution model determines the
answers to the following questions:

e At what point along the execution of the current policy a request
for a revised policy will be issued?

What will be the earliest start time and the latest start time of the
request?

How will execution be controlled during the construction of the
new policy?

How will execution be altered once the new policy is available?

Progressive processing treats each level of a PRU as an atomic
unit of execution. Therefore, in our model of execution the above
decisions are made only between executing individual levels. If new
requests for information arrive, a request to revise the policy is issued
as soon as the current level terminates. We assume that the revised
policy will be ready after the execution of the next level based on
the current policy. At that time, the monitor will simply continue to
select levels based on the new policy. To guarantee consistency (i.e.,
that the monitor will be able to find the continuation state in the new
policy), we include the currently executing PRU in the revised policy.
All the terminated PRUs are deleted and the new requests are added.

Based on the above execution model, the earliest start time and the
latest start time of the request are simply the actual start time of the
current PRU (which is known). Once a revision request is issued, the
monitor makes one last decision based on the existing policy. When
the execution of the selected level terminates, the monitor continues
to make decisions based on the revised policy (and possibly issues
a new revision request). Note that it is possible for the monitor to
observe a state (l{,t) that is reachable by the old policy but is not
reachable by the new policy. In such case, the monitor selects the
move action and continues with the next PRU following the new pol-

icy.

5 Experimental evaluation

We have implemented the execution model described above and the
policy construction and revision algorithms. This section illustrates
the operation of the resulting system and examines two fundamental
questions. The first goal is to compare the performance of our ap-
proach to a baseline approach similar to the scheduling of imprecise
computation [8]. This approach is based on a strategy that assigns
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each PRU a new deadline that allows the first level of all the remain-
ing PRUs (the PRUs with the greater deadlines) to be executed based
on the worst-case duration. This strategy allows to insert the new
PRUs with all their levels and it discards levels with lowest values
when the schedule becomes infeasible. The baseline approach con-
structs a pessimistic but safe schedule using the worst-case duration.
The resulting schedule is not optimal.

The second goal of the experimental evaluation is to assess the
benefit of our approach in domain characterized by a high-level of
duration uncertainty and rapid change such as intelligent information
retrieval.

5.1 Experimental design

The information retrieval requests are specified in a rich PRU lan-
guage allowing the system to create the necessary processing units
for this application. For example, when a request for publications is
received, a PRU, named Publication-PRU, is created and instantiated
by the data of the request (e.g. area). We have collected experimental
data on the performance of both our approach and the baseline ap-
proach. The quality of result for each problem instance is the sum of
the qualities of all the levels that were executed.

We collected data by generating random problem instances while
varying two important parameters. The first parameter is the number
of the inserted new PRUs over a short time segment. This number
reflects the degree to which an approach is suitable for handling dy-
namic PRUs. The second parameter is the degree of duration uncer-
tainty measured by the standard deviation. This parameter allows us
to assess the relevance of our approach to applications characterized
by a high level of uncertainty such as information retrieval.

100 T T

Optimal Scheduler —
Base-Line Approach -o--

90 [

80

70

60

50

40

Average comprehensive quality

30

20

oF

5 6 10
Number of inserted PRUs

Figure2. Comprehensive quality with dynamic PRUs

5.2 Handling dynamic PRUs

This experiment compares the comprehensive value of our approach
and the baseline approach. We measure the value as a function of
the number of inserted new PRUSs. Problem instances (10 instances)
were generated with one PRU in the current policy. For each problem
instance, we developed 10 cases (modifying the probability distribu-
tion of durations) and we measured the average over these 10 cases.
Figure 2 shows the difference between the values of our approach
and the baseline approach over the number of inserted PRUSs.
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The figure confirms the fact that our approach leads to a substan-
tial quality gain over the baseline heuristic approach. The main rea-
son for this is that the policy that we construct covers all possible run-
time execution paths including unlikely situations (short durations)
that allow the system to execute additional processing levels. This
strategy leads to a substantial quality gain not only over the baseline
approach but also over all similar scheduling approaches that use a
single duration such as the average duration [3], the most likely du-
ration [11] or the worst-case duration [2]. Furthermore, the baseline
approach is based on a pessimistic strategy that discards all the levels
that may violate the deadline while our approach takes “risks” when
they are justified in terms of expected quality. This explains the sub-
stantially slower growth of the comprehensive quality of the baseline
approach.
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Figure3. Comprehensive quality for different degrees of uncertainty

5.3 Handling duration uncertainty

This experiment shows the value returned by our approach for differ-
ent degrees of uncertainty. The experiment assesses the suitability of
our approach to environments with high level of duration uncertainty.
Problem instances were generated with 10 PRUs and a variation of
duration uncertainty from 0% to 100%. Figure 3 shows that the com-
prehensive value (quality) is stable. Interestingly, after a short de-
cline of expected quality for low variance, quality continues to grow
with duration uncertainty. The intuitive explanation is that with high
uncertainty there is a chance for substantial time savings and our re-
active approach takes advantage of that. Of course, there is also a
chance that levels will take more time, but then our approach will
skip the least valuable units and therefore the net effect on expected
value is positive. This observation makes our approach particularly
advantageous in situation with high duration uncertainty.

6 Conclusion

This paper presents a new approach to scheduling progressive pro-
cessing units in domains characterized by real-time, dynamic oper-
ation and by duration uncertainty such as intelligent information re-
trieval. Our approach is based on formulating the scheduling problem
as a Markov decision problem and finding an optimal policy. This
approach is a major improvement over the incremental scheduler (a
local optimization approach) presented in [11]. The policy revision
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algorithm allows us to apply this approach to dynamic environments
that require response to new as well as existing problem-solving re-
quests. Experimental evaluation shows that for the progressive pro-
cessing units that we considered, the optimal scheduling approach
has significant advantages over a heuristic baseline approach. Future
directions of this work focus on a richer transition model that cap-
tures quality dependency (on the outcome of previous levels) and
quality uncertainty in addition to duration uncertainty. Another goal
of future work is to apply the technique to control a more complex
information retrieval system.
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