Ann Math Artif Intell (2006) 48:85-106
DOI 10.1007/510472-007-9050-9

Learning parallel portfolios of algorithms

Marek Petrik - Shlomo Zilberstein

Published online: 25 May 2007
© Springer Science + Business Media B.V. 2007

Abstract A wide range of combinatorial optimization algorithms have been devel-
oped for complex reasoning tasks. Frequently, no single algorithm outperforms all
the others. This has raised interest in leveraging the performance of a collection
of algorithms to improve performance. We show how to accomplish this using a
Parallel Portfolio of Algorithms (PPA). A PPA is a collection of diverse algorithms
for solving a single problem, all running concurrently on a single processor until
a solution is produced. The performance of the portfolio may be controlled by
assigning different shares of processor time to each algorithm. We present an
effective method for finding a PPA in which the share of processor time allocated
to each algorithm is fixed. Finding the optimal static schedule is shown to be an
NP-complete problem for a general class of utility functions. We present bounds on
the performance of the PPA over random instances and evaluate the performance
empirically on a collection of 23 state-of-the-art SAT algorithms. The results show
significant performance gains over the fastest individual algorithm in the collection.

Keywords Algorithm portfolios - Resource bounded reasoning -
Combinatorial optimization

Mathematics Subject Classifications (2000) 68T05 - 68T20

1 Introduction

Research advances in search and automated reasoning techniques have produced a
wide range of different algorithms for hard decision problems. In most cases, there is

M. Petrik - S. Zilberstein ()
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
e-mail: shlomo@cs.umass.edu

M. Petrik
e-mail: petrik@cs.umass.edu

@ Springer

86 M. Petrik, S. Zilberstein

no single algorithm that is superior to all others on all instances. A good example is
satisfiability (SAT), for which many algorithms have been developed, with no single
algorithm that dominates the performance of all the others. SAT is particularly in-
teresting because it is not representing a single application; it is a prominent problem
in both theoretical and applied computer science with many important applications
in artificial intelligence, operation research, electronic design and verification.

The objective of this work is to leverage a collection of algorithms to produce a
method that outperforms any single algorithm in the collection when applied to some
class of problem instances. To illustrate the motivation for this work, Fig. 1 shows
the relative performance of two SAT algorithms from the Sat-Ex collection [13]. It
is obvious that each one of the algorithms outperforms the other on a significant
number of instances. The performance difference varies over 10,000 seconds—the
time bound used in the original data-set for solving each instance. We propose a
combination of algorithms, which takes advantage of this fact. We do not assume
to have any prior information about the performance of each algorithm (such as
a performance profile); instead, we gather the necessary performance information
from a sample test set.

A Parallel Portfolio of Algorithms (PPA) is thus a collection of algorithms for
solving a certain type of problem, such as SAT. When a particular problem instance
is given, all the algorithms are launched and execute in an interleaved manner on a
single processor. In practice, many computational resources may act as bottlenecks,
such as processor time, memory space, or communication throughput. We focus
in this paper only on processor time as the limiting factor of the computation.
Thus, CPU time is distributed among the algorithms so as to optimize the expected
performance (of the entire portfolio) on a set of training instances.

In the interest of clarity, we focus on the application of this framework to decision
problems, but it can be easily extended to optimization problems. In the case of
decision problems, the PPA is designed to minimize the expected time needed to
solve problem instances. In the case of optimization problems, the available time is
constant and the PPA is designed to maximize the expected quality of the solution.
To fit into this framework, the individual algorithms must be preemptable without a
significant overhead (i.e., it is assumed that they can be stopped and resumed with
negligible overhead). Furthermore, optimization algorithms must have the anytime

Fig. 1 Number of SAT 25 ‘
instances for various]
difference in runtimes of 2
algorithms. Runtimes in 20
seconds are denoted as 1, for
egsatz and 7, for zChaff S 15}]
2 10}
5 L
oo e
—10,000 -5,000 0 5,000 10,000

T —T
a

@ Springer

Learning parallel portfolios of algorithms 87

property [3, 14]. Anytime algorithms may be interrupted before their termination
and return an approximate solution. The quality of the solution typically improves
with computation time.

Prior knowledge of the algorithms’ performance on instances may enhance the
performance of a portfolio by always using the most suitable algorithm for each
instance. But it is usually impossible to have perfect prior knowledge without actually
solving the instance. However, there have been some research efforts to estimate
the performance by the similarity of the input instance to instances with known
performance. This way, easily computable features of the problem instance may help
to approximately determine the performance of each algorithm on that instance.
Finding informative features that always enhance the prediction of performance is
a hard problem. It is generally known as algorithm portfolio selection [5, 8].

In related work, Gomes and Selman [5] provide an empirical evaluation of com-
posing randomized search algorithms on multiple processors into portfolios. Their
results indicate that it may be beneficial to combine randomized algorithms with high
variance and run them in parallel. For a single processor, they found random restarts
to produce very good results. A successful algorithm portfolio selection approach
was also taken by [8]. It is based, like many other approaches, on using a training set
of problem instances to estimate a probabilistic model of the performance. Statistical
regression is used to determine the best algorithm for instances of combinatorial
auction winner determination. Unlike previous approaches that use experimental
methods to determine the composition of the portfolio, our approach defines a
formal model for the problem, and analyzes the theoretical properties of the model
and solution techniques.

The rest of the paper is organized as follows. Section 2 defines the framework
used to model algorithm portfolios and their performance. In Section 3, we present
an algorithm for finding a locally optimal PPA for a specified set of algorithms. A
globally optimal algorithm and computational complexity bounds are described in
Section 4 and Section 5. The following section, Section 6, presents basic theoretical
generalization bounds of the approach. Finally, in Section 7 we demonstrate the
effectiveness of this approach by applying it to a collection of 23 state-of-the-art
Satisfiability (SAT) algorithms.

2 Framework

In this section we develop a general framework for creating parallel portfolios of
algorithms. As indicated above, we develop the framework specifically for decision
algorithms, but the extension to optimization algorithms is straightforward. We
mention briefly the necessary modifications throughout the paper.

A problem domain is a set of all possible problem instances together with a
probability distribution over them, denoted as X'. The probability distribution of
encountering the instances is stationary. An algorithm is a function that maps an
input problem instance to a solution. Notice that the algorithms are assumed to be
deterministic.

To preserve flexibility of the framework, we use the notion of utility that corre-
sponds to the performance of an algorithm on an instance. For standard decision
algorithms, it depends on the computation time; for optimization algorithms, it
depends on the quality of the solution within a certain amount of time. Thus the

@ Springer

88 M. Petrik, S. Zilberstein

utility function is defined as u : X — R. The PPA performance will be optimized
with respect to a training set I of instances, randomly drawn from the domain X.
The following definitions assume instances from the set X', which may be extremely
large or infinite. However, the proposed schedule optimization algorithms optimize
the portfolio with regard to utility on the training set /.

The performance of a PPA depends on the processor share that is assigned to each
algorithm. The share assigned to an algorithm at each point of time is determined by
its resource allocation function, as defined below. Resource allocation functions for
all algorithms in the portfolio comprise the schedule. In this paper we consider only
constant allocation functions, but they can be extended to a wider class of functions,
as shown in [12].

Definition 2.1 The resource allocation function (RAF) for an algorithm a is a con-
stant from the interval [0, 1] that defines its share of the processor time.

We now extend the notion of utility to be determined not only by an algorithm and
an instance, but also by its resource allocation function. The precise function depends
on the actual algorithm.

Definition 2.2 The resource utility function of algorithm a is: u, : [0, 1] x X — R.

Definition 2.3 A Static Parallel Portfolio of Algorithms (SPPA) P is a tuple (A, s),
where A is a finite list of algorithms with resource utility functions and s is a schedule,
that is a vector of resource allocations for algorithms from A.

The resource allocation to the jth algorithm of the portfolio is denoted as s[;].
The resource allocations must fulfill the resource limitation constraint, so the set of

allowed schedules is S = {s‘ sl < l}.

In the following, m = |I| and n = | A|. An intrinsic characteristic of PPAs is that
only one result for a problem instance may be used, even if more algorithms provide
solutions. Therefore, the PPA utility of an instance is the maximal utility of all
individual algorithms. This is in contrast with ensemble learning, where classifiers
vote and the ensemble result is the average of the votes.

Definition 2.4 The utility U (s, x) of a PPA is the maximum utility that any algorithm
of the portfolio achieves on instance x € & using schedule s € S, that is:

We denote the average performance of the schedule on the training set
instances as

1 m
Us) = — > Ut x).
i=1

Then the problem of selecting the best schedule is defined as
s = argmax U (s).
seS

@ Springer

Learning parallel portfolios of algorithms 89

Some additional measures of performance are proposed in [12].

The definition of the utility of an algorithm with respect to a problem instance
depends on the specific problem setting. For decision problems, the available time
is unlimited, but it is preferable to have a PPA that solves the problems as fast as
possible. Assuming the algorithms may be executed on a single processor with no
overhead, the utility function is defined as follows.

Definition 2.5 For decision algorithms, the time to find the first solution is optimized
if the resource utility function u for an algorithm is

Tx
u(r,x) = ——,
r

where 7, is the time to solve the instance x and r is the resource allocation function.
The function u is concave and twice continuously differentiable in r.

To apply the framework to optimization problems, we may assume that the
computation time is fixed and the quality of the obtained solutions is important.
Anytime algorithms can be characterized by their performance profile function f
that maps the computation time to the current solution quality. Let 7 be the time
allocated for the execution of the PPA. Then, the resource utility function that
maximizes the obtained quality is

u(r,x) = f(T xr,x).

3 The classification-maximization algorithm

In this section we present an algorithm to find locally optimal schedules for SPPAs.
The task of finding the optimal static schedule on / may be formulated as the
following non-linear mathematical optimization problem:

,,,,,

n
subject to Zs[j] =1,

J=1

s[j1=0 j=1,....,n (1)

This problem is not solvable by standard non-linear programming techniques
because the inner max operator makes the objective function discontinuous.

@ Springer

90 M. Petrik, S. Zilberstein

To solve the program, we propose to decompose the solution process into two phases:
classification and maximization. Hence the Classification-Maximization Algorithm.
The algorithm is based on a reformulation of (1) that removes the inner maximiza-
tion. In order to do this, we introduce a classification matrix W = m x n. Notice that
we do not assume W to be given, but it represents additional optimization variables.
Intuitively, the entries of the matrix indicate the best algorithm for each problem
instance. In other words, the entry W;; = 1 if and only if algorithm j has the highest
utility for instance i, given the resource allocation. Clearly, for each instance exactly
one algorithm is optimal, breaking ties arbitrarily. Therefore, the matrix must fulfill:

n
Y Wi=1 i=1...m
j=1

Using the matrix W, we can divide the set of instances [into subsets [;, j =
1, ..., naccording to which algorithm the instance is assigned. Formally, we can write

I,-:{xi‘Wijzl},

with the cardinality of these sets denoted as m; = |I}].
To simplify the notation, we introduce a classification function k(l, j), which
denotes the index of the /-th instance from /;. Formally, it is defined as the minimal

i’ that satisfies ijl Wi =L
Using a classification matrix W, the problem may be reformulated as

maximize U(s, W) = Z Z Wijui(sLj], xi)

i=1 j=1

subject to Zs[j] =1,

j=1

n
ZW,’/:I i:l,...,m,
j=1

s[j1=0 j=1,...,n,
Wi]'E 0,1 I = 1,...,m
j=1,..,n (2)

To illustrate the possible values of W, consider a simple example with two
algorithms a; and a,, and three instances x;, x,, and x3. Assume that the result of
the optimization is a schedule such that a, has the best performance for x; and x,,
and a, has the best performance for x3. Then, the matrix W will be:

01
W=1]01
10

The two formulations (1) and (2) can be shown to be equivalent as follows.
Given an optimal solution s} of (1), we can construct a matrix W, such that W;; = 1
if algorithm j has the highest utility for instance i, given the schedule sj. Since

@ Springer

Learning parallel portfolios of algorithms 91

Randomly initialize W°

i< 0

while U(s', Wi) > U(s"!, Wi=1) do
s« argmax, U(s, W)
Wit! «— arg maxy U(s™+!, W)
I<—i+1

end while

Fig.2 General CMA

U(s7) = U(s}, W), the optimal objective function of (2) is greater than or equal to
the optimal objective function of (1). Given an optimal solution 55, W of (2), the
utility of the portfolio on each instance will be at most the utility of the highest-utility
algorithm, since W;; < 1. Therefore, (1) and (2) are equivalent.

The overall CMA works as follows. In the classification phase, it finds the optimal
W for a fixed s. In the maximization phase, it finds the optimal s for a fixed W.
Generally, this approach is known as Block Coordinate Descent, or Gauss—Seidel
optimization [2]. Because this approach leads only to a local maximum, its per-
formance may be enhanced by randomly choosing the initial classification over
several executions. The general structure of the CMA is shown in Fig. 2. We further
elaborate on the individual phases.

3.1 Classification

The classification phase can be performed analytically, as the following proposition
states.

Proposition 3.1 The solution of (2) with an optimal utility for a fixed s is achieved if
and only if

Wii=1%usljl xi) > Jnax ui(slkl, x;) . (3)
In other words, the optimal classification is the one that actually corresponds to the
schedule.

Proof The proof of necessary optimality condition is by contradiction. Assume that
the optimal solution does not satisfy (3). So let W;; = 1, be a classification with a sub-
optimal utility. Let j* = argmax ;. u;(s[j], x;), breaking ties arbitrarily. Clearly,
setting W;; = 0 and Wj;» = 1 does not invalidate the classification constraints. Since
this holds for all i, the monotonicity of) implies that the utility is not decreased.
Therefore, the solution that fulfills the condition must also have the optimal utility.
The proof of sufficient optimality condition is similar. O

3.2 Maximization

For the maximization phase, we need the following assumption on the resource utility
functions.

@ Springer

92 M. Petrik, S. Zilberstein

Definition 3.2 A set A of resource utility functions u; is homogeneous if each utility
function can be expressed as

uj(r, X) = p]-(r) * 1}]'()6).

Notice that the resource utility functions are homogeneous for decision algo-
rithms. If the resource utility functions are homogeneous then the maximization
phase is equivalent to solving

maximize U(s) = Zp,-(s[j]) Z ni(Xka, j))
=1 i1

subject ton[j] =1

j=1

s[j1=0 j=1,...,n (4)

Letd; = Y ni(xki))- The problem then becomes the following.

. 1 < .
maximize U(s) = p FZI pi(slild;

n
subject to Zs[j] =1

=1
s[j1=0 j=1,....,n (5)
This is easily solved by first order necessary conditions, and from the fact that the

problem involves a maximization of a concave function on a convex set. Hence the
following theorem.

Theorem 3.3 The solution of (5) is globally optimal if it fulfills

P dy

oLk — d;’

Proof The Lagrangian function of (5) is
1 n n
L(s,0)=—— (s[jhd;+ A]
(5,) = —— ;p](sm) i+ ;sm

The theorem then follows from the second order optimality conditions [2]. Because
the of the schedulability assumption, it also fulfills the convexity criterion. Thus this
local maximum is also global. O

The theorems above complete the definition of CMA. In general, CMA is a
suboptimal algorithm.

@ Springer

Learning parallel portfolios of algorithms 93

3.3 Decision problems

For decision problems with no switching overhead, the utility function is formulated
according to Definition 2.5. Thus we have that:

1
pj(r) = ;nj(X) = 7;(x).

Now the maximization phase of the CMA can be solved as the following theorem
states.

Theorem 3.4 Let the SPPA use decision algorithms. The mean optimal schedule for
the maximization phase of CMA, given a fixed classification, must fulfill

slo] Yo To(Xk(io)
sLp] > T (ki p)

Proof By Theorem 3.3. O

Theorem 3.5 Let s be the optimal schedule of a PPA for decision problems, obtained
in the maximization phase of CMA for mean optimization. Then the expected execu-
tion time of the schedule is

Proof The theorem follows directly from Theorem 3.4. O

4 Optimal algorithm

It is possible to find an optimal static schedule by searching for the optimal schedule
for every possible classification. This approach leads to the optimal solution because
the locally optimal schedule for the optimal classification is also globally optimal.
The computational complexity of this approach is very high because the number of
these classifications is exponential in the number of instances. However, not all of
the classifications are possible when actually running the portfolio. For example, it
is possible that if algorithm a, outperforms algorithm a, on instance x, then it also
outperforms it on x;. Thus, a classification that assigns x, to a; and x; to a, cannot
happen during a real execution of a PPA. When we assume that the algorithms in the
portfolio have homogeneous utility functions, we can limit the number of all realistic
classifications to be polynomial in the number of instances and exponential in the
number of algorithms as we show this section. The results from this section also help
to establish the generalization bounds in Section 6.

Definition 4.1 A classification is valid when there exists a schedule that exactly
defines it.

@ Springer

94 M. Petrik, S. Zilberstein

It is clear from Lemma 3.1 that for any classification that is not valid there is a
valid classification with better or equal performance. Thus, limiting the search to
valid classifications is sufficient to guarantee that an optimal schedule will be found.

Lemma 4.2 Let s* be the globally optimal schedule of a PPA and let’s be the best
schedule obtained from a valid classification and a single maximization phase. Then

U™ = U(%).

Proof We show that the lemma holds by contradiction. Let
U™ > U(S).

Clearly, a classification W* defined by schedule s* is valid. Then, by running the
maximization phase of CMA on this classification, we get a schedule s'. Then, we get

Ui > U™ > U(®S),

which contradicts the optimality condition of 5. O

The set of valid schedules depends on the properties of the resource utility
functions. In particular, we focus on the homogeneity of the functions. The main
reason is that the resource utility functions of decision algorithms are homogeneous.

Lemma 4.3 Let the resource utility function be homogeneous. Let a, b be arbitrary
algorithms from a PPA. Then, for any valid classification 1,, I, we have

Na(Xo) . na(xp)
nb(-xo) N nb(xp)’

Xo €lynx,ely =
where 1, is the set of instances assigned to a and I, to b.

Notice that this lemma is applicable also for the case of more than two algorithms.
Then, I, U I, C I,i.e., I, U I, is a proper subset of /.

Proof Because the classification is valid,

ua(xo) > Up (xo)

Ug(Xp) = Up(xp).

From the homogeneity assumption, we get that

na(xo)pa(ra) =Ny (xo)pb (rb)
na(xp)pa(ra) = (xp)pb (rb)-

@ Springer

Learning parallel portfolios of algorithms 95

Hence
b (rp) < Na(X5)
Para) — b (X5)
b (rp) . rla(xp)
Pa(ra) — mp(xp) '
and the lemma follows. O

As a consequence, we have the following lemma.

Lemma 4.4 Let the resource utility functions be homogeneous. For any two instances
Xo, Xp, and algorithms a and b, without loss of the generality

Na(Xo) - na(xp)
b (%0) b (xp) '

Then for a valid classification
(xoelb :>xp¢1a)/\(xpelaz>xo¢lb),

where 1, is the set of instances assigned to a and I, to b.

Proof To show x, € I, = x, ¢ I, by contradiction, assume
Xo €Iy Nxp e,
Then, application of Lemma 4.3 leads to

na(Xo) < na(xp)
M (Xo) — mp(xp)’

what is clearly a contradiction. The other statement, x, € I, = x, ¢ I, can be
proved analogously. O

Then, from Lemma 4.4, for each schedule there is a split point D, for which
no instances with "“(i) > D are assigned to b and no instances with "“g) < D are
assigned to a. This property can be easily used to limit the number of all valid
classifications. The following theorem states this fact precisely.

Theorem 4.5 The number of valid classifications of instances to problems, when RAF
are homogeneous, is at most

m+1)©),

Proof We can see from Lemma 4.4 that every valid classification has at least one
set of (g) split points. Moreover, there is at most one classification, consistent with
a set of split points. To see this, take two different classifications. Because they are
different, they must assign at least one instance to different algorithms. Let these

@ Springer

96 M. Petrik, S. Zilberstein

i=0
U*=0
Initialize split points (py, ..., p(;)) =(0,...,0)
for all (p], ey p(rzz)) = (Om)(;) do
Create W from p,, ..., p(»)
if W is valid then
U < max, U(s, W)
U* < max{U, U*}
end if
end for

Fig. 3 Optimal CMA

algorithms be a and b. This makes the split point between a and b different for each
classification. Because there are at most

(m+1®

possible split-point sets, the theorem follows. O

As aresult of the above theorem, we propose an Optimal Classification Maximiza-
tion Algorithm (OCMA), depicted in Fig. 3. It iterates through all split-point sets,
creating a classification for each one, and calculating the optimal schedule for each
classification. A classification is created from a split-point set by assigning an instance
to an algorithm if and only if it is assigned to the algorithm for each split-point. Notice
that the conditions on valid schedules are necessary, not sufficient. Therefore, the
algorithm possibly also checks classifications that are not valid.

Theorem 4.6 Optimal CMA finds a schedule with the optimal utility with complexity:
0 (mn * (m + 1)(;)> .

Proof The utility is optimal because each valid schedule has a unique split-point set
by Lemma 4.4, and it is sufficient to enumerate all valid schedules by Lemma 4.2. The
complexity is evident from the total number of split-point sets and Theorem 3.3. O

From the above analysis we have an algorithm that is polynomial in the number
of instances and exponential in the number of algorithms. Moreover, the OCMA
enumerates also classifications that are not valid. Thus it is questionable whether
the exponential complexity of the OCMA is caused by its inefficient enumeration or
whether the number of valid classifications is exponential. We show, to address this
issue, that simply enumerating all valid classifications cannot lead to a polynomial
algorithm, and later in Section 5, we also show that the general problem of finding
the optimal schedule for a set of homogeneous algorithms is NP-hard.

Proposition 4.7 The number of valid classifications may be exponential in the descrip-
tion of the problem, even when using decision algorithms.

@ Springer

Learning parallel portfolios of algorithms 97

Proof To prove the proposition, we show an example with an exponential number
of valid classification. We construct a scheduling instance with n + 1 algorithms
and n instances for any n. Let the algorithms be A = {ay...a,} and instances
X ={x;...x,}. Since we are dealing with decision algorithms, the utility on the
instances is determined by the solution time 7,(x) on each instance x. We define
these solution times as follows:

wx)=1 i=1,...,n
x)=1 i=1,...,n
Ti(x;)) =2 i, j=1,...,nandi# j

Now we show that any classification of instances to algorithm a,; is possible, thus
creating at least 2/ distinct classifications. Let o (x;) be the indicator function whether
x; is assigned to algorithm ay. For arbitrary o, we can define schedule s as follows to
achieve the proper instance assignment:

s[0] = ¢ *n—l—l
sl =ex—— o) =0
siil=ex— o(h=1,

where
¢ <€ <e <2
€4+ m—lo)xe+|o|xp=n+1.

Such ¢, €', and ¢ always exist and the conditions ensure that the schedule sums to 1.
The classification of this schedule clearly satisfies o, since:

) n+l n+l wx)

ox)=1= 5101 o < o = S
oy =1= 20 _ntl n—EH _ 24D)
s« e Il
_ o) n+l n+l)
o(x)=0= 0]~ e >—= i a

As a result, just enumerating the valid schedules cannot lead to a polynomial
algorithm. Thus, the exponential complexity of the OCMA cannot be resolved by
a better enumeration of valid schedules.

5 Complexity analysis

This section describes the complexity analysis of the SPPA scheduling problem.
Specifically, the SPPA scheduling problem is the question whether there is a schedule
s such that U(s) > K. We show that this problem is NP hard.

@ Springer

98 M. Petrik, S. Zilberstein

Definition 5.1 In a 0-1 knapsack problem a set of positive integer pairs {(c;, w;) |
i=1,..., N} is given. The problem is whether there exists a subset 7" such that
Dierciz Cand Y pwi < W.

The 0-1 knapsack problem is NP complete [10, 11]. We assume below that a
description of the utility function is included in the scheduling problem.

Theorem 5.2 The scheduling problem is NP-hard even for homogeneous utility
functions.

The proof of this theorem may be found in Appendix A.1.

We proved NP-hardness for the problem of finding schedules for algorithm with
general resource utility functions. While this result is not directly applicable to
decision algorithms, it indicates that homogeneity of the resource utility functions is
not sufficient to make the problem easier. The main difficulty in complexity analysis
of scheduling decision algorithms is that it is not a combinatorial problem, because
their resource utility functions are continuous.

6 Theoretical generalization bounds

This section describes the generalization properties of the SPPA approach. Since the
schedules are based on a training set of instances, it is important to be able to predict
how well the SPPA may perform on &, the domain of all problem instances. We
prove only the worst case bounds.These bounds have mostly theoretical significance
as they show interesting asymptotic generalization behavior. The bounds in this
section are motivated by the Probably Approximately Correct (PAC) learning
framework [9].

The main goal is to show that the number of training instances required to learn
an SPPA that performs well on all instances is reasonably small. Because training
instances are drawn randomly, the bounds only hold with a certain probability. Note
that the bounds apply to the meta-level scheduling algorithm, such as CMA, that
optimizes the SPPA schedule.

In this section, we assume that all SPPAs we refer to are composed of the same
set of algorithms; they only differ in the actual schedules. Notice that since an SPPA
also contains the schedule, it behaves just as a simple algorithm. Thus, the utility of
an SPPA on the training set is its empirical mean utility, defined as:

1 m
Un(s) = — > U (s, Xi),
i=1

where X; is a random variable, representing an instance randomly drawn from &’
Notice that U,,(s) is a random variable.

We define two properties of SPPAs, generalization and optimality. An SPPA
learning algorithm generalizes well, when the utility on all instances is close to the
utility on the training set. An SPPA learning algorithm is optimal, if the optimal
SPPA on the training set is close to the optimal result on the set of all instances.
These properties are formalized by the following definition.

@ Springer

Learning parallel portfolios of algorithms 99

Definition 6.1 We say that an SPPA learning algorithm mean-generalizes, if for any
0 <eand 0 < § < 1it outputs an SPPA s € §, for which

PlU,Gs)—E[U(s, X)] > €] <5$.
Let the globally optimal algorithm be:
s* = arg I?EanE (U, X)].
We say that an SPPA learning algorithm is mean optimal, if for all0 < e and 0<§ <1
it outputs a schedule s
P[E[UGs*, X)|—E[U(s, X)] > €] <6.

In both cases, the learner must use at most a polynomial number of training instances
in % and % to achieve the bound.

The following theorem probabilistically bounds the expected performance of an
SPPA on a sample of size m.

Theorem 6.2 Let the resource utility functions be homogeneous. Let U, 1, p be the
maximal values of corresponding functions for the given set of algorithms. In addition,
let ’”;fz > 2. Then, the generalization probability is

P [sup |Up(s) —E[U(s, X)]| > e]

seS

. —me2 /1 \?
< 8m+ 12" exp(;;i <7>)
u \pnn

The proof of this theorem is quite technical and it is in Appendix A.2.

Theorem 6.3 Let the assumptions of Theorem 6.2 hold. Also let
7= (p 7n)*0.

An algorithm that finds a static schedule by maximizing the empirical mean utility will
find the € mean optimal SPPA with probability at least 1 — § using at most

512"z 256(" n+3
- ((2)zln (2)1’25621112)

€? €? €? 8
samples.

Proof The proof is based on Problem 12.5 from [4]. Let

2 1 2
u \pnn

Further, whenever m > % In % we have the following bound

(m+ 1)('21) < exp (%) .

@ Springer

100 M. Petrik, S. Zilberstein

The theorem follows straight forward from the bound. O

Remark 6.4 A tighter bound could be obtained using Vapnik-Chervonenkis results
that assume that the training set can be learned with zero training error, as in
Section 12.7 of [4].

7 Application

We examined the applicability of the SPPA approach to combining 23 state-of-the-
art algorithms for the satisfiability problem (SAT). The SAT problem is to determine
whether a formula in propositional logic is satisfied for at least one interpretation. It
offers a general framework for problem solving and planning [7]. The performance
results of the algorithms were taken from [13]. The results are from runs of the
algorithm on 1,303 instances. The cutoff execution time was 10,000 s. For the purpose
of evaluation, we used a solution time of 20,000 s for instances that were not solved
within the 10,000-s limit to emulate the possible expected solution time. The choice
of this value did not have a significant impact on the results.

The set of all available instances from [13] is denoted as I. The set of all instances
that are solvable by at least one available algorithm is denoted as Is. The best
performing algorithm from the group was zChaff, with average execution time 372 s
on [and 251 on Is. The performance of the four fastest algorithms on the set is
summarized in Table 1.

We tested CMA for both I and Is. In both cases the CMA-calculated SPPA
significantly outperforms the best algorithm for the instance set (zChaff). The
performance of the SPPA was derived analytically from the available performance
data of individual algorithms. In the case of I, the mean execution time was lower
by 37%, and the standard deviation was lower by 24%. In the case of Ig, the mean
execution time was lower by 68 % and the standard deviation was lower by 55%. The
impressive results on /g were mainly due to the fact that each instance is solved by
at least one algorithm, thus reducing the very long runtime for those instances. The
results are summarized in Table 1.

Specific schedules that were obtained are shown in Table 2. We used all 23 avail-
able algorithms for calculating the optimal schedules, but only the listed algorithms
had non-zero processor share for the two schedules. It is interesting that though

Table 1 Results of a few best-performing algorithms from Sat-Ex and the best SPPA after 200 runs
of CMA

a E[u(D] Var [u(])] E [u(ls)] Var [u(ls)]
zChaff 372.3 2,633.3 251.1 2,140.2
relsat 715.0 3,599.2 595.9 3,274.3
relsat 951.0 4,198.5 833.4 3,934.4
sato 994 .4 4,103.7 877.0 3,833.7
SPPA 233.2 2,005.6 77.1 1,000.5

@ Springer

Learning parallel portfolios of algorithms 101

Table 2 Summary of two

SPPAs calculated using CMA ~ Algorithms Py P2

with a different starting

classification egsatz 0.857 0.104
nsat 0.002 0.002
ntab-back2 0.030 0.026

P, is the best SPPA we heerhugo 0.004 0.004

obtained using CMA. P, is a satz 0.014 0.739

locally optimal SPPA obtained zChaff 0.093 0.125

by CMA from a different Performance 2332 294.8

initialization.

zChalff is the fastest algorithm, the fraction of processor it uses is very small in both
schedules. The intuitive explanation is that zChaff is fast on instances that are hard
to solve, but for the rest, it is a little slower than some other algorithms.

Certainly, the fact that we used the same set for obtaining the optimal SPPA and
for evaluation adds a significant bias toward the method. Nevertheless, it provides
a useful optimistic limit on the possible gain by using multiple algorithms, which is
substantial. To address this issue, we also evaluated the generalization properties
experimentally. Unfortunately, the small size of the overall instance database limited
the significance of these results. But we managed to demonstrate the benefit of
SPPAs in this case as well. We randomly choose subsets of all instances and
used CMA to find the locally best algorithm for the set. Then, we evaluated the
performance on the set of all algorithms. The instance sets of size 400 were /; and
I,. Instance sets of size 800 were I3, 14, and Is. The results are shown in Table 3. On
four out of five training sets, the best SPPA significantly outperformed zChaff on the
test set.

8 Conclusions

The main idea of Parallel Portfolios of Algorithms is to concurrently run several
algorithms for the same problem and to tune their performance by controlling the
distribution of processor time to each algorithm. We focus in this paper on static
schedules, in which processor shares are constant during the execution. In this case,
it is possible to devise a fast, but suboptimal algorithm for calculating schedules. The

Table 3 Performance of SPPA U on the training set / and testset I” = I\ I

r E[U|TI] E[U|1] E[U|I"] E [u(a)|1"]
I 399.8 387.4 3594 3732
I 225.1 4188 856.1 280.4
I 380.1 3117 268.7 310.9
Iy 2285 2973 340.6 390.5
Is 2252 259.7 281.4 375.0

The schedules were obtained by CMA for I'. The performance of zChaff, the overall fastest SAT
algorithm, is denoted as u(a).

@ Springer

102 M. Petrik, S. Zilberstein

results on SAT problems demonstrate the effectiveness of the approach for practical
applications.

As shown in [12], it is also possible to find optimal non-static schedules in which a
change of resource allocation function is allowed in discrete intervals. The optimality
is with regard to expected computation time. These schedules may be obtained by
solving a corresponding Markov Decision Process, which is generally more complex
than calculation of static schedules. They can be shown to be optimal with regard to
expected computation time. However, they do not show a significant improvement
over static schedules on the presented SAT problem.

The schedule optimization problem (2) is in fact an instance of the general
class of concave minimization problems. These are hard mathematical programming
problems, but with a large number of sophisticated algorithms. A good overview
may found in [6]. An application of these techniques to the portfolio optimization
problem may lead to interesting results.

While we did not consider randomized algorithms here, the same analysis applies
to expected utility of randomized algorithms. Though, it would not take advantage
of the varied performance of a single algorithm on the same instance over multiple
runs. Interestingly, randomized schedules do not increase the SPPA utility because
the utility of a stochastic schedule is just a convex linear combination of the utilities
of some deterministic schedules. One advantage of our approach is that it lends itself
naturally to parallelization as long as the number of processors does not exceed the
number of algorithms.

An interesting enhancement would be to incorporate an evaluation function
that predicts the performance of each algorithm on each instance. Such prediction
functions have been used effectively by [1, 8] in other contexts.

Acknowledgements Support for this work was provided in part by the National Science Foun-
dation (Grant No. 0328601) and by the Air Force Office of Scientific Research (Grant No.
FA9550-05-1-0254). Any opinions, findings, conclusions or recommendations expressed in this
manuscript are those of the authors and do not reflect the views of the US government.

Appendix A. Proofs of theorems
A.1 Proof of Theorem 5.2

Proof We show that we can transform an arbitrary 0-1 knapsack algorithm to a
scheduling problem instance in polynomial time. The main idea of the reduction is
to create an instance for each object from the knapsack problem, and determine the
subset T based on the classification of the instances to various algorithms. Notice that
we do not assume that the algorithms are decision algorithms, instead they may have
arbitrary resource utility functions. For the knapsack problem used in the reduction,
we use the same notation as in Definition 5.1.

The scheduling problem is constructed as follows. Let the set of all instances be
I={x;|i=0,..., N} and the set of all algorithms A = {a;|j=0, ..., N}. Since the
utility functions are homogeneous, the utility function for each algorithm a; has the
following form:

ui(r, x) = pj(r) * n;(x).

@ Springer

Learning parallel portfolios of algorithms 103

Let the functions p; be stepwise constant, with step-length €. Then define an € x w;
for each function such that it is constant for all r; > € * w;. Thus, we define p; for all
j> 0Oas:

pir) = f(LgJ) whenr < e x w;,
pj(r) = f(w;) otherwise,

where f(z) is an arbitrary concave function. A possible exampleis f(z) =1 — % The
resource utility function p, is defined as:

po(r) =0 whenr < ¢

po(r) =1 otherwise

As defined above, the domain of these functions is [0, 1]. We choose € = ——.

W+
Fori, j=1,..., N, let the instance utility function be:
Ci . . .
ni(x;) = wheni= jand j> 0
P fw) = fwi = 1)
nj(x;) = 0 otherwise
And we also define the special case, fori, j=1,..., N
no(xg) > max{c;|i=1,...,0}

nj(xo) = Oforj> 0

¢ f(w;—1)
fw) — f(w; —1)

These values are well-defined because f is an increasing function.

The main idea behind the utility assignment is to ensure that assigning less that
w;e resources for algorithm a; does not influence the utility of the schedule, because
the utility of ay will be greater on this instance. However, assigning at least w;e leads
to an increase of the schedule utility by ¢;. The fact that the function levels at w;e
ensures that assigning more than that to an algorithm does not have any effect. The
construction above is clearly polynomial. Now we proceed to prove that solving the
above constructed scheduling problem solves the knapsack problem.

First, take a schedule s to the scheduling problem with utility U (s), we show that
there exists a subset T with

no(x;) =

N
doa=UE =) o) = noxo). (6)

ieT i=1

We can assume that at least ¢ is allocated to algorithm a,. Otherwise, it would be
possible to increase the value of the schedule by assigning it at least epsilon, because
solving instance x, has higher utility than solving any other instance. Moreover, we
can assume that all resource allocations are multiplies of €, otherwise it is possible to
just round it to the smaller value, since the utility on the interval does not change. Let
A be the set of algorithms except ay that have at least one assigned instance. Clearly,
total resources assigned to these algorithms do not exceed We, and thus neither
the total weight of objects corresponding to these instances exceeds W. The utility

@ Springer

104 M. Petrik, S. Zilberstein

from these instances is equal to K +) ,_ 4 z;, so clearly the cost of the corresponding
objects is K.

Reversely, we show that for any knapsack set T there exists a schedule that
satisfies (6). Take a subset of objects with weight at most W and cost at least C.
By assigning w; of the resources to each of the algorithms that correspond to the
instances, these algorithms have a higher utility on them than ay. Additionally,
ap will have assigned e of the processor time. Thus, the utility of the schedule is
SN ¢+ Y%, zi + Z. This proves the theorem. o

A.2 Proof of Theorem 6.2

Proof We prove the theorem in 4 steps. All steps, except the 3rd one are very similar
to the proof of Theorem 12.4 (Glivenko-Cantelli) from [4].

Stepl: First symmetrization by a ghost sample Define new random variables
Xi,..., X, € X, such that all variables X, ..., X,,, X{, ..., X,, are independent.
U,, now represents the empirical performance of the algorithm on the ghost sample.
We show now that

P |:sup |Upn(s) —E[U(s, X)]| > 6] <2P |:sup U (s) — U, ()] > %] . (7)

seS seS

To show this, let s* € X be a set for which |U,,(s*) — E[U(s*, X)]| > € if such a set
exists, and a fixed algorithm from X otherwise. Then

P|:sup|Um(s) UL (s)] > 5}

ses 2
> P [|Um(s*) — U (%) > g]
> P [|Um(s*) —E[UG", X)]| > e |U, " —E[UG", X)]| < %]

—E [1 (1Un(s)—E[UGs*, X)]|>€}P [|U;n(s*)—E (UG, X)] 1< % ‘Xl, o Xm]] .
Now, the conditional probability inside may be bounded by Chebyshev’s Bound as
P[|U;n(s*) —E[UG", X)]| < %‘Xl,...,Xm]

_E[UG, X1 -E[UG*, X))

z 1 me
2
> 1
>1—— >,
me?2 — 2

whenever mﬁ*fz > 2. This shows (7).

Step2: Second symmetrization by random signs Let §;,...,5, be independent
identically distributed variables independent from X, ..., X, X], ..., X}, with

1
Pl5i=—-11=P[5 =—-1] = 5

@ Springer

Learning parallel portfolios of algorithms 105

Because Xi, ..., X,,, X|, ..., X}, are independent, the distribution of

sup
seS

Z(U(s X)) —U(s, X))

i=1

is the same as distribution of

Za (U(s, Xi) — U(s, X)))|.

i=1

sup
ses

Thus by Step 1

Za (U, X;) — U(s, X))

seS seS 1

|:sup |Upn(s) —E[UGs, X)]| > e] <2P |:sup

]

By applying the union bound, we can remove the ghost sample X7, ..., X

m
sup > —
|:AeS 2:|

ZS(U(S X)) — U(s, X))

<P|:§u£) Z(S UG, Xi)| > :| +P|:§ug) ZS UGs, X})| > Zj|
se i=1 se
<2P|:sup ZSU(S X)H| > :|

seS i—1

Step3: Conditioning To bound the probability from STEP 2, we condition on the
sample X, ..., X,

sup

ses

Since, there are at most (m + 1)('21) possible instance to algorithm classifica-
tions (Thm. 4.5) represented by W, we obtain

m

ZSU(S X))

>X1,...,Xm:|.

€
(m+1)()supP sup Zp]s[]]21:8k(l])n](Xk(,,)) > 2| X X |
Jj=1 =

where s defines only the resource assignments, not the classification. Function k,
and m; are defined the same way as in Section 3. For the choice of schedule here,
we do not require equality of resources to one, just to be smaller. The, there is 2/

@ Springer

106 M. Petrik, S. Zilberstein

possible distribution of signs to components of the sum over j. Therefore, also by
homogeneity assumption

n mj
n . €
m+ DO supP | sup |3 o6 D e jyni(Xeaj)| > = | Xiv - X
w ses =1 i1 4

n " . Y €
< (m+1)® sup2"sup P > pi6UD D Sk jyni(Xeaj)| > 7| X X
w s

j=1 i=1
n m €
< m+1)O2p DAy s > | X X
j=1 i=1

Step4: Hoeffding’s Bound With X, ..., X, fixed, the probability is a sum of m
random variables and therefore can be bound by the Hoeffding’s Bound. Then

" " € —me? 1 \?
P no 8; - X, ..., X <2 — .
;np§z>4 | m| < eXP(32u ())

pin

Taking the expected value from both sides yields the result. O

References

1. Arnt, A., Zilberstein, S., Allen, J: Dynamic composition of information retrieval techniques.
J. Intell. Inf. Syst. 23(1), 67-97 (2004)

2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (2003)

3. Dean, T.L.: Intractability and time-dependent planning. In: Proceedings of the 1986 Workshop
on Reasoning about Actions and Plans, pp. 245-266. Morgan Kaufmann, San Francisco, CA
(1986)

4. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer,
New York (1996)

5. Gomes, C., Selman, B.: Algorithm portolios. Artif. Intell. 126(1- 2), 43-62 (2001)

6. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin Heidelberg
New York (1996)

7. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proceedings of the
16th International Joint Conference on Artificial Intelligence, pp. 318-325 (1999)

8. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boosting as a
metaphor for algorithm design. In: Proceedings of the Ninth International Conference on Prin-
ciples and Practice of Constraint Programming, pp. 899-903 (2003)

9. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, MA (1994)

11. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization, Algorithms and Complexity.
Dover, New York (1998)

12. Petrik, M.: Learning Parallel Portfolios of Algorithms. Master’s thesis, Comenius University,
Bratislava, Slovakia (2005)

13. Simon, L.: The Sat-Ex Site. http://www.lri.fr/~simon/satex (2005)

14. Zilberstein, S.: Operational Rationality Through Compilation of Anytime Algorithms. Ph.D.
Dissertation, University of California Berkley (1993)

@ Springer

http://www.lri.fr/~simon/satex

	Learning parallel portfolios of algorithms
	Abstract
	Introduction
	Framework
	The classification-maximization algorithm
	Classification
	Maximization
	Decision problems

	Optimal algorithm
	Complexity analysis
	Theoretical generalization bounds
	Application
	Conclusions
	Appendix A. Proofs of theorems
	Proof of Theorem 5.2
	Proof of Theorem 6.2

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

