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Abstract

Proving that a software system satisfies its requirements
is a costly process. This paper discusses the benefits and
challenges of structuring the analysis of software as an
anytime algorithm. We demonstrate that certain incre-
mental approaches to event sequence analysis that pro-
duce partial results are anytime algorithms, and we show
how these partial results can be used to optimize the time
to complete the full analysis.

1 Introduction

Computers are an integral part of society these days,
controlling many activities that affect our daily lives.
There is an inherent danger that the software that
determines what these computers do has faults, caus-
ing the computers to perform in a fashion that fails to
meet their requirements. The purpose of testing and
analyzing software is to remove, or at least reduce,
the possibility of failures.

Performing an accurate analysis to verify a prop-
erty about a program is often time consuming. Incre-
mental analyses have been proposed as a way to re-
duce analysis time by incrementally performing con-
servative analyses with increasing accuracy [3]. An
analysis is said to be conservative if the analysis never
concludes that a property holds if the property does
not indeed hold. However, it need not always suc-
ceed in concluding that the property holds, even when
it actually does. When a conservative analysis con-
cludes that the property holds, the result is said to
be conclusive in that it is correct. Otherwise, the re-
sult is said to be inconclusive, and a more accurate
analysis must be performed to remove all doubt and

verify whether or not the property holds.! Verifying a
property often takes less time using incremental anal-
yses because the property can sometimes be verified
after running only a few quick, inaccurate, conser-
vative analyses as opposed to running a single slow,
accurate analysis.

In this paper, we show how the accuracy of each
analysis used in an incremental analysis can be mea-
sured such that the incremental analysis satisfies the
properties of an anytime algorithm [7]. We also show
that the intermediate results obtained from the in-
cremental analysis can then be used to dynamically
determine which analyses are to be performed next in
order to improve the running time for the overall anal-
ysis and increase the chances of obtaining conclusive
results of the overall analysis. We provide evidence
of this through experimentation on sequential Ada83
code.

Different kinds of analyses use different methods
to analyze programs. In this paper we restrict our
focus to sequencing analyses, which examine certain
events within a program, and attempt to verify that
only a restricted set of sequences of these events can
occur. Section 2 gives a background on how sequenc-
ing analyses are performed. Section 3 discusses the
benefit obtained in making an analysis an anytime
algorithm, and shows how we derive a measure of ac-
curacy for an analysis. We show in section 4 how
the anytime features of the analysis can be used to
optimize the incremental procedure, and present ex-
perimentation and results in section 5. Finally, we
summarize and discuss future work in section 6.

LConverse analyses are also often called conservative, where
the analysis returns a conclusive result only when a property
does not hold. For the sake of simplicity, we do not consider
such analyses in this paper.



2 Incremental Sequence Analysis

Many faults that occur in programs are due to errors
in the sequencing of events within the code. Initially,
analysis tools were constructed to detect anomalous
sequences of events that were common to many pro-
grams, such as dead definition and undefined refer-
ence anomalies [6]. Later, methods were developed
that gave the user of the analysis system the abil-
ity to choose the sequences that should be considered
anomalous. With this approach, the user specifies
the set of sequences as a quantified regular expression
(QRE) [1], [2], [4], [5]- Any sequence that is a member
of the language described by the QRE is considered to
be an allowable sequence. All other sequences are con-
sidered to be anomalous. A QRE is useful in that it
is easily converted to a finite state automaton (FSA),
a representation formalism commonly used as a basis
for analyses. There are many methods available that
allow one to detect anomalies that are represented as
QREs. The results from this paper focus mainly on
analyses that use data flow analysis [9)].

2.1 Data Flow Analysis of QREs

In data flow analysis, a program is represented as
a control flow graph (CFG), where each node repre-
sents a program execution unit, and directed edges
represent flow of control between those units. The
user selects a QRE, whose language consists of events
that occur in the code. Each node in the control flow
graph is then annotated with the events that occur
at the code that corresponds to the node. If no event
of interest occurs within the execution unit, its corre-
sponding node is annotated with a special null event.

Figure 1: A sample QRE and its corresponding prop-
erty automaton that is used to verify that a program that
controls an elevator never allows the elevator to move up
or down with the doors having been opened without sub-
sequently being closed. The state with concentric circles
is an accepting state. The state labeled err is the error
state, which cannot be exited once transitioned to.

The QRE is then converted to an FSA, in which
the events that annotate the nodes of the CFG anno-

tate the transitions in the FSA. The FSA has a set
of distinguished accepting states that are those states
to which the FSA transitions in response to an event
sequence described by the QRE. We refer to this FSA
as the property automaton. An event sequence along
a path is said to be allowable if the event sequence
drives the property automaton to an accepting state
after the sequence’s final event. In any CFG with a
cycle, there is an infinite number of paths through the
graph, so one cannot examine each path individually.
Data flow analysis nevertheless allows the examina-
tion of all paths through the graph with relatively low
time complexity. Data flow analysis can therefore ef-
ficiently detect the existence of paths within a CFG
that produce anomalous sequences of events.

Such an analysis is inaccurate in that many paths
through the CFG do not represent feasible program
executions. However, the analysis remains conserva-
tive in that it will never miss an executable, anoma-
lous sequence. In other words, if a data flow analy-
sis concludes that there are no anomalous sequences
through the CFG, then none can exist within the
program. However, if the data flow analysis detects
anomalous sequences, these may or may not be exe-
cutable, so the analysis result must be considered to
be inconclusive. The accuracy of the analysis must
then be increased by reducing the number of infea-
sible execution paths that are examined by the data
flow analysis.

Accuracy can be increased by adding constraints.
A constraint tracks an aspect of the program, such
as the value of a variable, and ensures that a path is
not examined if it violates the constraint. In [2], it
is shown that constraints can also be represented as
FSAs, which are referred to as constraint automata.
A constraint automaton has a single non-accepting
state, referred to as a wviolation state, that has no
exiting transitions, and is entered as soon as a viola-
tion of the constraint occurs. The data flow analysis
simply refuses to consider for analysis any path that
causes a constraint FSA to enter its violation state.

Many such constraints may be used by the analysis
simultaneously, in which case the data flow analysis
algorithm must keep track of the effects of each path
through the graph on all members of this set of FSAs.
This is generally done by means of a product automa-
ton which is the cross product of the property au-
tomaton and the set of all constraint automata. The
number of states in the product automaton is equal
to the product of the number of states in each of the
individual automata, as each state in the product au-
tomaton represents a tuple of states from the set of
individual automata. We say that a state in the prod-
uct automaton is an accepting state if and only if the



property automaton state in the tuple is accepting.
Similarly, we say that a state in the product automa-
ton is a wviolation state if and only if some constraint
automaton state in the tuple is a violation state.

3 Anytime Algorithms

An anytime analysis incorporates a measure for the
accuracy of the analysis, and a mechanism for se-
lecting a sequence of analyses such that the mea-
sure varies in a monotonically, non-increasing (or non-
decreasing), fashion over time [7]. It is also desirable
for the measure to provide diminishing returns with
time, where the change in accuracy decreases over
time. Such a property guarantees that large gains in
accuracy will occur in earlier increments of the analy-
sis. One would also like to be able to use the measure
of an inaccurate analysis to predict the subsequent
analysis that will deliver the best improvement in ac-
curagcy.

Data flow analysis for checking sequences of events
improves its accuracy by decreasing the set of unex-
ecutable flow graph paths that it considers. A good
measure of the analysis’s accuracy might entail count-
ing the set of such paths. Although the set of all paths
through most CFGs is infinite, it is a countable set.?
Thus, a density function could be constructed to de-
fine a ratio between a measure of the set of paths
still considered by the data flow analysis to the mea-
sure of the set of all paths through the CFG. We pro-
pose to define these measures in terms of the numbers
of equivalence classes of paths under an appropriate
equivalence relation. We say that two paths A and B
are equivalent under our relation for a particular anal-
ysis if and only if they take the product automaton
used in that analysis to an identical state. Thus, the
number of equivalence classes is always finite, being
equal to the number of states in the product automa-
ton, and the density function we seek will always be
a rational number between 0 and 1.

We define the inconclusiveness measure to be X/Y,
where X is the number of non-empty equivalence
classes containing paths that transition the product
automaton to a non-accepting, non-violation state,
and Y is the total number of (empty and non-empty)
equivalence classes. Hence, Y equals the total num-
ber of states in the product automaton, and X equals
the number of non-accepting, non-violation states in
the product automaton that at least one path through
the CFG transitions to.

We have shown in [11] that the inconclusiveness
measure is monotonically non-increasing each time a

2The number of paths through any graph with a finite num-
ber of nodes is always countable.

constraint is added and an analysis is performed. We
now provide a brief sketch of the proof. Adding a
constraint increases the number of states in the prop-
erty automaton by a factor, spe., which equals the
number of states in the automaton associated with
the new constraint. If we consider the inconclusive-
ness measure computed from an analysis that uses the
newly formed product automaton that does not en-
force violations that occur due to the new constraint,
then X and Y each increase by a factor of s,,, and
the inconclusiveness measure remains constant. En-
forcing the violations of the new constraint can only
reduce X and has no impact on Y, so that the incon-
clusiveness measure can only decrease in size. There-
fore, the measure is monotonically non-increasing as
constraints are added.

4 Optimizing incremental analysis

We can also make use of the inconclusiveness measure
to improve performance of the incremental algorithm
by using it to estimate the time and accuracy of par-
ticular analysis increments. Ideally, we want to locate
the set of constraints that should be used in an analy-
sis that returns a measure of 0 (complete accuracy) in
the shortest time. Through some initial experimen-
tation on relatively simple programs, we have learned
that making such a prediction is extremely difficult.
The effects on analysis time and accuracy due to the
addition of a constraint differ dramatically depending
on the set of constraints that are already part of the
analysis.

| Vars constrained | Measure | Analysis Time ||

None 7.14286E-01 | 1.91
b1 2.14286E-01 | 1.90
b2 2.14286E-01 | 1.96
b3 1.78571E-01 | 2.05
b1, b2 3.57143E-02 | 1.49
b1, b3 5.10204E-03 | 11.78
b2, b3 5.10204E-03 | 10.09
b1, b2, b3 0 435

Figure 2: Measure and running time for analysis of Test
1 with different variables constrained. Constraining b1
and b2 only produces an efficient analysis, whereas con-
straining b3 and either b1 or b2 only is rather inefficient,
especially when compared to the analysis where all three
variables are constrained.

An analysis A is better than another analysis B if
it runs in less time and produces a result with higher
accuracy. In such cases, A is said to be dominant
over B [7]. However, it is possible for A to run for



| Vars constrained | Measure | Analysis Time ||

None 3.00000E-01 | 2.22
bl 1.42857E-02 | 3.36
b2 8.18182E-02 | 8.30
b3 9.33333E-02 | 20.79
b1, b2 7.79221B-03 | 18.04
bi, b3 9.52381E-04 | 5.70
b2, b3 6.06061E-04 | 63.53
bl, b2, b3 0 4.88

Figure 3: Measure and running time for analysis with dif-
ferent variables constrained. Again, accuracies and out-
comes are difficult to predict based on the individual re-
sults of constrained variables. Results from analyses con-
straining the variables separately does not suggest that
constraining b1 and b3 would be the the most beneficial
of the constrained pairs.

a longer time and produce a result with higher ac-
curacy than B. In such a case, neither analysis is
dominant over the other, and which analysis is bet-
ter becomes a matter of subjective opinion. We have
used the inconclusiveness measure to define a heuris-
tic that measures our satisfaction with an analysis
as a function of running time and accuracy. Having
defined this heuristic, we can use the following naive
algorithm to select the next constraint to be used in
our incremental analyses.

1. Let C be the set of all constraints that can be
added to an analysis. Let S be a set that is
initially empty. Let n =0

2. Spawn |C| — n separate analyses, where each
analysis adds a single constraint from C'— S to its
set of constraints, S, such that no two analyses
add the same constraint.

3. After all analyses have completed, select the
analysis which returns the best value with re-
spect to the heuristic.

4. If a conclusive result occurs, return the result.

5. Otherwise, add 1 to n and return to step 2.

This algorithm will return a conclusive result af-
ter at most n + 1 increments, where n is the number
of constraints that can be added to the analysis. Of
course, on the ith increment, n — 7 analyses will have
to be performed. The negative consequences of this
are reduced if we allow the analysis to be performed
concurrently, through access to a distributed system
with at least n processors. In any case, the maximum
number of analyses that must be run is (n + 1)n/2.

Fastest Time First

Round || Vars constrained Time measure
1 None 5.29 666667
2 cl 6.95 .200000
3 cl, c2 10.85 .066667
4 cl, c2, c3 16.82 .020000
5 t2, cl, c2, c3 24.48 .004800
6 tl, t2, cl, c2, c3 38.48 .000762
7 t1, t2, x, c1, ¢2, c3 | 16.67 0

Total time 119.54

Optimal

Round || Vars constrained Time measure
1 None 5.29 666667
2 cl 6.95 .200000
3 cl, c2 10.85 .066667
4 t2, cl, c2 17.06 .018667
5 t1, t2, cl, c2 45.50 .003806
6 t1, t1, x, cl, c2 15.58 0

Total time 101.23

Figure 4: Here, we see that selecting the fastest timed
analysis at each iteration does not always yield the opti-
mal (i.e. fastest to reach measure 0) anytime algorithm.
Variable ¢3 is modeled unnecessarily. This suggests that
other heuristics that not only consider time, but the ac-
curacy as well, might be better suited for predicting con-
straints to model in attempting to produce the optimal
anytime algorithm.

Without the aid of the inconclusiveness measure and
a heuristic to prune out those analyses that need not
be considered, a concurrent incremental analysis al-
gorithm like the one described above could perform
up to n! analyses.

It is often the case that if an analysis using a set
of constraints, Sy, performs better than an analysis
using a set of constraints, Ss, then the analysis with a
new constraint added to S; will perform better than
the analysis with this new constraint added to Sa.
The above algorithm utilizes this fact by only per-
forming those analyses whose sets of constraints can
be derived by adding a constraint to the set of con-
straints used in an analysis that is favored by the
heuristic.

4.1 Heuristics

The performance of the anytime algorithm presented
above depends on how effectively the heuristic can
guide the algorithm toward analyses that 1) provide
high levels of accuracy, 2) run for short amounts of
time, and 3) allow for large gains in accuracy to occur
in earlier increments. We selected a set of heuristics,
where each heuristic produces a measure combining



one or more of these three properties. A set of analy-
ses can be compared with respect to these properties
by comparing the values the heuristics produce as a
result of these analyses.

Let M.y, be the current accuracy measure, Mpyey
be the accuracy measure from the previous increment,
and t be the time it took to run the analysis that
produces M,,,.. The following are the heuristics that
we considered:

FTF | Fastest Time First Minimize ¢

BA Best Accuracy Minimize M,

MIA | Most Improved Accuracy | Maximize Mprey — Meur

BUR | Best Unit Ratio Maximize (Mprey — Meur) /[t

BR Best Ratio Maximize (1 — Mcyr)/t

COM | Combination Minimize M, *t

CR Combination ratio Minimize Meur * t/(Mprev — Meur)

5 Experimentation and Results

We have experimented on 4 sample pieces of Ada83
code so that we could compare the different heuris-
tics, where constraints were added by modeling the
different variables in the code. We wish to point out
that our experimentation is in its preliminary stages,
and we make no claim that these 4 programs rep-
resent an accurate distribution of the domain of all
programs. The traits that we believe have a strong
effect on the analysis time and inconclusiveness mea-
sure are listed in figure 6. The conditional statements
determine the basic shape of the CFG, and the num-
ber and enumeration size of variables determines the
effectiveness of the different variable constraints that
we could add to an analysis.
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Figure 5: Sample runs using the various heuristics as well
as a random strategy (RAND) and a smallest-variable-
first strategy (SMV) on two different QREs. The ver-
tical dashed line represents the optimal time in which
AFLAVERS can prove the code correct (i.e. a single run
with the set of constraints added that causes the analysis
to reach a conclusive result the fastest).

We compared the heuristics to random selection of
the next constraint to be applied, and also to the

outcome obtained by choosing the next variable to
constrain based on the number of values the variable
type allowed the variable to take on.

Prog LOC Variables | while stmts | if stmts : | nest
: max nest | max nest | depth
testl.a 49 2x2, 1x5 1:1 3:2 3
test2.a 48 2x9, 1x5 1:1 3:2 3
test3.a 161 4x3, 1x14, 1:1 14: 2 3
1x5, 1x3
test4d.a 229 4x3, 4x6, 5:2 11:2 3
4x2, 4x7

Figure 6: Selected attributes of the 4 test programs that
we experimented with. The LOC column contains the
lines of code in each program. In the variable column,
mxn means that there were m variables with an enumer-
ation size of n. In the while and if columns, m : n means
that there are m statements, and the maximum nesting
of such statements is n. The nest depth column counts
the maximum nest depth of a combination of while loops
and if statements.

Figure 7: Sample runs using the various heuristics, show-
ing a case where the COM heuristic locates a conclu-
sive result faster than the other heuristics. Note that
though the heuristic selects the conclusive result before
the other heuristics do so, the curve produced satisfies
fewer anytime properties. Although the other heuristics
would not select the conclusive result, an actual imple-
mentation could note that a conclusive result is reached,
allowing the anytime algorithm to return 0 for the mea-
sure at that point in time and thus terminate.

With the exception of the Best Accuracy and
Most Improved Accuracy heuristics, we found
that the heuristics usually produced similar, if not
identical, orderings for the selection of constraints.
BA and MIA depend only on accuracy, and often
fared poorly due to the fact that they ignore analysis
times. Over a complete analysis, the inconclusiveness
measure changes by the fixed amount of 1, whereas



time varies depending on the program, the QRE, and
the order in which constraints are applied. Because
of this, a heuristic that depends on time is often dom-
inant over an algorithm that does not.

Heuristics COM and CR seem slightly more ap-
pealing than the other heuristics that involve time
in that they always selected as the best analysis a
conclusive analysis (see figure 7).

All of our heuristics consistently outperformed the
method of selecting constraints randomly, and of-
ten obtained a conclusive result in less than half the
time taken by the smallest-variable-first strategy (the
strategy that models variables in order of the number
of values allowed by the variable type). Also, as can
be seen from the graphs, the heuristics produce nice
anytime curves with the diminishing returns property.

6 Conclusion

We have shown how developing an incremental anal-
ysis into an anytime algorithm provides a measure
of accuracy, which can then be used to dynamically
optimize the incremental analysis. We then showed
that the most successful method for selecting variable
constraints to add was by performing the analysis in
a concurrent setting, and using a heuristic that relied
on time and possibly on the measure as well to select
the next constraint to include in the analysis, based
on the results obtained from the previous analysis.

Not only does posing the analysis as an anytime
algorithm have the potential to speed up the algo-
rithm, but it also broadens the scope of the use of
analysis by formalizing partial results, which are gen-
erally not considered within analysis of software. Our
results are preliminary in that our experimental test
suite was small and does not provide a good distribu-
tion of programs. More testing needs to be performed
to further verify the our results.
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