
Revisiting Multi-Objective MDPs with Relaxed Lexicographic Preferences

Luis Pineda and Kyle Hollins Wray and Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts Amherst
{lpineda,wray,shlomo}@cs.umass.edu

Abstract

We consider stochastic planning problems that involve mul-
tiple objectives such as minimizing task completion time
and energy consumption. These problems can be modeled as
multi-objective Markov decision processes (MOMDPs), an
extension of the widely-used MDP model to handle problems
involving multiple value functions. We focus on a subclass
of MOMDPs in which the objectives have a relaxed lexico-
graphic structure, allowing an agent to seek improvement
in a lower-priority objective when the impact on a higher-
priority objective is within some small given tolerance. We
examine the relationship between this class of problems and
constrained MDPs, showing that the latter offer an alternative
solution method with strong guarantees. We show empirically
that a recently introduced algorithm for MOMDPs may not
offer the same strong guarantees, but it does perform well in
practice.

Introduction
Many stochastic planning problems involve a trade-off be-
tween multiple, possibly competing objectives. For exam-
ple, balancing speed and safety in autonomous vehicles, or
balancing energy consumption and speed in mobile devices.
Multi-objective planning has been studied extensively in the
context of a diverse set of applications such as energy con-
servation in commercial buildings (Kwak et al. 2012), semi-
autonomous driving (Wray et al. 2015), water reservoir con-
trol (Castelletti et al. 2008) and autonomous robot explo-
ration and search (Calisi et al. 2007).

Many of these planning problems involve uncertainty and
can thus be naturally modeled as Markov decision processes
(MDPs) problems (Bertsekas and Tsitsiklis 1991). When in-
volving multiple-objectives, this leads to a class of prob-
lems known as Multi-Objective Markov Decision Processes
(MOMDPs) (White 1982).

A common approach for solving MOMDPs is to use a
scalarization function that combines all the objectives into a
single one. The resulting problem can then be solved by us-
ing single-objective methods. Unfortunately, this approach
doesn’t work well in general, since there might be multiple
Pareto optimal solutions to explore, or the proper scalariza-
tion weights are not known in advance.

On the other hand, several approaches have leveraged the
fact that many problems allow an inherent lexicographic

ordering of the objectives. For example, while driving a
semi-autonomous vehicle, the driver may wish to minimize
driving time, but also minimize the effort associated with
driving (i.e., maximize autonomous operation of the ve-
hicle) (Zilberstein 2015). Mouadibb used a strict lexico-
graphic ordering for MOMDPs (Mouaddib 2004; Wray et
al. 2015), while others explored lexicographic ordering of
value functions (Mitten 1974; Sobel 1975) using a technique
called ordinal dynamic programming, which has also been
explored within reinforcement learning (Gábor et al. 1998;
Natarajan and Tadepalli 2005).

More recently, Wray et al. (Wray et al. 2015) introduced
LMDPs, a lexicographic variant of MDPs that includes re-
laxed lexicographic preferences through the use of slack
variables. The main idea is to allow small deviations in
higher priority value functions with the hopes of obtaining
large improvements in the secondary ones. The authors also
introduced a novel extension of Value Iteration, LVI, to solve
LMDPs using slack.

In this paper we offer a deeper study of LMDPs, by intro-
ducing a more rigorous problem formulation, and showing
that LVI can be interpreted as an efficient solution method
for a variant of LMDPs where the decision-making is indif-
ferent to local state-specific deviations in value. We also ex-
plore connections between LMDP and Constrained MDPs
(Altman 1999), and use these to study the computational
complexity of solving LMDPs. We also propose a simple
CMDP-based algorithm to obtain optimal randomized poli-
cies for LMDPs.

Problem Definition
A multi-objective Markov decision process
(MOMDP) (Wray et al. 2015) is a tuple xS,A, T ,Cy,
where:

• S is a finite set of states.

• A is a finite set of actions.

• T : S ˆ A ˆ S Ñ r0, 1s is a state transition function
that specifies the probability T ps1|s, aq of ending in state
s1 when action a is taken in state s.

• C is a vector rC1ps, aq, ..., Ckps, aqs that specifies the
cost of taking action a in state s under k different reward
functions Ci : S ˆAÑ R, for i P K “ t1, ..., ku.



We focus on infinite horizon MOMDP, with a discount
factor γ P r0, 1q. Additionally, without loss of generality, we
will consider problems in which an initial state s0 is given.
A solution to a MOMDP is a policy π : S Ñ A that maps
states to actions. The total expected cost of a policy π over
cost function i is defined as

V πi ps0q “ E

«

t“8
ÿ

t“0

γtCipst, πpstqq; s0

ff

(1)

where E represents expectation, and V πi is a value function
V πi : S Ñ R that represents the expected cumulative cost
obtained by following policy π starting at state s. We denote
the vector of all total expected cumulative costs, starting in
s0, as Vπ

s0 “ rV
π
1 ps0q V

π
2 ps0q ... V

π
k ps0qs.

In the presence of multiple cost functions there are many
possible ways to define optimality of a solution. Common
examples are minimizing some linear combination of the
given cost functions or finding Pareto-optimal solutions. In
an LMDP the reward functions C1, C2, ..., Ck are ordered
according to a lexicographic preference. That is, a solution
to an LMDP minimizes the expected cumulative cost, fol-
lowing a lexicographic preference over the cost functions.
Specifically, this means that @i, j P K s.t. i ă j, an arbi-
trarily small improvement in Ci is preferred to an arbitrarily
large improvement in Cj .

Given this lexicographic preference, we can compare the
quality of any two policies π1 and π2 using the following
operator:

Vπ1
s0 ą Vπ2

s0 ô DjPK@iăj ,
`

V π1
j ps0q ă V π2

j ps0q
˘

^
`

V π1
i ps0q “ V π2

i ps0q
˘

(2)

When neither Vπ1
s0 ą Vπ2

s0 nor Vπ2
s0 ą Vπ1

s0 , we say that
the policies are equally good (equally preferred). The ą op-
erator imposes a partial order among policies. Hence an op-
timal solution to an LMDP (without slack) is a policy π˚

such that there is no policy π s.t. Vπ
s0 ą Vπ˚

s0 . We use the
notation V˚

s0 “ rV
˚
1 ps0q V

˚
2 ps0q ... V

˚
k ps0qs to refer to the

vector of optimal expected costs.

Relaxed lexicographic preferences
We can relax the strong lexicographic preference pre-
sented above by using slack variables (Wray et al.
2015). Concretely, we introduce a vector of slack variables
δ “ rδ1, ..., δks such that @i P K, δi ě 0. The slack δi rep-
resents how much we are willing to compromise with re-
spect to V ˚i ps0q in order to potentially improve the value of
Vi`1ps0q. Let Π denote the set of all possible policies for a
given LMDP, L. Then, starting with ΠL

0 “ Π, we define the
relaxed preference as as follows:

V̂i`1ps0q “ min
πPΠL

i

V πi`1ps0q (3)

ΠL
i`1 “ tπ P ΠL

i |V
π
i`1ps0q ď V̂i`1ps0q ` δiu (4)

with an optimal policy for a LMDP defined as any policy
π˚ P ΠL

k . In the rest of the paper we use the term LMDP to
refers to problems that include such relaxed lexicographic
preference.

Algorithm 1: A polynomial-time transformation from
CMDPs to LMDPs

cmdp2lmdp
input : CMDP C “ xS,A, T ,C,Ty
output: π

1 for iÐ k, k ´ 1, . . . , 1 do
2 C̄ Ð rCk Ck´1 . . . Cis
3 for j “ k, . . . , i` 1 do
4 ∆j Ð Tj ´ Ṽ

jps0q

5 δ̄ Ð r∆k ∆k´1 . . . ∆i`1 0s

6 Create LMDP Li Ð xS,A, T , C̄y
7 Solve Li with slack δ̄ to obtain πLi

P ΠLi

k´i`1

and cost rV L
k ps0q V

L
k´1ps0q . . . Ṽ ips0qs

8 if Ṽ ips0q ą Ti then
9 return no solution

10 π Ð πLi

Connections with Constrained MDPs
In this section we establish some connections between solv-
ing LMDPs and a class of problems know as Constrained
MDPs (CMDPs) (Altman 1999), and use these connections
to assert some properties about the computational complex-
ity of LMDPs. A CMDP is a MOMDP in which some of the
cost functions are given specific budget limits, referred to as
targets. In particular, a solution to a CMDP is a policy π that
satisfies:

π “ arg min
πPΠ0

V π1 ps0q

s.t. V πj ps0q ď Tj j “ 2, . . . , k

As it turns out, CMDPs and LMDPs have important com-
putational connections, as shown by Algorithm 1, which de-
scribes a procedure for solving CMDPs as a sequence of k
LMDPs. We use the notation T to represent the vector of
targets for the CMDP.

The algorithm proceeds by iterating over the constraints in
the CMDP in reverse order, and creating an LMDP Li in ev-
ery iteration i (line 6). The LMDPs are designed so that the
optimal policy for Li satisfies constraints i, i`1, ..., k in the
original CMDP. This is done by setting the slack vector in
lines 3-5 appropriately, using the minimum values obtained
for Vi`1, . . . , Vk to compute how much slack is necessary
to maintain the constraint targets; the solution of LMDP Li
then minimizes Vi, while respecting targets Ti`1, . . . , Tk.
The value Ṽ jps0q used to compute ∆j (line 4) is obtained
from the solution to Lj (line 7) as the value that minimizes
Vjps0q subject to all the previous constraints. Note that even
tough the value Ṽ kps0q is never computed, this is not an is-
sue, since in the first iteration line 4 is skipped.

Proposition 1. When Algorithm 1 terminates, policy π is an
optimal solution to the input problem C.

Proof. We start by establishing the following inductive



property: at the end of the for loop in lines 1-10 we have

@1ďjďk´i`1, ΠLi

j “

k
č

`“k´j`1

ΠC
`

where ΠC
` represents the set of all policies π1 such that

V π
1

` ps0q ď T`. The base case is i “ k, which is trivial given
that Lk in line 6 just minimizes Ck. Consider the solution
of Li for any i ă k. Note that Li is exactly the same as
Li`1, except for three changes: the addition of cost func-
tion Ci at the end of C̄, changing δi`1 from 0 to ∆i`1,
and appending 0 at the end of δ. Therefore, we have that
@1ďjďk´i´1, ΠLi

j “ ΠLi`1

j (see Eq. 4). Using the defini-
tion of ∆i`1 and Eq. 4, we get

ΠLi

k´i “ tπ
1 P ΠLi`1

k´i´1|V
π1

i`1ps0q ď Ti`1u

Putting this definition and the inductive property together
we get ΠL`

k´i “
Şk
j“i`1 ΠC

j . Therefore, since the solution
of Li minimizes cost function Ci with no slack, we have
ΠL`

k´i`1 “
Şk
j“i ΠC

j , which proves the inductive property.
We can now complete the proof, by using the inductive prop-
erty with i “ 1 and noting that the last step just minimizes
for C1, as in the definition of the CMDP.

Algorithm 1 allows us to establish some properties about
the computational complexity of LMDPs. As it turns out, it’s
been shown that finding an optimal deterministic policy for a
CMDP is an NP-hard problem in the maximum of the num-
ber of states, number of actions, or number of constraints, k
(Feinberg 2000). Thus, we can establish the following result
about the computational complexity of solving LMDPs.
Lemma 1. Finding an optimal deterministic policy for a
LMDP is NP-hard in the maximum of the number of states,
number of actions or number of cost functions.

Proof. The proof follows directly from the complexity of
CMDPs and the definition of Algorithm 1, since having an
algorithm for solving LMDPs in polynomial time would im-
ply a polynomial-time algorithm for solving CMDPs.

Note that Lemma 1 implies that finding optimal determin-
istic policies for LMDPs is much harder than finding such
policies for regular MDPs, which can be done in polynomial
time in the number of states (Papadimitriou and Tsitsiklis
1987). Interestingly, we can obtain a polynomial-time algo-
rithm for finding an optimal randomized policy for a LMDP
by using a reverse transformation to the one shown in Algo-
rithm 1. This idea is illustrated in Algorithm 2. We call this
approach CM-Map, for Constrained MDP Mapping.

Comparison with LVI
Wray et al. [2015] introduced an algorithm called LVI (Lex-
icographic Value Iteration) for solving a variant of LMDPs
based on Value Iteration. Interestingly, LVI could provide
approximate solutions to solving LMDPs with relaxed lexi-
cographic preferences of the type considered in this paper.

We begin the comparison by describing the main ideas be-
hind LVI. The LVI algorithm works iteratively, in increasing

Algorithm 2: CM-Map: A CMDP-based algorithm for
solving LMDPs with relaxed preferences.

lmdp2cmdp
input : LMDP L “ xS,A, T ,Cy
output: π

1 T Ð rs

2 for i “ 1, ..., k do
3 C̄ Ð rCi, C1, ¨ ¨ ¨ , Ci´1s

4 Create CMDP C Ð xS,A, T , C̄,Ty
5 Solve C to obtain policy π
6 ti Ð V πi ps0q ` δi
7 T Ð rT tis

order of lexicographic preference, by using Value Iteration
to solve for a single cost function at a time. After finding
an optimal policy for the i-th cost function, the algorithm
prunes the set of available actions at each state s P S so
that a bounded deviation from optimal is guaranteed, thus
maintaining a relaxed lexicographic preference. Note that
this pruning of actions implicitly establishes a new space of
policies, which we denote Π̂i, over which the optimization
for cost function i` 1 will be performed.

Concretely, LVI prunes actions according to:

Ai`1psq “ ta P Aipsq|Q
Π̂i´1

i ps, aq ď V
Π̂i´1

i psq ` ηiu (5)

where ηi is a local slack term that relaxes the lexicographic
preferences with respect to all possible actions that can be
taken in state s. We use the notation V Π̂i

i to represent the
best possible expected cumulative cost that can be obtained
in state s by following policies in Π̂i. Similarly, the term
QΠ̂i
i ps, aq represents the expected cost of taking action a in

state s and following the best policy in Π̂i afterward. The set
Π̂i is defined as Π̂i Ð

Ś

sPS Ai`1, where initiallyA1 Ð A.
Essentially, the slack ηi is a one-step relaxation of the lex-
icographic preference. Note that, for all states s P S, the
algorithm is allowed to deviate from the optimal value up to
a slack of ηi, without accounting from deviation in the rest
of states. Therefore, the final policy π returned by LVI need

not satisfy V πi psq ă V
Π̂i´1

i psq ` ηi, since deviations accu-
mulate.

The authors of LVI address this issue by establishing the
following proposition:
Proposition 2. (Wray et al. 2015) If ηi “ p1 ´ γqδi, then

V πi psq ď V
Π̂i´1

i psq ` δi for all states s P S.
Note that an implication of this proposition is that, if

Π̂i´1 “ ΠL
i´1, where ΠL

i is as defined in Equation 2, then
Π̂i Ď ΠL

i . In other words, LVI doesn’t break any lexico-
graphic preferences already implied by ΠL

i´1.
Unfortunately, the local slack principle used by LVI offers

no guarantees about the quality of the policy set Π̂i over
the pi ` 1q-th cost function, and, in fact, V Π̂i

i`1psq could be

arbitrarily worse than V ΠL
i

i`1psq.



Start

[2.5,1][2,X]

Goal

Figure 1: Example where LVI results in an arbitrarily large
increase in cost with respect to the optimal value respecting
the relaxed lexicographic preference.

This situation, where pruning actions according to the lo-
cal slack rule leads to bad consequences globally, is illus-
trated in Figure 1. Using δ “ 1 and γ “ 0.9, we get η “ 0.1
and therefore action right will be pruned by LVI. But note
that the resulting value V2ps0q “ X can be arbitrarily worse
than the optimal value for V2 within the specified slack for
V1. The reason is that, to be able to maintain the lexico-
graphic preference, LVI prunes the policy space too harshly.

Despite these lack of guarantees with respect to the
LMDP problem with lexicographic preferences, LVI has the
advantage of being able to find deterministic policies rela-
tively quickly. Therefore, it can be seen as an efficient so-
lution method for a variant of LMDP where the decision-
making is instead indifferent to local state-specific devia-
tions in value. When applied to the stricter version of the
problem considered in this paper, LVI provides a fast ap-
proximation method, which is important, given the complex-
ity results established in Lemma 1. Moreover, as shown in
the experimental results section, by ignoring the strong slack
bound proposed in Proposition 2, we can interpret the vector
of local slacks, η “ rη1 ¨ ¨ ¨ ηks, as a set of parameters that
can be tuned to achieve a result closer to optimal.

Experimental Results
In this section we compare the CMDP-based solution ap-
proach described above, CM-Map, with LVI for the solution
of the LMDP problem. As a testbed we use a multi-objective
variant of the Racetrack Problem, a widely-used reinforce-
ment learning benchmark (Sutton and Barto 1998).

The racetrack problem involves a simulation of a race car
on a discrete track of some length and shape, where a start-
ing line has been drawn on one end and a finish line on
the opposite end of the track. The state of the car is deter-
mined by its location and its two-dimensional velocity. The
car can change its speed in each of the two dimensions by
at most 1 unit, resulting in a total of nine possible actions.
After applying an action there is a probability ps that the
resulting acceleration is zero, simulating failed attempts to

Figure 2: Example of a race track used in the experiments.

Table 1: Performance of CM-Map and LVI on a racetrack
with 14,271 states (Track1).

δ V1ps0q V2ps0q V3ps0q Time (sec.)
Without any slack

N/A 13.73 24.25 28.51 N/A
CM-Map

1.0 14.46 22.16 16.77 209
2.0 14.87 23.25 15.32 140
5.0 14.91 26.19 15.03 170

LVI
1.0 13.74 23.90 28.16 8
2.0 13.74 23.88 28.07 8
5.0 13.74 23.78 30.77 8

accelerate/decelerate because of unpredictably slipping on
the track.

Our multi-objective variant of the racetrack problem in-
volves three cost functions. The first is the usual racetrack
cost function, which minimizes the number of steps to reach
the goal. The second objective penalizes changes in direc-
tion, and the third tries to avoid a set of pre-defined “unsafe”
locations. An example of a racetrack used in our experiments
is shown in Figure 2, where the unsafe locations are repre-
sented by gray dots.

Tables 1 and 2 show the results of applying CM-Map
and LVI to two racetrack problems of different shapes and
sizes. We experimented with different values of δ and in all
cases used γ “ 0.99. For CM-Map we solved the gener-
ated CMDPs using the Gurobi linear programming solver
(Gurobi Optimization, Inc. 2015). For LVI, we used the
value of η suggested by Proposition 2.

As expected, increasing the value of δ leads to CM-Map
favoring lower priority cost functions. In both problems, us-
ing a slack of δ “ 1 already leads to significant gains in
the second and third cost functions with respect to using
no slack at all. In general, the significance of these gains
will obviously be problem-dependent. However, in all cases
these values will be guaranteed to be the optimal values of
the lower priority cost functions, within the desired slack
of the higher priority ones. Note that in these experiments,
increasing the slack δ1 doesn’t necessarily translate into a
lower cost V2, since we are also increasing δ2. This is why
CM-Map produces higher values for V2 when δ “ 5 is used.



Table 2: Performance of CM-Map and LVI on a racetrack
with 24,602 states (Track2).

δ V1ps0q V2ps0q V3ps0q Time (sec.)
Without any slack

N/A 19.64 55.39 43.86 N/A
CM-Map

1.0 20.66 42.31 34.73 3,611
2.0 21.64 40.58 33.61 827
5.0 21.69 42.98 31.42 732

LVI
1.0 19.62 55.34 43.82 16
2.0 19.61 55.31 43.81 16
5.0 19.64 54.64 44.02 16

Table 3: Performance of LVI on Track1 using different val-
ues of η.

η V1ps0q V2ps0q V3ps0q Time (sec.)
0.5 14.04 21.69 21.57 9
1.0 14.24 21.77 19.08 30
2.0 14.49 23.59 16.99 32
5.0 14.94 28.08 15.16 40

On the other hand, LVI failed to make any significant
change in costs, with respect to using no slack, when using
the values of η suggested by Proposition 2. As mentioned be-
fore, the reason for this is the strong bound on the local slack
needed to guarantee that the slack δ is respected. However,
note that the running time for LVI is orders of magnitude
faster than CM-Map.

To leverage the faster computational cost of LVI, we used
η as a free parameter that can be tuned to vary the trade-offs
between optimizing higher and lower priority functions. We
evaluated LVI on the same two race tracks using values of
η of 0.5, 1, 2 and 5, which correspond to values of δ equal
to 50, 100, 200 and 500, respectively. The results of these
experiments are shown in Tables 3 and 4. Note that increas-
ing the value of η allowed LVI to obtain lower values for
the second and third cost functions, while still maintaining
values of the first cost function close to optimal. Moreover,
in most cases the algorithm still ran several times faster than
CM-Map.

Conclusion
In this paper we introduce a rigorous formulation of the
MDP problem with relaxed lexicographic preferences. The
problem is defined as a sequential problem that increasingly
restricts the set of available policies over which optimization
will be performed. For each cost function Vi, in decreasing
order of preference, the set of policies is restricted to the
subset of the previous set of policies whose expected cost is
within a slack of the optimal value Vi in this set.

We explore connections between this problem formula-
tion and Constrained MDPs. In particular, we show that both
problems are computationally equivalent, and use this result

Table 4: Performance of LVI on Track2 using different val-
ues of η.

η V1ps0q V2ps0q V3ps0q Time (sec.)
0.5 21.59 39.36 58.76 21
1.0 21.34 39.56 39.14 629
2.0 21.01 43.03 34.05 749
5.0 20.83 47.04 32.57 916

to show that computing optimal deterministic policies for
LMDPs is NP-hard in the maximum of the number of states,
number of actions and number of cost functions. We also use
these connections to introduce C-Map, a CMDP-based algo-
rithm for finding optimal randomized policies for LMDPs.

We also offer a deeper study of the Lexicographic Value
Iteration (LVI) algorithm proposed by Wray et al. (Wray et
al. 2015) and show that it can be seen as tailored for a vari-
ant of LMDP where the decision maker is indifferent to lo-
cal state-specific deviations in value. We compare its per-
formance with C-Map and observe that it can produce good
results with much faster computational time than C-Map, al-
though without the same theoretical guarantees.

In future work we want to leverage the insight gained by
this novel formulation in order to devise fast approximation
algorithms to solve the LMDP problem. We are particular in-
terested in developing other extensions of value iteration, as
well as algorithms based on heuristic search, such as LAO*
(Hansen and Zilberstein 1998; 2001).

Acknowledgments
This work was supported in part by the National Science
Foundation grant number IIS-1405550.

References
Eitan Altman. Constrained Markov Decision Processes.
Stochastic Modeling Series. Taylor & Francis, 1999.
Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research, 16(3):580–595, 1991.
Daniele Calisi, Alessandro Farinelli, Luca Iocchi, and
Daniele Nardi. Multi-objective exploration and search for
autonomous rescue robots. Journal of Field Robotics, 24(8-
9):763–777, 2007.
Andrea Castelletti, Francesca Pianosi, and Rodolfo Soncini-
Sessa. Water reservoir control under economic, social and
environmental constraints. Automatica, 44(6):1595–1607,
2008.
Eugene A Feinberg. Constrained discounted markov deci-
sion processes and hamiltonian cycles. Mathematics of Op-
erations Research, 25(1):130–140, 2000.
Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári. Multi-
criteria reinforcement learning. In Proceedings of the 15th
International Conference on Machine Learning, pages 197–
205, 1998.
Gurobi Optimization, Inc. Gurobi Optimizer Reference
Manual. http://www.gurobi.com, 2015.



Eric A. Hansen and Shlomo Zilberstein. Heuristic search in
cyclic AND/OR graphs. In Proceedings of the 15th National
Conference on Artificial Intelligence, pages 412–418, 1998.
Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2):35–62, 2001.
Jun-young Kwak, Pradeep Varakantham, Rajiv Mah-
eswaran, Milind Tambe, Farrokh Jazizadeh, Geoffrey
Kavulya, Laura Klein, Burcin Becerik-Gerber, Timothy
Hayes, and Wendy Wood. SAVES: A sustainable multi-
agent application to conserve building energy considering
occupants. In Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems, pages
21–28, 2012.
L. G. Mitten. Preference order dynamic programming. Man-
agement Science, 21(1):43–46, 1974.
Abdel-Illah Mouaddib. Multi-objective decision-theoretic
path planning. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2814–2819,
2004.
Sriraam Natarajan and Prasad Tadepalli. Dynamic pref-
erences in multi-criteria reinforcement learning. In Pro-

ceedings of the 22nd International Conference on Machine
learning, pages 601–608, 2005.
Christos H. Papadimitriou and John N. Tsitsiklis. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research, 12(3):441–450, 1987.
Matthew J. Sobel. Ordinal dynamic programming. Manage-
ment science, 21(9):967–975, 1975.
Richard S. Sutton and Andrew G. Barto. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA, USA,
1998.
D. J. White. Multi-objective infinite-horizon discounted
Markov decision processes. Journal of mathematical analy-
sis and applications, 89(2):639–647, 1982.
Kyle Hollins Wray, Shlomo Zilberstein, and Abdel-Illah
Mouaddib. Multi-objective MDPs with conditional lexi-
cographic reward preferences. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence, pages 3418–
3424, 2015.
Shlomo Zilberstein. Building strong semi-autonomous sys-
tems. In Proceedings of the 29th AAAI Conference on Arti-
ficial Intelligence, pages 4088–4092, 2015.


