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Abstract

Stochastic network design techniques can be used effectively to solve a wide range
of planning problems in ecological sustainability. We propose a novel approx-
imate algorithm based on the sample average approximation (SAA) and mixed
integer programming (MIP) to efficiently address the problem of using a limited
budget to remove instream barriers, which prevent fish from accessing their natural
habitat. In comparison with a dynamic programming (DP) benchmark algorithm,
the advantage of our algorithm is the ability to produce a near optimal solution
much faster, particularly when the budget is large and the DP based algorithm
becomes intractable. Furthermore, while the DP based algorithm can only solve
tree-structured stream networks, our algorithm is applicable to networks with a
more general directed acyclic graph structure.

1 Introduction

Many ecological sustainability problems can be modeled as stochastic network design problems,
which can then be converted to deterministic network design problems using the sample average
approximation (SAA) technique [2]]. This approach has facilitated the design of effective solutions
for several decision problems in spatial conservation planning such as how to maximize the popu-
lation spread of an endangered species over a period of time [7, [1, 3]]. The stochastic optimization
problem in [[7]] was described as a way to maximize the population size under a specific dynamics
model, but it can be viewed more generally as stochastic network design: edges of a directed host
network are present or absent stochastically according to an arbitrary joint probability distribution
(in the simplest case, edges fail independently with a specified probability), and actions can be taken
to increase the probability of certain edges being present. A budget constraint limits the total cost
of actions that can be taken. The objective is to maximize the expected number (or total reward) of
nodes that are reachable from a designated source vertex in the realized stochastic network.

In this paper, we adapt the stochastic network design framework to the problem of removing barriers
such as dams and culverts to improve habitat connectivity in river networks [6]. We contribute a
novel technical extension that allows actions to increase edge probabilities from a base value to
one of an arbitrary number of pre-specified values; in previous work actions could only change
the probabilities of certain edges from zero to one. The barrier removal problem is an interesting
special case of stochastic network design where the network is a directed tree oriented away from
the root vertex. Because of the special structure, it can be solved by a psuedo-polynomial time
dynamic programming (DP) algorithm [6]. While DP is often practical, it has the downside that it
scales quadratically with the available budget, which may be large. We show that the more general
solution methodology of SAA and mixed integer programming (MIP) can often find near-optimal
solutions in much less time than DP by adjusting the number of samples to trade off accuracy vs.
running time.



A major advantage in treating barrier removal under the more general framework of stochastic net-
work design is that it becomes easy to accommodate more general formulations of the problem.
Indeed, most river networks are actually directed acyclic graphs (DAGs) and not directed trees, due
to “braided” streams which have multiple flow channels. SAA+MIP can handle these networks di-
rectly, while DP needs to first apply a heuristic to convert the network to a tree, which discards all
guarantees of optimality. A promising line of future work possible using SAA+MIP is to model
fish that move in both directions through the network; in the current formulation, fish only move
upstream from the ocean, which only makes sense for a limited number of species.

2 The Barrier Removal Problem

Wild fish have shown dramatic population declines over the past two centuries due to the presence
of river barriers, such as dams, culvert, floodgates and weirs, which prevent fish from accessing or
moving between parts of their historical range [6]. The way to resolve this problem is to retrofit
existing barriers or to replace them by new instream structures that could make it easier for fish to
get through barriers. O’Hanley and Tomberlin formulated an optimization problem to decide which
subset of barriers to repair or remove to maximize available upstream habitat for anadromous fish
(species like salmon that live part of the year in oceans and streams but travel up rivers and streams
to spawn), and gave a pseudo-polynomial time dynamic programming (DP) algorithm to solve the
problem [6]. O’Hanley and Tomberlin assumed the network was a directed tree. Here, we describe
the more general case where the network is a DAG.

The fish barrier removal problem models fish swimming upstream in a DAG G = (V, E) from
a unique root vertex r (the ocean) that has a path to every other vertex. Edges represents stream
segments and vertices represent either barriers (v € B C V) or junctions of multiple streams
(v € V'\ B). Fish are able to pass barrier v € B with probability p,,. A finite set of repair actions A,
are possible. Action a € A, has cost ¢, and, if taken, increases the barrier-passing probability to
Puja- We assume A, includes a default zero-cost “noop” action ag such that p |4, := p,. A policy
7 selects a single action 7 (v)—either a repair or noop—for each barrier. Given a fixed policy 7, the
accessibility q,|, of node v is the probability a fish swimming upstream from r can reach v by any
path, assuming that it only attempts to cross each barrier once. If G is a directed tree, there is a unique
path from r to v, and g, is the product of the barrier probabilities on this path. Upon passing v,
fish are able to use the amount of habitat h,, between v and its nearest upstream neighbors. The goal
is to find a policy 7 that maximizes the accessibility-weighted habitat EH (7) = > v qu|x - Pos
without exceeding a total budget b on the cost of the actions. This model is an instance of stochastic
network design where barrier nodes are present or absent stochastically with probability p,|~(,) and

reward h, is collected for every node reachable from r in the realized network[']

3 Our Method

We present a novel approach to the barrier removal problem based on SAA and MIP. Despite max-
imizing a very different objective (accessibility-weighted available habitat, which is a structural
property of the network), our problem and solution approach are very similar to previous work that
maximized population size under a specific population dynamics model [7,3]. We contribute a novel
technical extension that allows multiple actions with different probability values.

Sampling The SAA method converts the stochastic optimization problem of maximizing the ex-
pected reward into a deterministic one through sampling [2]]. The core idea of converting from a
stochastic model to a deterministic model is very general and can be applied to any MDP [5]. An
important aspect of this work is that the resulting deterministic problem has a special network design
structure that can be formulated as a MIP. Roughly speaking, the key property is that all possible
policies can be efficiently explored in a MIP framework using the same randomly sampled values.

Our new construction for multiple different actions at each barrier is designed to retain this property.
It works as follows: in the sth sampled network, for each barrier v, we generate an independent
uniform random variable US € [0, 1]. Then, we declare each action a € A, to be successful for

!'The same model can be viewed in terms of a network with stochastic edges instead of nodes, by declaring
all edges leaving v to be present or absent stochastically with probability p,|q.



(a) Complete stream network with the river highlighted (b) The river with barriers

Figure 1: Stream network of Massachusetts

sample s if U; < p,|,. Note that the value U, can be thought of as how unlucky the fish will be in
passing barrier v in the sth trial: if the value is high, then a high-probability action must be taken to
allow the fish to pass the barrier. Let A be the set of successful actions. For any policy 7, node v
is considered present (i.e. barrier v is passable) in the sampled network if any only if the selected
action a = 7(v) belongs to Aj. This event has probability p,,|,. The significance of this construction
is that we can evaluate the passability of barrier v under any policy 7 simply by checking whether
the selected action belongs to the successful set of actions. It is then easy to verify that the expected
value of the total habitat H;(7) reachable from r under policy 7 in the sampled network is exactly
EH(m).

It is obvious that, for any fixed policy 7, the sample average & Zle H () converges to EH ().
Basic results surrounding SAA also guarantee that the value of the optimal sample-average policy
maxX el % 25:1 H, () over some feasible set IT also converges to the value of the optimal policy
max e ££/H (7) with respect to the true expected value [2]. The SAA technique optimizes this
sample average instead of the true expected value.

Mixed Integer Program The following MIP finds a policy that maximizes the average accessible
habitat H () of the sampled network while respecting the budget constraint.

Let X be a binary variable indicating whether node
v is reachable in the sampled network s, and let Y,,,

be a binary variable indicating whether or not the 1< s

policy takes action a at barrier v. Let Pa®(v) be the % g Z Xy hy

parent set of v in network s. The first constraint indi- ot Xsszzl i’ev Vs € S

cates that the root vertex is always reachable, while " T

the second dictates that node w can only be reach- X5 < Z X WweV,seS
able if at least one of its parents is reachable. The we Pa(v)

third constraint further dictates that barrier node v s

is reachable only if at least one of the successful ac- X, < Z Yoa WwEB,VsE S
tions from A3 is taken. The final constraint enforces ac A

the budget limitation. There is always an optimal so- Z Z Cva - Yoa < b

lution that takes at most one action per barrier—in vEB a€A,

practice, it can be helpful to enforce this as a con-
straint. Also, the binary variables X can be relaxed
sothat 0 < X5 <1 (e.g., see [7]).

4 Experimental Results

We ran experiments using river network and barrier data for the state of Massachusetts from the
Conservation Assessment and Prioritization System (CAPS) project [4]]. See Fig. [Tb}



We evaluated both our SAA+MIP algorithm as well as the dynamic programming (DP) algorithm
of [6] on a single watershed in southwestern MA (Fig. for a variety of different budgets. To be
able to run the DP algorithm, we extracted a tree from the braided river network using a minimum
spanning tree algorithm. The resulting network has 4045 vertices and 1523 barriers (Fig. [Ib). We
assumed that each barrier where streams crossed roads (e.g., culverts) had default passability of 0.1,
and could be raised to a random number within either [0.2,0.5] or [0.7, 1.0] by actions of cost within
[10,15] and [20, 28], respectively. Dams had default passability of 0, and could be raised to a random
number within either [0.2,0.5] or [0.7, 1.0] at costs within [100, 120] and [200, 230], respectively.

To compare runtime vs. solution quality, Fig.[2] shows the runtime of SAA+MIP as a fraction
of the DP runtime (horizontal axis), and the value of SAA+MIP as a fraction of the DP value
(vertical axis). Each line corresponds to a different budget, and shows the range of perfor-
mance SAA+MIP can achieve with different numbers of samples S ranging from 5 to 200.
The total cost of a policy that takes the most ex-
pensive action at each barrier is about 40K; we test
budgets up to 30K. The figure shows that, with the
same time as DP, SAA+MIP achieves 95% of the
optimal value over a range of budgets. In all cases,
SAA+MIP can achieve a reasonably good solu-
tion (say, within 80% of optimal) in a small frac-
tion of the DP running time. Large budgets slow
down the psuedo-polynomial DP algorithm con-
siderably but lead to easier MIPs—in these cases,
SAA+MIP can achieve performance within 5% or

10% of optimal much faster than DP. For example, o or oz
with budget of 30K, DP takes about 600 seconds

to find an optimal solution while SAA+MIP only Figure 2: Comparing DP with SAA+MIP
takes 30 seconds to achieve 95% optimality.
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5 Discussion

Another significant advantage of SAA+MIP is the ability to deal
with more general problem formulations. One such example is a
DAG corresponding to braided river networks. One can apply DP
in this situation only by applying a heuristic to first convert the
DAG into a tree (e.g., by generating a spanning tree), solving the
problem, and then applying the resulting barrier treatment to the
original DAG. We found that this approach worked well in our ex-
ample network, but it provides no guarantee on the quality of the
solution. Running SAA+MIP in this case is still worthwhile be-
cause it provides a guarantee on distance from optimality (which
is why we know that DP is nearly optimal). Interestingly, the so-
lution quality of DP on a subtree deteriorates with lower budgets
to the point where SAA+MIP on the original DAG produces a Figure 3: Sample DAG
better value (for example, with a budget of 1000 or 2000). Intu-

itively, with a limited budget, it is more critical not to remove barriers where ignored edges could
help improve connectivity. Furthermore, examples such as the one in Fig. [3Junderscore the fact that
applying DP on a subtree can be arbitrarily worse than the optimal solution for the original DAG.
In the example, there are two barriers vertices, 2 and 3, of which one can be repaired. The rewards
are integer multiples of x, and the dashed edge is removed to obtain a tree. Vertex 2 will be repaired
because it gives value 4« in the subtree (and also the DAG), while repairing 3 only gives value 3x.
However, the optimal policy for the DAG is to remove 3, which gives value 5z. By increasing z,
the gap can be made arbitrarily large. More complex examples can be constructed; we suspect it is
difficult in general to devise a heuristic for extracting subtrees that can avoid all bad cases.
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