
Adaptive Metareasoning for Bounded Rational Agents

Justin Svegliato and Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts Amherst
{jsvegliato,shlomo}@cs.umass.edu

Abstract

In computational approaches to bounded rational-
ity, metareasoning enables intelligent agents to op-
timize their own decision-making process in or-
der to produce effective action in a timely manner.
While there have been substantial efforts to develop
effective meta-level control for anytime algorithms,
existing techniques rely on extensive offline work,
imposing several critical assumptions that diminish
their effectiveness and limit their practical utility
in the real world. In order to eliminate these as-
sumptions, adaptive metareasoning enables intel-
ligent agents to adapt to each individual instance
of the problem at hand without the need for sig-
nificant offline preprocessing. Building on our re-
cent work, we first introduce a model-free approach
to meta-level control based on reinforcement learn-
ing. We then present a meta-level control technique
that uses temporal difference learning. Finally, we
show empirically that our approach is effective on
a common benchmark in meta-level control.

1 Introduction
Due to the computational complexity of decision making
in the real world, it has long been recognized that build-
ing intelligent agents that exhibit perfect rationality is be-
yond our reach [Simon, 1947; 1982]. There have therefore
been substantial efforts to develop computational approaches
to bounded rationality [Horvitz, 1990; Russell and Wefald,
1991b; Zilberstein, 1993]. By taking into account the compu-
tational costs of decision making, these models enable intelli-
gent agents to compute satisficing actions—decisions deemed
“good enough”—in complex situations with a limited amount
of time available for deliberation. One particularly promising
approach to bounded rationality has been based on metarea-
soning. Metareasoning gives intelligent agents the capacity
to explicitly deliberate about and hence optimize their own
decision-making process in order to produce effective action
in a timely manner. As the autonomy and complexity of in-
telligent agents continues to grow, the need for metareason-
ing has become increasingly more important given the uncer-
tainty about the range of potential situations and exceptions

that they might encounter as well as the variability and limi-
tations of their reasoning capabilities [Zilberstein, 2011].

In one of the most promising approaches to metareason-
ing, an intelligent agent monitors and controls anytime al-
gorithms, which have been developed for a wide range of
real-time planning and decision-making tasks, such as belief-
space planning [Pineau et al., 2003], probabilistic infer-
ence [Ramos and Cozman, 2005], heuristic search [Hansen
et al., 1997; Richter et al., 2010], motion planning [Luna et
al., 2013], and object detection [Richtsfeld et al., 2013]. Sim-
ply put, an anytime algorithm is an algorithm that gradually
improves the quality of a solution as it runs and returns the
current solution if it is interrupted. This behavior enables
an anytime algorithm to trade computation time with solu-
tion quality. In intelligent agents, this has proven to be use-
ful since they must often approximate solutions to complex
problems in order to respond within an acceptable amount of
time. However, to exploit the trade-off between solution qual-
ity and computation time, the agent must solve a non-trivial
meta-level control problem: it must decide when to interrupt
the anytime algorithm and act on the current solution.

There has been tremendous progress in the development
of effective meta-level control for anytime algorithms. One
common approach estimates the stopping point of the al-
gorithm before it begins and lets it run until that stopping
point has been reached [Horvitz, 1987; Boddy and Dean,
1994]. Since the stopping point is not revised after the al-
gorithm begins, this approach is called fixed allocation. If
there is little uncertainty about the performance of the algo-
rithm or the urgency for the solution, fixed allocation inter-
rupts the algorithm near the optimal stopping point. However,
in real-time decision-making problems, there is often consid-
erable uncertainty about either or both variables [Paul et al.,
1991]. Hence, another more sophisticated approach monitors
the performance of the algorithm and estimates the stopping
point at run time [Horvitz, 1990; Breese and Horvitz, 1991;
Zilberstein and Russell, 1995; Hansen and Zilberstein, 2001].
Given that the stopping point is continually revised based
on the performance of the algorithm, this approach is called
monitoring, which is a form of introspective reasoning [Cox
and Ram, 1999]. Monitoring has proven to be a better ap-
proach to meta-level control than fixed allocation because it
more effectively handles variance and noise in the perfor-
mance of the algorithm.



Existing meta-level control techniques that use either fixed
allocation or monitoring have traditionally relied on signifi-
cant offline work. In particular, before the activation of the
anytime algorithm, a model that describes its performance
must be compiled for the given problem [Zilberstein, 1996].
However, relying on such a model, called a performance pro-
file, imposes several assumptions that are often not feasible in
real world applications, particularly:

• There is ample time for offline compilation of the perfor-
mance profile of the anytime algorithm.

• The anytime algorithm performs uniformly across each
individual problem instance that may be encountered.

• The distribution of problem instances that the anytime
algorithm must solve in the future is known and fixed.

• The anytime algorithm always runs on the same machine
under the same CPU and memory conditions.

In short, existing techniques depend on many unrealistic as-
sumptions that diminish their effectiveness and limit their
practical utility in the real world.

In order to eliminate these assumptions, we propose an
adaptive approach to metareasoning for bounded rational
agents. Simply put, adaptive metareasoning aims to provide
intelligent agents with two capabilities. The first capability
enables the agent to adapt its own decision-making process
to each individual instance of the problem at hand. More im-
portantly, however, the second capability allows the agent to
monitor and control its own decision-making process without
the need for extensive offline work. In other words, the key
idea is to replace substantial offline preprocessing with effi-
cient online methods for predicting the performance of the
anytime algorithm on each individual instance of the problem
at hand. Both capabilities therefore provide bounded rational
agents with significantly more effective metareasoning that
can be far easier to implement and deploy in practice.

In recent work, we introduce one of the first adaptive
metareasoning methods [Svegliato et al., 2018]. In partic-
ular, we present a meta-level control technique that uses an
online performance prediction framework. Similar to earlier
work, our technique monitors the performance of the anytime
algorithm and estimates the stopping point at run time. How-
ever, in place of a performance profile that must be compiled
prior to the activation of the algorithm, our technique predicts
future performance based on the current performance of the
algorithm on each individual instance of the problem at hand.
Even without significant offline work, our technique has been
shown to be more effective than state-of-the-art techniques
across a wide range of common benchmark domains.

While our meta-level control technique takes advantage of
a single problem instance without any prior knowledge using
online performance prediction, it is possible to exploit multi-
ple problem instances using reinforcement learning. Building
on our recent work in adaptive metareasoning, our primary
contributions are: (a) a model-free approach to meta-level
control based on reinforcement learning, (2) a meta-level con-
trol technique that uses temporal difference (TD) learning,
and (3) an empirical analysis that shows that our approach is
effective on a common benchmark in meta-level control.

Figure 1: An idealized example of the meta-level control problem.

2 Meta-Level Control Problem
We begin by reviewing the meta-level control problem for
anytime algorithms. This problem requires a model that rep-
resents the utility of a solution computed by an algorithm.
Intuitively, in real-time decision-making tasks, a solution of
a particular quality computed in a second has higher utility
than a solution of the same quality computed in an hour. This
suggests that the utility of a solution is a function of both
quality and computation time [Horvitz and Rutledge, 1991;
Boddy and Dean, 1994]. Accordingly, we define the utility of
a solution as follows.

Definition 1. A time-dependent utility function, U(q, t), rep-
resents the utility of a solution of quality q at time step t.

It is often possible to simplify a time-dependent util-
ity function by expressing it as the difference between two
functions called object-level utility and inference-level util-
ity [Horvitz, 1988]. First, object-level utility represents the
utility of a solution if we consider only the quality of that
solution, ignoring the cost of computation time. Second,
inference-level utility represents the utility of a solution if we
take into account only the time needed to compute that so-
lution, disregarding the value of solution quality. Adopting
standard terminology [Russell and Wefald, 1991a], we define
this property below [Hansen and Zilberstein, 2001].

Definition 2. A time-dependent utility function, U(q, t), is
time-separable if the utility of a solution of quality q at time
step t can be expressed as the difference between two func-
tions, U(q, t) = UI(q)− UC(t), where UI(q) is the intrinsic
value function and UC(t) is the cost of time.

Given a time-dependent utility function, the meta-level
control problem is the problem of deciding when to interrupt
an anytime algorithm and act on the current solution. Figure 1
illustrates a typical instance of the meta-level control prob-
lem [Zilberstein, 1996]. In this example, the algorithm should
be interrupted at the optimal stopping point. This is the point
at which the time-dependent utility function is the highest.
However, in practice, the optimal stopping point often can-
not be determined due to considerable uncertainty about the
performance of the algorithm or the urgency for the solution.
The optimal stopping point must therefore be estimated us-
ing a model of either or both variables. Similar to earlier
work [Hansen and Zilberstein, 2001], we assume that there is
only uncertainty about the performance of the algorithm.



Figure 2: A typical illustration of a model-free approach to meta-
level control based on reinforcement learning.

3 Model-Free Meta-Level Control
We now introduce a model-free approach to meta-level con-
trol for anytime algorithms based on reinforcement learning.
Reinforcement learning has led to many mature and sophisti-
cated methods [Sutton and Barto, 1998] that have proven to
be effective across a wide range of applications from game
playing [Tesauro, 1995] to helicopter control [Kim et al.,
2004]. The benefits of reinforcement learning methods is that
they incrementally learn a policy online and readily adapt
to changing circumstances. In adaptive metareasoning, this
is especially important because the parameters of the meta-
level control problem, particularly the characteristics of the
problem, the availability of computational resources, and the
settings of the anytime algorithm, often change in many real
world applications. There also may not be enough time to
build a meta-level control strategy—known as a monitoring
policy—prior to the activation of the anytime algorithm.

Figure 2 depicts how reinforcement learning methods can
quickly learn an effective monitoring policy for a particular
problem (i.e., the green 50-TSP section). While the monitor-
ing policy may temporarily degrade when the characteristics
of the problem change (e.g., a shift from 50-TSP to 60-TSP),
reinforcement learning methods can rapidly adapt the moni-
toring policy (i.e., the red 60-TSP section). Generally, when
the meta-level control problem shifts gradually, particularly
the hyperparameters of the problem, the system, or the any-
time algorithm evolve over time, the monitoring policy can
be learned and adapted by observing its performance on the
meta-level control problem. Note that the monitoring policy
can also be learned on the fly when there is not enough time
before the activation of the anytime algorithm.

Although we are not aware of any prior use of reinforce-
ment learning methods for meta-level control, such a frame-
work is an especially good fit for several reasons. First,
the decision to interrupt the anytime algorithm is often non-
stationary because the hyperparameters of the problem, the
system, and the anytime algorithm often change over time.
Second, the meta-level control problem typically contains a
large region of the state space that is unlikely to be reached
and can be ignored in practice, which reduces the overhead
required to construct an effective monitoring policy. In par-
ticular, reinforcement learning methods use experience that
is limited to only reachable regions of the state space while
existing dynamic programming methods must develop a uni-

versal policy that covers the entire state space. Third, the
trade-off between exploration and exploitation is essential for
learning an effective monitoring policy, especially when the
parameters of the meta-level control problem change gradu-
ally. In short, the meta-level control problem shares many
properties with problems for which reinforcement learning
methods have been shown to be effective.

In order to develop a model-free approach to meta-level
control that builds a monitoring policy using reinforcement
learning methods, it is necessary to represent the meta-level
control problem as a reinforcement learning problem. Rein-
forcement learning methods are typically applied to problems
described as a Markov decision process (MDP). An MDP is
defined by a tuple 〈S,A, T,R, s0〉, where S is a finite set of
states, A is a finite set of actions, T : S × A × S → [0, 1]
represents the probability of reaching state s′ ∈ S after per-
forming a ∈ A in state s ∈ S, R : S×A×S → R represents
the expected immediate reward of reaching state s′ ∈ S after
performing action a ∈ A in state s ∈ S, and s0 is the initial
state. A solution to an MDP is a mapping π : S → A, which
could be partial, that indicates that action π(s) ∈ A should
be taken in state s ∈ S. A policy π induces the value func-
tion V π : S → R that represents the expected cumulative
reward of each state. An optimal policy π∗ maximizes this
expected cumulative reward. Note that since the meta-level
control problem has an indefinite horizon, we do not need a
discount factor γ. It is always beneficial to interrupt the any-
time algorithm after a finite amount of time [Hansen, 2007].

The meta-level control problem can easily be represented
as an MDP. The state of computation is expressed by a tuple
(q, t) that indicates the availability of a solution of quality q
at time t (which is denoted by qt). Because a solution is not
available at the start of the anytime algorithm, the start state is
typically s0 = (0, 0). The possible actions are either to STOP
the computation or CONTINUE the computation for another
time step with duration ∆t. We assume that the transition
function T (s′|s, a) is unknown and not necessarily stationary
because the underlying parameters of the meta-level control
problem may change gradually. Finally, we need to define
a suitable reward function. On the one hand, the reward for
continuing the anytime algorithm for another time step can be
expressed as the difference between two utilities: the utility
of the current solution and the utility of the previous solution
generated by the anytime algorithm. On the other hand, how-
ever, stopping the anytime algorithm generates no reward. We
provide a formal description of the reward function below.
Definition 3. The immediate reward of anytime computa-
tion (RAC) can be expressed as the difference between the
utility of the current solution and the utility of the previous
solution, that is:

RAC(qt, CONTINUE, qt+∆t) = U(qt+∆t, t+∆t)−U(qt, t).

The immediate reward for stopping the computation is always
0, that is:

RAC(qt, STOP, qt) = 0.

It is easy to verify that such a reward function is consis-
tent with the objective of maximizing time-dependent utility.
Running an anytime algorithm until some solution of quality
qt at time t generates a cumulative reward equal to U(qt, t).



Figure 3: The metareasoning architecture of an intelligent agent.

4 Meta-Level Control Technique
In this section, we present a meta-level control technique for
anytime algorithms that uses TD learning. Such a technique
incrementally improves the monitoring policy after every in-
termediate solution generated by the anytime algorithm. In
particular, when the anytime algorithm generates a new so-
lution to the instance of the problem at hand, the interme-
diate reward of anytime computation can be used to update
the action-value function and the monitoring policy. Note
that our technique can easily be modified to use different TD
learning methods. While there are many existing on-policy
and off-policy TD learning methods, such as TD(λ) [Sutton,
1995; Tesauro, 1995] and Sarsa(λ) [Sutton and Barto, 1998;
Chen and Wei, 2008], we outline our approach using Q-
learning [Watkins and Dayan, 1992] because it has been an-
alyzed extensively [Szepesvári, 1998; Maei et al., 2010] and
has seen success across a wide range of applications [Srivihok
and Sukonmanee, 2005; Tan et al., 2009].

Algorithm 1 describes our meta-level control technique.
First, the current time step and solution quality are both ini-
tialized, the current action is selected from the ε-greedy pol-
icy induced by the initial action-value function, and the any-
time algorithm is activated. Next, the performance of the any-
time algorithm is monitored at fixed intervals. At each mon-
itoring step, the immediate reward of anytime computation
is first calculated based on the utility of the new solution and
the utility of the current solution. The action-value function is
then updated using the Q-learning update rule discussed be-
low. A new action is in turn selected from the ε-greedy policy
induced by the updated action-value function. Note that the
new action may be randomly selected as a result of ε-greedy
exploration. Finally, if the new action indicates to stop the
algorithm, the anytime algorithm is interrupted and the cur-
rent solution is returned. Otherwise, the anytime algorithm
continues to run. The anytime algorithm is monitored at fixed
intervals until interrupted or terminated naturally.

In general, when the anytime algorithm is resumed given
the d = CONTINUE action, the action-value function is up-
dated using the following update rule:

Q(qt, d)
+← α[RAC(qt, d, qt′)+max

d′
Q(qt′ , d

′)−Q(qt, d)].

However, when the anytime algorithm is stopped given the
d = STOP action, there is no change in the state of computa-
tion. It therefore offers no learning: that is, the action-value
function is not updated when the anytime algorithm is inter-
rupted. Note that it is possible to define update rules for a
wide range of on-policy and off-policy TD learning methods.

Algorithm 1: A meta-level control technique that uses
Q-learning with ε-greedy exploration.

Input: An anytime algorithm A, an exploration rate ε, a
learning rate α, a duration ∆t, and an action-value
function Q

Output: A solution σ

1 t← 0
2 qt ← 0
3 d← πε(qt)

4 A.Start()
5 Sleep(∆t)

6 while A.Running() do
7 σ ← A.CurrentSolution()

8 qt+∆t ← σ.Quality()
9 r = U(qt+∆t, t+ ∆t)− U(qt, t)

10 Q(qt, d)
+← α[r + maxd′ Q(qt+∆t, d

′)−Q(qt, d)]

11 d← πε(qt)
12 if d = STOP then
13 A.Stop()
14 return σ

15 t← t+ ∆t
16 Sleep(∆t)

17 return σ

Once the action-value function has been updated, the
greedy monitoring policy can efficiently be built by perform-
ing a one-step lookahead over all actions available at the cur-
rent state. Because the anytime algorithm can either be re-
sumed or interrupted at each time step, there are only two ac-
tions that must be examined in the one-step lookahead. Con-
structing a greedy monitoring policy therefore requires negli-
gible overhead after each update of the action-value function.
The greedy monitoring policy is calculated as follows:

π(qt)← arg max
d

Q(qt, d).

This calculation can easily be modified to yield the ε-greedy
monitoring policy πε(qt) in Algorithm 1. Softmax action se-
lection in addition to other exploration strategies can be used
with little modification and negligible overhead as well.

TD learning exhibits many desirable properties that makes
it particularly suitable for meta-level control. First, TD learn-
ing is guaranteed to converge to the optimal monitoring pol-
icy if none of the states are “starved” and the action-value
function is a complete lookup table. Next, due to incremental
updating and bootstrapping, TD learning has been observed
to result in faster convergence than other reinforcement learn-
ing methods in practice. Finally, TD learning eliminates the
significant offline work required by existing meta-level con-
trol techniques because it is suited for online deployment.

The state of computation has traditionally been represented
using the computation time and the quality of the solution.
While our technique follows such a representation, we recog-
nize that these features may not be adequate because the tran-
sition dynamics over the computation time and the quality of
the solution is likely not Markovian. Any decision-theoretic



ε = 0.3 ε = 0.2 ε = 0.1 ε = 0.01

α = 0.1 15.523 ± 2.31 14.764 ± 2.09 22.510 ± 2.02 57.082± 1.38

α = 0.01 20.301 ± 2.16 19.514 ± 2.59 17.222 ± 2.04 47.373± 2.57

α = 0.001 17.623 ± 2.07 23.581 ± 1.59 34.932± 2.06 47.655± 1.82

α = 0.0001 39.819± 2.77 49.723± 2.07 45.593± 2.89 60.101± 0.98

Table 1: The average time-dependent utility loss (%) of the monitoring policies learned by our meta-level control technique.

Figure 4: The rate of improvement in the monitoring policy for the
hyperparameters α = 0.1 and ε = 0.2 during training.

approach to meta-level control, including methods that use ei-
ther planning or reinforcement learning, could therefore ben-
efit from a richer representation of the state of computation.
While it is encouraging that we observe near optimal monitor-
ing policies given only the computation time and the quality
of the solution on a common benchmark in meta-level con-
trol, we emphasize that our technique can readily be modified
to exploit problem-specific instances features.

It is easy to see how alternative reinforcement learning
methods could be used by a meta-level control technique as
well. For instance, a technique that uses Monte Carlo (MC)
learning [Wang et al., 2012] would update the monitoring
policy only after the final solution of the anytime algorithm.
In particular, once the anytime algorithm has terminated and
generated the final solution, the cumulative rewards (i.e., the
reward-to-go from each state along the trial sequence) can
be used to update the action-value function and the monitor-
ing policy accordingly. In contrast, because our technique
uses TD learning, it updates the action-value function and
the monitoring policy after every intermediate solution of the
anytime algorithm. While TD learning is likely a better ap-
proach to meta-level control given incremental updating and
bootstrapping, MC learning can be more tolerant of viola-
tions of the Markov property. It is also possible to use TD(λ),
a more general approach that blends MC and TD learning.

5 Experiments
We show that our meta-level control technique learns a near
optimal monitoring policy on a common benchmark in meta-
level control of anytime algorithms [Hansen and Zilberstein,
2001]. In particular, the Lin-Kernighan heuristic is a tour im-
provement algorithm that solves the traveling salesman prob-
lem (TSP) approximately [Lin and Kernighan, 1973]. The
algorithm starts with an initial tour and gradually improves
that tour by swapping specific subtours until convergence. In
practice, the algorithm generally achieves a solution within

Figure 5: The time-dependent utility losses of the monitoring policy
for the hyperparameters α = 0.1 and ε = 0.2 during testing.

90% of the optimal solution. Note that the algorithm repre-
sents the behavior of a wide range of anytime algorithms that
have been deployed across a number of domains.

All experiments use our meta-level control technique and
the Lin-Kernighan heuristic to solve different instances of a
50-TSP. In general, each experiment includes a training step
and a testing step. First, we train our technique on 5,000 ran-
dom instances of the 50-TSP. During the training step, our
technique learns the monitoring policy using Q-learning with
ε-greedy exploration as described in Algorithm 1. Finally, af-
ter the training step, we test our technique on 1,000 random
instances of the 50-TSP. During the testing step, our tech-
nique uses the monitoring policy learned during the training
step. Note that the monitoring policy remains fixed because
improvement and exploration have been disabled.

Figure 3 shows the architecture of an intelligent agent with
metareasoning capabilities. Each experiment represents a
typical instance of the meta-level control problem where an
intelligent agent must decide when to interrupt an anytime al-
gorithm and act on the current solution. To do this, we run
two processes in parallel. The object-level process uses an
anytime algorithm to solve an instance of a particular prob-
lem. At the same time, the meta-level process uses our meta-
level control technique to monitor and control the anytime
algorithm at fixed intervals. The experiment concludes when
the anytime algorithm is either interrupted or terminated natu-
rally. Note that our technique monitors the anytime algorithm
approximately every tenth of a second.

As discussed earlier, meta-level control requires a time-
dependent utility function. Similar to earlier work, we define
the time-dependent utility of a solution of quality q at time
step t as the function, U(q, t) = αq − eβt, where the rates α
and β are selected in practice based on the value of a solution
and the urgency for a solution [Hansen and Zilberstein, 2001].
In all experiments, we deliberately select rates to avoid trivial-
izing the problem (e.g., by making the urgency for a solution
so high that the algorithm is interrupted immediately or so



low that it runs to completion). Note that the first and second
terms of the time-dependent utility function are the intrinsic
value function and the cost of time respectively.

Ideally, the quality of a solution can be defined as the ap-
proximation ratio, q = c∗/c, where c∗ is the cost of the op-
timal solution and c is the cost of the current solution. How-
ever, because the cost of the optimal solution cannot quickly
be computed for the benchmark problems, we estimate the
quality of a solution as the approximation ratio, q = `/c,
where ` is a problem-dependent lower bound on the optimal
solution. For the TSP, we estimate solution quality, specifi-
cally the tour quality, using the lower bound, `tsp, defined as
the length of the minimum spanning tree of the TSP, which is
computed in polynomial time using Prim’s algorithm.

Table 1 shows the effectiveness of the monitoring poli-
cies learned by our meta-level control technique for a range
of learning rates α and exploration rates ε. We evaluate
our technique using the average time-dependent utility loss.
This is expressed as the average difference between the time-
dependent utility of the learned monitoring policy and the op-
timal time-dependent utility for all trials in the testing step.
Observe that the hyperparameters α = 0.1 and ε = 0.2 result
in the best monitoring policy. The entries with an average
time-dependent utility loss under 25% have been highlighted.
Note that lower values indicate better performance.

Figure 4 illustrates the rate of improvement in the moni-
toring policy when our meta-level control technique uses the
learning rate α = 0.1 and the exploration rate ε = 0.2 dur-
ing the training step. Observe that our technique nearly con-
verges to the optimal time-dependent utility. The early trials
are noisy because our technique starts with a random moni-
toring policy that must stabilize rapidly before learning.

Figure 5 describes the performance of the monitoring pol-
icy learned by our meta-level control technique for the learn-
ing rate α = 0.1 and the exploration rate ε = 0.2 during the
testing step. Each point indicates the time-dependent utility
loss for a particular trial. Observe that our technique only per-
forms poorly on a handful of trials. This is likely because our
technique did not encounter similar trials during the training
step. While we use a lookup table to represent the action-
value function, more sophisticated function approximations
may result in faster convergence and a better monitoring pol-
icy [Konidaris et al., 2011]. Note that the trials have been
sorted in the order of increasing time-dependent utility loss.

6 Conclusion
Building on our recent work in adaptive metareasoning, we
propose a model-free approach to meta-level control based
on reinforcement learning. In particular, we offer a meta-
level control technique that uses TD learning. It eliminates
many assumptions of current techniques: not only does it ob-
viate extensive offline work, but it also adapts to each indi-
vidual instance of the problem at hand. Finally, we show em-
pirically that our approach is effective on a common bench-
mark in meta-level control. Future work will explore richer
feature-based representations of the state of computation as
well as other reinforcement learning methods with more so-
phisticated function approximations.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. This work was supported in part by the National Sci-
ence Foundation grants IIS-1405550 and IIS-1724101.

References
[Boddy and Dean, 1994] Mark Boddy and Thomas L.

Dean. Deliberation scheduling for problem solving in
time-constrained environments. Artificial Intelligence,
67(2):245–285, 1994.

[Breese and Horvitz, 1991] John S. Breese and Eric J.
Horvitz. Ideal reformulation of belief networks. In Pro-
ceedings of the Sixth Conference on Uncertainty in Artifi-
cial Intelligence, pages 129–143, 1991.

[Chen and Wei, 2008] Sheng-Lei Chen and Yan-Mei Wei.
Least-squares SARSA(Lambda) algorithms for reinforce-
ment learning. In Proceedings of the Fourth Interna-
tional Conference on Natural Computation, pages 632–
636, 2008.

[Cox and Ram, 1999] Michael T. Cox and Ashwin Ram. In-
trospective multistrategy learning: On the construction of
learning strategies. Artificial Intelligence, 112(1):1–55,
1999.

[Hansen and Zilberstein, 2001] Eric A. Hansen and Shlomo
Zilberstein. Monitoring and control of anytime algorithms:
A dynamic programming approach. Artificial Intelligence,
126(1-2):139–157, 2001.

[Hansen et al., 1997] Eric A. Hansen, Shlomo Zilberstein,
and Victor A. Danilchenko. Anytime heuristic search:
First results. Technical Report 97-50, Computer Science
Department, University of Massachussetts Amherst, 1997.

[Hansen, 2007] Eric A. Hansen. Indefinite-horizon
POMDPs with action-based termination. In Proceedings
of the Twenty-Second AAAI Conference on Artificial
Intelligence, pages 1237–1242, 2007.

[Horvitz and Rutledge, 1991] Eric Horvitz and Geoffrey
Rutledge. Time-dependent utility and action under uncer-
tainty. In Proceedings of the Seventh Conference on Un-
certainty in Artificial Intelligence, pages 151–158, 1991.

[Horvitz, 1987] Eric J. Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Pro-
ceedings of the Third Workshop on Uncertainty in Artifi-
cial Intelligence, 1987.

[Horvitz, 1988] Eric Horvitz. Reasoning under varying and
uncertain resource constraints. In Proceedings of the Sev-
enth AAAI Conference on Artificial Intelligence, pages
111–116, 1988.

[Horvitz, 1990] Eric J. Horvitz. Computation and action un-
der bounded resources. PhD thesis, Stanford University,
CA, 1990.

[Kim et al., 2004] H.J. Kim, Michael I. Jordan, Shankar Sas-
try, and Andrew Y. Ng. Autonomous helicopter flight via
reinforcement learning. In Proceedings of the Conference
on Neural Information Processing Systems, pages 799–
806, 2004.



[Konidaris et al., 2011] George Konidaris, Sarah Osentoski,
and Philip S Thomas. Value function approximation in re-
inforcement learning using the Fourier basis. In Proceed-
ings of the Twenty-Fifth AAAI Conference on Artificial In-
telligence, volume 6, page 7, 2011.

[Lin and Kernighan, 1973] Shen Lin and Brian W.
Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research,
21(2):498–516, 1973.

[Luna et al., 2013] R. Luna, I. A. Şucan, M. Moll, and L. E.
Kavraki. Anytime solution optimization for sampling-
based motion planning. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages
5068–5074, 2013.

[Maei et al., 2010] Hamid Reza Maei, Csaba Szepesvári,
Shalabh Bhatnagar, and Richard S. Sutton. Toward off-
policy learning control with function approximation. In
Proceedings of the Twenty-Seventh International Confer-
ence on Machine Learning, pages 719–726, 2010.

[Paul et al., 1991] C. J. Paul, Anurag Acharya, Bryan Black,
and Jay K. Strosnider. Reducing problem-solving variance
to improve predictability. Communications of the ACM,
34(8):80–93, 1991.

[Pineau et al., 2003] Joelle Pineau, Geoff Gordon, and Se-
bastian Thrun. Point-based value iteration: An anytime
algorithm for POMDPs. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence,
pages 1025–1032, 2003.

[Ramos and Cozman, 2005] Fabio Tozeto Ramos and
Fabio Gagliardi Cozman. Anytime anyspace proba-
bilistic inference. International Journal of Approximate
Reasoning, 38(1):53 – 80, 2005.

[Richter et al., 2010] Silvia Richter, Jordan Tyler Thayer,
and Wheeler Ruml. The joy of forgetting: Faster anytime
search via restarting. In Proceedings of the Conference
on Automated Planning and Scheduling, pages 137–144,
2010.

[Richtsfeld et al., 2013] Andreas Richtsfeld, Michael Zil-
lich, and Markus Vincze. Anytime perceptual grouping
of 2D features into 3D basic shapes. In Proceedings of the
Ninth International Conference on Computer Vision Sys-
tems, pages 73–82, 2013.

[Russell and Wefald, 1991a] Stuart Russell and Eric We-
fald. Principles of metareasoning. Artificial Intelligence,
49:361–395, 1991.

[Russell and Wefald, 1991b] Stuart J. Russell and Eric H.
Wefald. Do the Right thing: Studies in Limited Rationality.
MIT Press, Cambridge, MA, USA, 1991.

[Simon, 1947] Herbert A. Simon. Administrative Behavior.
Macmillan, New York, NY, USA, 1947.

[Simon, 1982] Herbert A. Simon. Models of Bounded Ratio-
nality. MIT Press, Cambridge, MA, USA, 1982.

[Srivihok and Sukonmanee, 2005] Anongnart Srivihok and
Pisit Sukonmanee. E-commerce intelligent agent: Person-
alization travel support agent using Q-learning. In Pro-
ceedings of the Seventh International Conference on Elec-
tronic Commerce, pages 287–292, 2005.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA, 1998.

[Sutton, 1995] Richard S. Sutton. Learning to predict by
the methods of temporal differences. Machine Learning,
3(1):9–44, 1995.

[Svegliato et al., 2018] Justin Svegliato, Kyle Hollins Wray,
and Shlomo Zilberstein. Meta-level control of anytime al-
gorithms with online performance prediction. In Proceed-
ings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, 2018.

[Szepesvári, 1998] Csaba Szepesvári. The asymptotic
convergence-rate of Q-learning. In Proceedings of the
Conference on Neural Information Processing Systems,
pages 1064–1070, 1998.

[Tan et al., 2009] Ying Tan, Wei Liu, and Qinru Qiu.
Adaptive power management using reinforcement learn-
ing. In Proceedings of the International Conference on
Computer-Aided Design, pages 461–467, 2009.

[Tesauro, 1995] Gerald Tesauro. Temporal difference learn-
ing and TD-gammon. Communications of the ACM,
38(3):58–68, 1995.

[Wang et al., 2012] Yi Wang, Kok S. Won, Wee S. Lee,
and Daniel J. Hsu. Monte Carlo Bayesian reinforce-
ment learning. In Proceedings of the Twenty-Ninth Inter-
national Conference on Machine Learning, pages 1135–
1142, 2012.

[Watkins and Dayan, 1992] Christopher J. C. H. Watkins and
Peter Dayan. Q-learning. Machine Learning, 8(3):279–
292, 1992.

[Zilberstein and Russell, 1995] Shlomo Zilberstein and Stu-
art J. Russell. Approximate reasoning using anytime algo-
rithms. In S. Natarajan, editor, Imprecise and Approximate
Computation, pages 43–62. Springer, 1995.

[Zilberstein, 1993] Shlomo Zilberstein. Operational Ratio-
nality through Compilation of Anytime Algorithms. PhD
thesis, Computer Science Division, University of Califor-
nia Berkeley, 1993.

[Zilberstein, 1996] Shlomo Zilberstein. Using anytime al-
gorithms in intelligent systems. AI Magazine, 17(3):73,
1996.

[Zilberstein, 2011] Shlomo Zilberstein. Metareasoning and
bounded rationality. In M. Cox and A. Raja, editors,
Metareasoning: Thinking about Thinking, pages 27–40.
MIT Press, Cambridge, MA, USA, 2011.


