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Abstract

We propose a determinization based approach to optimize the
charging policies of an electric vehicle (EV) operating in a
vehicle-to-grid (V2G) setting. By planning when to charge
or discharge electricity from the vehicle, the long-term cost
of operating the EV can be minimized, while being consis-
tent with the owner’s preferences. For an EV operating under
price uncertainty caused by the dynamic pricing of electric-
ity, this problem needs to be solved on-the-fly. Therefore,
we model this problem as a Stochastic Shortest Path (SSP)
problem and employ a determinization technique to solve it.
Since it is hard to predict a priori the performance of a de-
terminization method on a given problem, we introduce the
notion of Lossless Determinization (LLD) that produces op-
timal action selection via determinization and present an ap-
proach that achieves lossless determinization by adjusting the
cost of actions to account for the ignored outcomes. We also
present Approximate Lossless Determinization (ALLD)—an
effective method for approximating the cost of actions based
on state features. We evaluate the performance of ALLD and
demonstrate its effectiveness on a range of settings for the
electric vehicle charging problem.

Introduction
Electric vehicles function primarily as consumers of elec-
tricity from the grid. However, recent developments in
cyber-physical systems allow electric vehicles to act as both
consumers and producers of electricity when connected to
a smart grid. Specifically in the Vehicle-to-Grid (V2G) set-
ting, connections are added to electric vehicles to allow the
flow of electricity from the vehicles to the smart grid, thus
enabling electric vehicles to act as consumers and producers
of electricity (Guille and Gross 2009; Kempton and Letendre
1997).

The efficiency of an electric vehicle largely depends on
its efficient battery charging schedule. Donadee and Ilic
model the EV charging problem under price uncertainty as
an MDP with continuous space of decision variables and
solve it using stochastic dynamic programming. The price
uncertainty is modeled using a Gaussian copula (Donadee
and Ilic 2014). Donadee, Ilic, and Karabasoglu model the
EV charging problem operating under price uncertainty with
stochastic driver behavior as an infinite horizon average re-
ward MDP. The price uncertainty is modeled using a Gaus-
sian copula and the MDP is solved offline using the value
iteration algorithm (Donadee, Ilic, and Karabasoglu 2014).

Ruelens et al. consider the stochasticity in the arrival and de-
parture time for a fleet of Plug-in Hybrid Vehicles (PHEVs)
and optimize the charging schedule for the fleet, using ap-
proximate policy iteration to minimize the cost (Ruelens et
al. 2012). Shi and Wong optimize the charging policies of
an EV operating under price uncertainty using Q-learning
technique (Shi and Wong 2011). Most researchers have fo-
cused on devising policies for EV charging in the traditional
setting only (Donadee, Ilic, and Karabasoglu 2014; Sor-
tomme and El-Sharkawi 2011; Vayá and Andersson 2012;
Donadee and Ilic 2014; Ruelens et al. 2012). Since electric
vehicles can charge and discharge electricity in a V2G set-
ting, it is possible to exploit this feature to further minimize
the long-term costs associated with battery charging (Ma et
al. 2012).

Hence, our objective is to optimize the charging schedule
for an electric vehicle that is parked and connected to a smart
grid in a V2G setting. By planning when to buy or sell elec-
tricity, the EV can devise a robust schedule for charging and
discharging that is consistent with the owner’s preferences,
while minimizing the long-term cost of operating the vehi-
cle. This problem needs to be solved quickly and on-the-fly
due to price uncertainty caused by the dynamic pricing of
electricity. Hence, we model it as a Stochastic Shortest Path
(SSP) problem.

Solving large SSPs is an active research area in automated
planning. Among the different techniques for solving SSPs
that have been explored, determinization has attracted sig-
nificant interest because it greatly simplifies the problem
and can quickly solve large SSPs on-the-fly. Determiniza-
tion ignores the stochastic transitions, leverages efficient off-
the-shelf classical planners to solve the corresponding deter-
ministic problem, and uses online replanning when an unex-
pected state is encountered. Since the policies for the EV
charging problem needs to be obtained on-the-fly, we solve
the EV charging SSP using determinization.

While determinization could be extremely effective, it is
often hard to predict when it will work particularly well as
policies produced via existing determinization techniques
do not guarantee bounded-optimal performance. Since the
value of the deterministic policy is a loose lower bound on
the optimal value of the SSP (i.e., the expected cost of reach-
ing the goal), a large difference between the values may be
indicative of the deviation of the optimal policy for the de-
terministic problem from the optimal policy for the SSP. We
call this difference the loss. For example, in the EV charging



problem, a suboptimal policy for the SSP yielded by deter-
minization could be very expensive for the owner or could
even lead to battery depletion at an unfavorable time. There-
fore, it is beneficial to minimize the loss. When the loss
is zero, it means that action values according to the deter-
ministic policy match action values according to the optimal
solution of the SSP, allowing for an easy derivation of the
optimal actions. We examine the conditions under which
this can be achieved and, more broadly, how to minimize
the loss and thereby derive better policies.

To this end, our contributions in this paper are as follows,
1. We model the EV charging problem in a V2G setting as

an SSP and consider different cost function scenarios;
2. We present the notion of Lossless Determinization (LLD)

that requires the loss to be zero, and an approach called
Cost Adjustment for Lossless Determinization (CALLD)
that achieves zero loss by altering the costs of actions to
account for the cost of ignored outcomes;

3. Naturally, it is challenging to accurately estimate the
value discrepancy associated with each outcome and ad-
just the cost of each action without solving the original
SSP. Hence, we propose an approximation technique to
adjust the cost of actions in each state without calculating
the true value of the outcomes. Specifically, in a factored
MDP, the states are represented by feature vectors. The
Approximate Lossless Determinization (ALLD) exploits
the feature vector to derive an approximate cost for every
action in a state;

4. We test the performance of ALLD on a range of settings
for the EV charging problem.

We begin with a description of the model of EV charging
as an SSP in Section 2. Section 3 defines determinization
of an SSP and the notion of lossless determinization, and
explains the CALLD algorithm for achieving zero loss. In
Section 4 we describe our approach to approximating cost
adjustments. Section 5 summarizes the performance of our
approach in different settings of the EV charging domain.

The Model
By modeling the EV charging problem as an SSP, we aim to
derive a sequence of actions that would minimize the long-
term operational cost for an electric vehicle that is parked in
a parking lot (parked and connected to a smart grid). On av-
erage, vehicles are parked for about 96% of the time (Kemp-
ton and Tomić 2005). Therefore, we restrict the decision
process to the duration for which the vehicle is parked and
connected to a smart grid. We begin with a formal back-
ground description of an SSP followed by a detailed expla-
nation of modeling EV charging problem as an SSP.

Stochastic Shortest Path (SSP)
An SSP is a Markov Decision Process (MDP) with a start
state and goal or terminal states, where the objective is to
find a policy that minimizes the expected cost of reaching a
goal state from the start state. A Stochastic Shortest Path
MDP is denoted by the tuple M = 〈S,A, T,C, s0, SG〉,
where,

Figure 1: An illustration of EV charging problem

• S is a finite set of states;
• A is a finite set of actions with As denoting the set of

actions available in state s ∈ S;
• T : S×A×S → [0, 1] is the transition function specifying

the probability of moving to a state s′ by executing an
action a ∈ As in state s ∈ S, denoted by T (s, a, s′);

• C : S × A → R+ ∪ {0} is the cost of executing action
a in state s, denoted by C(s, a). The cost of an action is
positive in all states except goal states, where it is zero;

• s0 is the initial state of the SSP, s0 ∈ S; and
• SG is the set of goal states of the SSP, SG ⊆ S.

The solution of an SSP is a policy π : S → A that min-
imizes the expected cost of reaching a goal state. The Bell-
man equation defines a value function over states, V ∗(s),
from which the optimal policy π∗ can be extracted by:

V ∗(s) = min
a

Q∗(s, a) ∀s (1)

Q∗(s, a) = C(s, a)+
∑
s′

T (s, a, s′)V ∗(s′) ∀s, a (2)

where Q∗(s, a) denotes the optimal Q-value of the action a
in state s in the SSP M .

Modeling EV Charging Problem as an SSP
Since the decision process is restricted to the duration of
parking for the electric vehicle, we model the EV charging
problem as a finite horizon SSP with the parking duration as
the horizon H . We assume that the vehicle can charge to a
maximum limit (lmax) which is either the battery capacity
(Bc) of the vehicle or some maximum threshold set by the
vehicle owner, 0 < lmax ≤ Bc. Since we consider the elec-
tric vehicle in a V2G setting, we assume that the vehicle can
discharge energy up to a minimum threshold level (lg) which
is either zero or some threshold set by the vehicle owner,
0 ≤ lg ≤ Bc. Assuming the parameters – lmax, lg, H – are
known, we can model this problem as an SSP with:
• S is the finite set of states that an electric vehicle can be

in. It is defined by the tuple 〈l, t, d, p〉 ,where l denotes
the current level of charge of the vehicle, l ∈ [0, lmax],
t ∈ H denotes the current timestep, d denotes the cur-
rent demand level for electricity, and p denotes the price
distribution of electricity.



• A is the set of actions available to the vehicle. The vehicle
can charge (Ch+i ) and discharge (Ch−i ) at three different
speed levels, where i denotes the speed level, or remain
idle (NOP ). Therefore, there are seven actions in total,
A = {Ch+1 , Ch

+
2 , Ch

+
3 , Ch

−
1 , Ch

−
2 , Ch

−
3 , NOP}. As

denotes the set of actions available to the vehicle in state
s. The charging and the discharging actions are stochastic,
while the NOP action is deterministic.

• T : S ×A× S → [0, 1] is the transition function denoted
by Pr(s′|s, a). It denotes the probability of reaching state
s′ by executing action a in state s. The state transition
function also accounts for the demand level transitions
and the pricing distribution transitions, as each state en-
capsulates the current demand level and current pricing
distribution.

• C : S × A → R+ ∪ {0} is the cost function denoted
by C(s, a, s′). It denotes the cost of executing action a
in state s and reaching state s′. The costs for charging
and discharging depend on the electricity pricing, and the
speed setting. The cost for a NOP action is a constant.
Based on real-world, the cost for discharging is modeled
as a negative value (since the user profits by selling elec-
tricity), the cost for charging is modeled as a positive
value (since the user has to pay for charging), and the cost
for NOP action is modeled as zero.

• s0 ∈ S is the start state. It it defined by the tuple
s0 = 〈l0, t0, d, p〉, where l0 ∈ [0, lmax], and t0 denote the
charge level of the vehicle and the time when the vehicle
is parked, respectively. t0 also denotes the beginning of
the decision process. d denotes the demand level at time
t0 and p denotes the price distribution at time t0.

• SG ⊆ S is the set of goal states. It is denoted by the
set of all states that match the tuple 〈l, tg, d, p〉, where
lg ≤ l ≤ lmax, and tg denotes the end of decision process
when the vehicle is unplugged from the smart grid. d de-
notes the demand level at time tg and p denotes the price
distribution at time tg .

The objective is to find a cost minimizing policy π∗ : S → A
that maximizes goal reachability, given the schedule of the
vehicle owner. Figure 1 illustrates the EV charging problem.

Modeling Price Uncertainty
We consider four different types of cost functions that model
the price uncertainty in a progressively more realistic way.

• Case 1 : The cost of discharging is the negation of the cost
of charging and the costs are assumed to be known in ad-
vance. C(s, Ch−i , s

′) = −C(s, Ch+i , s′),∀i,∀s, s′ ∈ S,
where i denotes the speed level for charging or discharg-
ing.

• Case 2: The cost of discharging is the negation of the
cost of charging plus a constant k. We again assume
that the costs are known in advance. C(s, Ch−i , s

′) =
−C(s, Ch+i , s′) + k, k ≥ 0,∀i,∀s, s′ ∈ S, where i de-
notes the speed levels for charging and discharging. When
k = 0, this case is the same as the previous case.

• Case 3: We assume that the cost of charging is known
in advance, but the cost of discharging varies dynamically
based on the actual level of demand. We assume that there
is a known distribution for the demand level fluctuation
based on the time of the day, with P (d′|d, t) denoting the
probability of demand d′ at time t if the demand at time
t−1 was d. P (C(s, Ch−i , s

′) = r|t, d) denotes the proba-
bility of the discharge cost r for state s, given the demand
d at time t.

• Case 4: We assume that the cost of charging is known
in advance, but the cost of discharging varies dynami-
cally based on the pricing distribution, which in turn de-
pends on the current demand level. We assume that there
is a known distribution for the demand level and for the
pricing. For a price distribution p, P (p|t, d) denotes the
probability of the pricing distribution p at time t with de-
mand level d, and P (d′|d, t) denotes the probability of
demand d′ at time t if the demand at time t − 1 was
d. Given the demand d and the pricing distribution p,
P (C(s, Ch−i , s

′) = r|t, d, p) denotes the probability of
the discharge cost r for state s.

Generally SSPs are defined with non-negative costs as this
would avoid any negative cost cycles. In a finite horizon
SSP, negative costs cycles cannot be formed because it is
not possible to transition to a state with a lower or equal time
step from the current state. Since the EV charging problem
described in this paper is modeled as a finite horizon SSP,
the negative costs in the model would not lead to negative
cost cycles.

Determinization of SSPs
A determinization yields a simplified variation of the SSP,
with deterministic transition function that can be solved
quickly using an off-the-shelf solver. Interest in deter-
minization increased after the success of FF-Replan (Yoon,
Fern, and Givan 2007) which won the 2004 IPPC, using the
Fast Forward (FF) technique to generate fast deterministic
plans (Hoffmann 2001). FF-Replan generates a determinis-
tic version of the problem and solves it using FF. If an un-
expected state is reached during plan execution, the process
repeats with the unexpected state as the initial state, until a
goal state is reached.

Following the success of FF-Replan, researchers have
proposed various methods to improve determinization.
Specifically, Robust FF (RFF) reduces the frequency of re-
planning by generating a plan for an envelope of states such
that the probability of reaching a state outside the envelope
is below some predefined threshold (Teichteil-Königsbuch,
Kuter, and Infantes 2010). HMDPP generates plans with
low probability of deviations using self-loop determiniza-
tion and using a pattern database to avoid dead ends (Keyder
and Geffner 2008). FF-hindsight uses hindsight optimiza-
tion to approximate the value function of the MDP by sam-
pling multiple deterministic futures that are solved using FF.
These efforts resulted in a rich collection of determinization-
based planning algorithms (Kolobov, Mausam, and Weld
2009; Yoon et al. 2008; 2010; Issakkimuthu et al. 2015;
Keller and Eyerich 2011; 2012).



In the deterministic version of the SSP M , the start state
s0 and the goal states SG are unaltered. Hence, the deter-
ministic version Md of the SSP M is denoted by the tuple
Md = 〈S,Ad, Td, Cd, s0, SG〉, where, Ad is the finite set of
actions (in this paper,Ad = A), Td : S×A→ S denotes the
deterministic transition function of Md and Cd : S × A →
R+ ∪ {0} specifies the cost function of the deterministic
problem Md. Conventional determinization techniques do
not alter the cost function.

The optimal Q-value of Md is computed as follows:

Q∗d(s, a) = Cd(s, a) + V ∗d (Td(s, a)) ∀s ∈ S, a ∈ Ad.
(3)

In general, a determinization may introduce dead ends
by ignoring an outcome that is crucial for goal reachabil-
ity, making the goal unreachable in some states. However, it
is possible to derive determinizations that preserve the goal
reachability (for example, by using heuristics to devise the
deterministic transition function that preserves goal reacha-
bility).

We define the loss of a determinization, ld, as the maxi-
mum difference between the optimal Q-value of actions in
the SSP M and the optimal Q-values in the determinized
problem Md.
Definition 1. The loss associated with a determinizationMd

of an SSP M is ld = max
s,a
|Q∗(s, a)−Q∗d(s, a)|.

This difference is treated as a loss as it could potentially
cause the model to yield a policy that significantly deviates
from the optimal policy. As this could affect the cost of the
plan and goal reachability in many problems, it is beneficial
to minimize the loss. However, conventional determiniza-
tion techniques may have arbitrary non-zero loss, ld > 0.

Lossless Determinization
In this section, we describe a simple technique to modify the
cost function of Md such that the loss is provably zero.
Definition 2. A determinization is a lossless determiniza-
tion (LLD) when the corresponding loss is zero: ld = 0.

Note that solving a lossless determinization of a given
SSP guarantees that the selected actions are optimal for the
SSP.

We can achieve zero loss, ld = 0, by adjusting the cost of
actions in each state. The costs are modified for every (s, a)
pair to account for the values of the outcomes ignored by the
determinization. Consequently, the optimal Q-values of Md

are equal to the optimal Q-values of M , reducing the loss to
zero. The process of arriving at a lossless determinization by
adjusting the cost of each action in every state is referred to
as Cost Adjustment for Lossless Determinization (CALLD).

Algorithm 1 describes a cost modification technique that
produces a lossless determinization. The input is the SSP
and a deterministic transition function, and the output is the
cost function for the determinized problem,Cd. Line 3 is the
cost adjustment step, where V ∗(s′) is the optimal value of
the successor s′ and V ∗(Td(s, a)) is the optimal value of the

Algorithm 1: CALLD (M,Td)
1 foreach s ∈ S do
2 foreach a ∈ As do
3 Cd(s, a)←

∑
s′

(
T (s, a, s′)V ∗(s′)

)
+

C(s, a)− V ∗(Td(s, a)) ;
4 end
5 end
6 return Cd

successor in the deterministic transition function in the SSP
M . Since the cost adjustment in Algorithm 1 depends on
the difference between outcome values, the costs yielded by
CALLD algorithm may be negative. In general, in an infinite
horizon SSP, negative costs may lead to negative cost cy-
cles, affecting the validity of the SSP. Therefore, we discuss
the necessary and sufficient conditions under which CALLD
produces non-negative cost.

Proposition 1. The necessary and sufficient condition for
having non-negative costs in a CALLD, Cd(s, a) ≥ 0, is
that the deterministic transition function chooses outcomes
in M such that Q∗(s, a) ≥ V ∗(Td(s, a)).

Proof. We consider each one of the implication directions:

Case 1:
(
Q∗(s, a)≥ V ∗(Td(s, a))

)
=⇒

(
Cd(s, a)≥ 0

)
Assume Q∗(s, a) ≥ V ∗(Td(s, a)). Using the definition of
Q-values (Equation (2)), we get:

C(s, a) +
∑
s′

(
T (s, a, s′)V ∗(s′)

)
− V ∗(Td(s, a)) ≥ 0.

Substituting for Cd(s, a) from Algorithm 1, we get
Cd(s, a) ≥ 0. Thus, Q∗(s, a) ≥ V ∗(Td(s, a)) is a suffi-
cient condition for non-negative cost in CALLD.

Case 2:
(
Cd(s, a)≥ 0

)
=⇒

(
Q∗(s, a)≥ V ∗(Td(s, a))

)
Assume Cd(s, a) ≥ 0. Substituting for Cd(s, a) from Algo-
rithm 1,

C(s, a) +
∑
s′

T (s, a, s′)V ∗(s′) ≥ V ∗(Td(s, a)).

Using the definition of Q-values, Equation (2), we get:

Q∗(s, a)≥ V ∗(Td(s, a)).

Hence, we conclude that the proposition holds.

In the case of a finite horizon stochastic planning problem,
negative cost cycles cannot be formed and therefore, satisfy-
ing the necessary and sufficient conditions for non-negative
costs in a CALLD is non-mandatory.

Proposition 2. CALLD produces a lossless determinization
when a deterministic transition function that preserves the
goal reachability is used.

Proof. We need to show that given an SSP M and its
determinization Md that preserves the goal reachability,



the optimal Q-values in Md are equal to the Q-values
in M , Q∗d(s, a) = Q∗(s, a), if the cost function C(s, a)
is modified to account for the outcomes ignored during
determinization.

Substituting for Cd(s, a) from Algorithm 1 in Equa-
tion (3) and using Equation (2) we get

Q∗d(s, a) = Q∗(s, a)− V ∗(Td(s, a)) + V ∗d (Td(s, a)).

Since the cost adjustment is performed for every (s, a)
pair and the determinization preserves goal reachability,
V ∗(Td(s, a))=V

∗
d (Td(s, a)) and hence ld = 0.

Corollary 1. There exists a lossless determinization for ev-
ery SSP.

Since it is possible to derive a goal reachability preserv-
ing determinization for every SSP and using CALLD would
produce a lossless determinization (Proposition 2), it is pos-
sible to arrive at a lossless determinization (Definition 2) for
any SSP.

Approximate Lossless Determinization
In many real-world problems, it is challenging to derive a
complete cost adjusted lossless determinization of the prob-
lem without solving the SSP and this defeats the purpose
of determinization. Therefore, we propose an approxima-
tion technique, referred to as Approximate Lossless Deter-
minization (ALLD). An ALLD estimates the cost for each
action in a state for a determinization of the SSP. We con-
sider sampling and machine learning techniques for estimat-
ing the cost adjustment for a large SSP, which we will re-
fer to as our target problem for simplicity. In this paper,
the approximate cost adjustments for the target problem are
learned from sampled small problems using a feature-based
cost function.

Definition 3. A feature-based cost function estimates the
cost of an action in a state using the features of the state,
Cd(s, a) = g(~f(s), a).

In a factored MDP, a state s is characterized by a set of
features and these can be used to predict the cost of an action
in the state. Let ~f(s) = 〈f1(s), ..., fn(s)〉 be a set of features
in a state s that significantly affect the cost of actions. Such
features can be identified using machine learning techniques
such as regression.

In order to estimate the feature-based approximate cost,
sample problems are generated and solved. The costs ad-
justment values for the samples are computed in hindsight.
The samples are obtained either from known small problem
instances in the target domain or generated automatically by
sampling states from the target problem. If the target prob-
lem has unavoidable dead ends, then sampling states may
not be a good representative of the target problem. In such
cases, smaller problem instances from the domain can be
used. In this paper, smaller problems are created by multiple
trials of depth limited random walk on the target problems
and solved using LAO* (Hansen and Zilberstein 2001). The
cost adjustments are computed for the samples using their

Figure 2: Example 1:Illustration

exact solutions and the feature-based costs are learned. The
learned values are projected onto the target problem using
the feature-based cost function.

We also consider an extreme case, where the feature set
characterizing each state is empty.

Definition 4. A state independent cost adjustment assigns a
constant cost adjustment per action, regardless of the state,
resulting in a constant cost Cd(s, a) = g(a).

This simple form of generalization of the cost adjustment
ignores the state altogether. In particular, PPDDL descrip-
tion of problems (Younes and Littman 2004) have a single
description per action and hence having constant cost ad-
justment for actions in a problem instance can be extended
to having constant cost adjustment for those actions in the
various instances of problems in the domain.

For example, consider an action a and the set of states in
which a is applicable. If the relative discrepancy between
the values of the outcomes of a is the same in every state
and the cost of a, C(s, a), is the same in every state, then
the cost adjustment can be trivially generalized with a state
independent cost adjustment.

Although it is challenging to balance the trade-off be-
tween using state independent costs and solution quality, the
following examples suggest that state independent cost ad-
justment could be effective.

Example 1. Consider an SSP in which an action can
achieve a successful outcome with probability 1−p or fail
with probability p>0. When an action fails, the state re-
mains unchanged. Let s denote a state of the SSP for which
a successful execution of action a with costC(s, a) results in
outcome state s′. Figure 2 is an illustration of this example.

Proposition 3. State independent cost adjustment produces
zero loss for the class of problems identified in Example 1.

Proof. In a goal reachability preserving determinization of
the problem, the failure outcome would be ignored and the
cost, Cd(s, a), calculated by Algorithm 1 is,

Cd(s, a) = C(s, a)+
∑
s′

(
T (s, a, s′)V ∗(s′)

)
−V ∗(Td(s, a)).

Since a fails with a probability p, we get

C(s, a)+
∑
s′

(
T (s, a, s′)V ∗(s′)

)
=

C(s, a)

1− p
+V ∗(Td(s, a)).



Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE(MLO) %DE
(ALLD)

P1 (909,7) (80,20) -7.60 -1.98 ± 0.07 -5.47 ± 0.02 -5.55 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P2 (909,7) (60,20) -6.15 -1.93 ± 0.07 -4.42 ± 0.08 -4.52 ± 0.06 0 ± 0 21.40 ± 0.04 0 ± 0

P3 (909,7) (30,40) 1.12 2.53 ± 0.07 1.86 ± 0.02 1.59 ± 0.01 0 ± 0 20.00 ± 0.20 16.00 ± 0.3

P4 (909,7) (50,50) -0.31 0 ± 0.01 0.09 ± 0.03 -0.62 ± 0.02 0 ± 0 20.00 ± 0.01 3.00 ± 0.02

P5 (909,7) (30,60) 3.58 4.38 ± 0.05 4.12 ± 0.03 3.58 ± 0.03 0 ± 0 0 ± 0 0 ± 0

P6 (909,7) (20,60) 4.12 5.58 ± 0.07 4.56 ± 0.03 4.33 ± 0.05 0 ± 0 23.05 ± 0.20 12.00 ± 0.3

P7 (909,7) (40,90) 4.36 4.93 ± 0.06 4.86 ± 0.03 4.42 ± 0.05 0 ± 0 20.00 ± 0.02 15.00 ± 0.03

Table 1: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 1

Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE(MLO) %DE
(ALLD)

P1 (909,7) (80,20) -4.87 -1.55 ± 0.04 -2.72 ± 0.02 -3.17 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P2 (909,7) (60,20) -3.97 -1.52 ± 0.05 -2.5 ± 0.02 -2.62 ± 0.02 0 ± 0 0 ± 0 0 ± 0

P3 (909,7) (30,40) 1.16 3.06 ± 0.04 1.92 ± 0.06 1.54 ± 0.02 0 ± 0 1.00 ± 0.03 0.50 ± 0.03

P4 (909,7) (50,50) 0.00 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

P5 (909,7) (30,60) 4.26 5.57 ± 0.08 4.63 ± 0.02 4.29 ± 0.02 0 ± 0 0 ± 0 0 ± 0

P6 (909,7) (20,60) 4.44 5.54 ± 0.08 4.55 ± 0.09 4.46 ± 0.01 0 ± 0 3.00 ± 0.02 0.50 ± 0.02

P7 (909,7) (40,90) 4.68 5.25 ± 0.03 4.85 ± 0.02 4.74 ± 0.02 0 ± 0 16.00 ± 0.02 1.10 ± 0.02

Table 2: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 2

Substituting the above equation in the first equation, we get

Cd(s, a) =
C(s, a)

1− p
+ V ∗(Td(s, a))− V ∗(Td(s, a))

=
C(s, a)

1− p
. (4)

Thus, the proposition illustrates a class of problems for
which state independent cost (Equation 4) is perfectly accu-
rate with zero loss.

The above proposition highlights the potential benefits of
ALLD that can achieve a perfectly accurate cost adjustment
for problems such as the Blocksworld, that satisfies the re-
quired conditions. In the Blocksworld problem—an IPPC
problem with stochastic actions— given an initial configu-
ration of a collection of blocks, the blocks need to be re-
arranged to satisfy some goal conditions. Since the actions
are stochastic, an action, for example, “pick block” may be
successful or unsuccessful. If unsuccessful, the block slips
and is dropped on the table and the action is repeated until
it is successful. Since the relative discrepancy in the values
of the outcomes is constant, a state independent cost adjust-
ment that is accurate with zero loss is feasible. Consider the
setting with unit cost actions that fail with a probability of
0.25. Our experiments show that regardless of the specific
block, the state independent cost for this action is constant
that matches the value of 1.33 obtained using Equation 4.
This example illustrates the scope of generalized constant
cost. However, not all domains satisfy this property. Iden-
tifying actions and domains that exhibit this property would
alleviate the need for the preprocessing and help exploit the
hidden structure in the given domain.

Experimental Results
The performance of ALLD is tested on four different cost
function settings of EV. For each cost function, we con-
sider seven different entry and exit level charges. In each
cost function scenario, the charging costs are assumed to
be known ahead of the decision process, and the costs as-
sociated with discharge actions may or may not be known
ahead of time, depending on the cost function case. For the
costs known in advance, we use the Time-of-Use (ToU) pric-
ing (Eversource 2017). In case 3 of the cost function, we
consider four demand levels– super off-peak, off-peak, mid-
peak, and peak demand. In cost function case 4, we consider
two pricing distributions – off-peak, and peak pricing levels,
in addition to the four demand levels. The peak and the non-
peak hours are based on real world peak hours and non-peak
hours (Eversource 2017).

In all our experimental test cases, we consider an EV
parked for a span of two hours and the duration of each
timestep t is equivalent to 15 minutes in real time. The bat-
tery capacity and the three charge speed settings for the EV
were selected based on Nissan Leaf EV configuration. We
assume the discharge speeds to be the same as that of charge
speeds. We also assume that the battery efficiency of the ve-
hicle is not 100% and therefore, it may be required to buy
more electricity from the grid than needed, and the electric-
ity that reaches the grid during discharge would be lesser
than the actual quantity discharged from the vehicle. We
account for this battery inefficiency by adding a penalty of
15% to the current charging and discharging costs.

The goal in this domain is to devise a robust policy for
EV charging such that the long-term operational cost of
the vehicle is minimized, while being consistent with the



Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE
(MLO)

%DE
(ALLD)

P1 (3636,7) (80,20) -4.60 -1.12 ± 0.02 -1.63 ± 0.04 -2.84 ± 0.03 0 ± 0 0 ± 0 0 ± 0

P2 (3636,7) (60,20) -2.60 -1.10 ± 0.01 -1.14 ± 0.02 -1.70 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P3 (3636,7) (30,40) 1.42 3.53 ± 0.03 1.62 ± 0.05 1.46 ± 0.02 0 ± 0 0 ± 0 0 ± 0

P4 (3636,7) (50,50) -0.94 0 ± 0 -0.02 ± 0.02 -0.32 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P5 (3636,7) (30,60) 2.49 4.20 ± 0.01 2.79 ± 0.02 2.49 ± 0.02 0 ± 0 0 ± 0 0 ± 0

P6 (3636,7) (20,60) 3.28 4.52 ± 0.04 3.93 ± 0.02 3.72 ± 0.02 0 ± 0 5.00 ± 0.02 0 ± 0

P7 (3636,7) (40,90) 3.47 4.86 ± 0.03 4.25 ± 0.04 3.70 ± 0.02 0 ± 0 15.00 ± 0.02 2.00 ± 0.02

Table 3: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 3

Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE
(MLO)

%DE
(ALLD)

P1 (7272,7) (80,20) -4.76 -3.22 ± 0.09 -3.30 ± 0.09 -3.52 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P2 (7272,7) (60,20) -3.71 -3.08 ± 0.08 -3.21 ± 0.06 -3.38 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P3 (7272,7) (30,40) 1.10 1.78 ± 0.09 1.77 ± 0.03 1.34 ± 0.01 0 ± 0 0 ± 0 0 ± 0

P4 (7272,7) (50,50) -1.00 0 ± 0 -0.25 ± 0.04 -0.35 ± 0.02 0 ± 0 0 ± 0 0 ± 0

P5 (7272,7) (30,60) 2.90 3.79 ± 0.04 3.65 ± 0.03 3.07 ± 0.01 0 ± 0 10.00 ± 0.02 3.00 ± 0.02

P6 (7272,7) (20,60) 3.29 5.09 ± 0.02 4.73 ± 0.03 3.91 ± 0.01 0 ± 0 20.00 ± 0.02 7.00 ± 0.02

P7 (7272,7) (40,90) 3.59 4.84 ± 0.04 3.97 ± 0.02 3.59 ± 0.02 0 ± 0 12.80 ± 0.04 0 ± 0

Table 4: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 4

owner’s preferences. Any state from where the goal (exit
level charge) cannot be reached in the remaining duration of
the parking is treated as a dead end in the SSP.

A feature-based cost function is used to estimate the cost
in ALLD in all our experiments. While ALLD requires
a preprocessing step, estimating the costs is only required
once per domain. The scalability of ALLD is preserved as
we limit the size of the required sampled problems; in our
experiments a depth of 4-8 was sufficient in most cases. The
quality of the plan generated by ALLD is compared with:

• Quality of the plan generated by solving the Most Likely
Outcome determinization of the SSP (MLO),

• Quality of the plan generated by using a greedy heuristic
based on a naive human decision making.

• Optimal cost obtained by solving the SSP offline.

The value of the plan (average cost of reaching the goal)
and fraction of dead end visits (%DE) are used as metrics to
estimate the quality of the generated plan. Standard errors
are reported for the value of the plan and the dead end visits
based on 1000 trials per setting.

In MLO determinization and ALLD, the deterministic
transition function chooses the most likely outcome for an
action in a state. Since both the techniques share the de-
terminisitic transition function, we use an optimal solver to
solve the determinisitic problems, and to efficiently evalu-
ate and compare the performance of ALLD. Therefore, the
MLO determinization and ALLD are solved using the A*
algorithm (Hart, Nilsson, and Raphael 1968), which is max-
imally efficient, and are complemented by replanning when
necessary. It is assumed that the time taken for replanning is
negligible.

Greedy heuristic We model a naive, and risk-averse hu-
man decision making as a simple greedy heuristic. Since
most people prefer to ensure that the vehicle achieves the
predefined exit charge over the monetary profits, we con-
sider this as a risk-averse decision making. It is also consid-
ered naive and greedy because the decision is based only on
the current state of the system. If the current charge of the
vehicle is equal to the predefined exit charge for the vehicle,
then the heuristic policy is to doNOP . If the current charge
level is less than the exit charge, then the heuristic policy is
to charge the vehicle at the maximum charge speed. If the
current charge level is greater than the required exit charge,
then the heuristic policy for that state is to discharge the elec-
tricity in medium speed as that would ensure profit for the
vehicle without draining the battery quickly. Using these
heuristic guidelines, a greedy policy can be devised for the
EV charging.

Discussion The performance of ALLD in the different
cost function scenarios is discussed below. The costs in the
tables account for the expenses related to charging and prof-
its from discharging.

In case 1, we assume that the cost of discharging is the
negation of the cost of charging. The result of the 1000 tri-
als are tabulated in table 1. In most cases, ALLD performed
better than MLO and greedy approach, in terms of cost. In
case 2, we assume that the cost of discharging is the negation
of the cost of charging plus some non-zero constant which
depends on the time and is known ahead of the decision pro-
cess. The result of the 1000 trials are tabulated in table 2.
In all our test cases, ALLD performed better than MLO and
greedy approach, in terms of cost, with significantly lower



dead end visits.
In case 3, we assume that the cost of charging is known

in advance and is based on the Time-of-Use pricing. The
discharging cost depends on the current demand level and
we assume that the distribution is known. The result of the
1000 trials are tabulated in table 3. In most of our test cases,
ALLD performed better than MLO and greedy approach,
in terms of dead ends and cost. In case 4, we assume that
the cost of charging is known in advance and is based on
the Time-of-Use pricing. The discharging cost depends on
the current demand level and the current pricing distribu-
tion. We assume that the demand and pricing distributions
are known in advance. The result of the 1000 trials are tabu-
lated in table 4. In all our test cases, ALLD performed better
than MLO and greedy approach, in terms of cost, with sig-
nificantly lower dead end visits.

For every test case in each case of the cost function dis-
cussed above, the greedy approach consistently avoids dead
ends. This is an expected behavior as the greedy approach is
conservative with respect to discharging electricity. How-
ever, the cost obtained by executing the greedy policy is
much higher than the optimal, compared to the two deter-
minization techniques. In cases where the entry charge is
lower than the exit charge, the greedy policy is very expen-
sive as it tries to charge as fast as possible to avoid dead end.
However, this may be unnecessary if the parking duration is
long enough. Also, the greedy policy does not consider the
price variation which significantly affects the total cost.

Overall, while greedy approach is simple and easy, it is
not effective when there is price variation with respect to
time or in complicated settings such as the price depending
on the current demand level. This reinforces the need for
automated planning for EV charging under price uncertainty.
ALLD always performs better than the greedy approach in
terms of cost, and better than MLO determinization in terms
of both cost and dead end visits, illustrating the potential of
ALLD in achieving near-optimal policy for an EV operating
under price uncertainty.

Conclusion and Future Work
Until recently, electric vehicles were primarily perceived as
consumers of electricity from the smart grid. In the Vehicle-
to-Grid (V2G) setting, electric vehicles can act as both con-
sumers and producers of electricity. Using this feature, we
aim to derive a charging policy for the EV that minimizes the
long-term operational cost of the vehicle and that is consis-
tent with the owner’s preferences. Due to price uncertainty,
this problem needs to be solved on-the-fly. Hence, we model
this problem as a stochastic shortest path problem and em-
ploy determinization technique to solve it.

Since the policies yielded by conventional determiniza-
tion techniques can significantly deviate from the optimal
policy, we introduce the notion of lossless determinization
that produces optimal action selection via determinization.
We present cost adjustment for lossless determinization, an
approach to achieve lossless determinization by adjusting
the costs of actions in the deterministic problem. Since it
is difficult to compute the exact cost adjustment without

knowing the optimal values of the states, we propose ap-
proximation techniques to compute estimated costs. Our ex-
periments show that ALLD can effectively use approximate
costs to get better results than conventional determinization
techniques.

The model presented in this paper aims to optimize the
charging policies of an electric vehicle in a V2G setting.
However, we do not consider the ancillary services like fre-
quency regulation that an EV can offer. In future work, we
plan to explore the role of determinization in general, and
ALLD in particular, for other ancillary services of an EV in
a V2G setting. While we assume that the duration of park-
ing is known in advance, planning with stochastic parking
duration is an interesting direction for the future work.
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