
Privacy-Preserving Policy Iteration for Decentralized POMDPs

Feng Wu† Shlomo Zilberstein‡ Xiaoping Chen†

†School of Computer Science and Technology, University of Science and Technology of China, CHN
‡College of Information and Computer Sciences, University of Massachusetts Amherst, USA

wufeng02@ustc.edu.cn, shlomo@cs.umass.edu, xpchen@ustc.edu.cn

Abstract

We propose the first privacy-preserving approach to address
the privacy issues that arise in multi-agent planning problems
modeled as a Dec-POMDP. Our solution is a distributed
message-passing algorithm based on trials, where the agents’
policies are optimized using the cross-entropy method. In
our algorithm, the agents’ private information is protected
using a public-key homomorphic cryptosystem. We prove the
correctness of our algorithm and analyze its complexity in
terms of message passing and encryption/decryption operati-
ons. Furthermore, we analyze several privacy aspects of our
algorithm and show that it can preserve the agent privacy of
non-neighbors, model privacy, and decision privacy. Our ex-
perimental results on several common Dec-POMDP bench-
mark problems confirm the effectiveness of our approach.

Introduction
Many real-world applications require a group of agents to
work together towards a common goal, which may be im-
possible or complicated for a single agent to achieve. In cri-
tical domains such as health care and e-commerce, privacy
is a major concern because the agents may carry sensitive
and private data that should not be accessed without authori-
zation. Privacy is also a crucial issue if the agents in a team
are from different parties with different interests. For exam-
ple, the network infrastructure of a communication network
may belong to multiple providers; sensor stations of a sen-
sor network may be owned by several organizations; robots
in disaster response may be designed by different compa-
nies and operated by different rescue teams (Wu et al. 2015;
Ramchurn et al. 2016). They may have constraints on
sharing the information about agent models, decision rules,
sensor data, etc. In such cases, agents from different parties
must collaborate with each other while preserving privacy.

We assume in this work that while agents may have pri-
vacy concerns, they otherwise operate cooperatively on the
task at hand. The Decentralized Partially Observable Mar-
kov Decision Process (Dec-POMDP) (Bernstein et al. 2002)
offers a rich framework for planning under uncertainty in
such settings. The model extends the single-agent POMDP
model to cooperative multi-agent settings. Over the past
decade, numerous optimal and approximate Dec-POMDP

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithms have been developed (Amato, Dibangoye, and
Zilberstein 2009; Wu, Zilberstein, and Chen 2010b; Pa-
jarinen and Peltonen 2011; Oliehoek et al. 2013; Kumar,
Zilberstein, and Toussaint 2015; Dibangoye et al. 2016;
Wu, Zilberstein, and Chen 2017). However, the associated
privacy issues have not been addressed. Specifically, rese-
archers usually assume that the Dec-POMDP model is con-
structed by domain experts and then solved by a planner in
a centralized manner. In the modeling and planning phases,
the experts and the planner generally have complete infor-
mation about the problem and the agents. However, this as-
sumption is limiting in domains where the agents belong to
different parties and privacy is a concern. To date, privacy
has been extensively studied for multi-agent systems in ot-
her contexts such as agent negotiation (Zhang and Makedon
2005), multi-agent reinforcement learning (Sakuma, Koba-
yashi, and Wright 2008), distributed constraint optimization
(DCOP) (Léauté and Faltings 2013; Grinshpoun and Tassa
2014; Tassa, Zivan, and Grinshpoun 2015), and multi-agent
classical planning (Brafman 2015), but has not been tackled
in the more complex setting captured by Dec-POMDPs.

We propose Privacy-Preserving Policy Iteration (P3I) —
a novel privacy-preserving planning algorithm for solving
Dec-POMDPs. We consider three types of privacy that are
relevant to multi-agent systems, that is, agent privacy, model
privacy, and decision privacy. To preserve privacy, we de-
vise a distributed message-passing algorithm based on trials.
Specifically, our solution is model-free where each agent’s
policy is optimized iteratively with the local information col-
lected in several trials by that agent. In more detail, we op-
timize each agent’s policy using a variation of the Cross-
Entropy (CE) method (Oliehoek, Kooij, and Vlassis 2008;
Omidshafiei et al. 2016; Clark-Turner and Amato 2017).
Like most of the existing algorithms for Dec-POMDPs,
privacy issues are not concerned in the vanilla CE met-
hod (Oliehoek, Kooij, and Vlassis 2008). To address that,
we use a public-key homomorphic cryptosystem to encrypt
the messages and apply techniques such as random masking
and random permutation to protect the agents’ private infor-
mation. Hence, our method is much more efficient than the
general secure function evaluation (Goldreich 2009), which
is impractical given a large number of trials.

We advance the state-of-the-art techniques of solving
Dec-POMDPs with the following main contributions: (1)

We propose the first privacy-preserving algorithm for sol-
ving Dec-POMDPs without a third party, prove the correct-
ness of the algorithm, and analyze its encryption/decryption
and communication complexity; (2) We perform analysis
of our algorithm with respect to three types of privacy and
prove that it preserves agent privacy for non-neighbors, mo-
del privacy, and decision privacy; and (3) We conduct expe-
riments on six common benchmark problems, which show
that the time is mainly consumed by the encryption and de-
cryption operations and can be significantly reduced by run-
ning the operations concurrently.

All in all, we show how privacy issues can be addres-
sed with our approach for multi-agent problems modeled
as Dec-POMDPs. This extends the applicability of Dec-
POMDPs to domains where preserving privacy is required.

Preliminaries
This section briefly describes the Dec-POMDP model and
the cryptographic tools used by our algorithm.

Decentralized POMDPs
Formally, a infinite-horizon Decentralized Partially Obser-
vable Markov Decision Process (Dec-POMDP) is defined as
a tuple 〈I, S, b0, {Ai}, P, {Ωi}, O,R, γ〉, where:

• I is a set of n agents.
• S is a set of states and b0 is the initial state distribution.
• Ai is a set of actions for each agent i ∈ I and ~A =
×i∈IAi is the set of joint actions.

• P : S × ~A × S → [0, 1] is the transition function where
P (s′|s,~a) is the probability of transiting to next state s′
when taking joint action ~a in state s.

• Ωi is a set of observations for each agent i ∈ I and ~Ω =
×i∈IΩi is the set of joint observations.

• O : S × ~A × ~Ω → [0, 1] is the observation function
where O(~o |~a, s′) is the probability of observing ~o after
taking joint action ~a with outcome state s′.

• R : S × ~A → R is the reward function where R(s,~a) is
the reward after taking joint action ~a in state s.

• γ ∈ (0, 1) is the discount factor.

A local policy qi : Ω̄i → Ai of agent i ∈ I is a mapping
from its local observation histories Ω̄i = (o1

i , o
2
i , · · · , oti)

to its actions Ai and a joint policy is a collection of local
policies ~q = 〈q1, q2, · · · , qn〉, one for each agent. The goal
of solving a Dec-POMDP is to find a joint policy ~q ∗ that
maximizes the expected accumulated rewards.

For infinite-horizon Dec-POMDPs, a local policy is usu-
ally represented as a Finite State Controller (FSC) where
each controller node is associated with an action and has
out-going links, one for each observation. Here, we consider
a stochastic FSC as θi = 〈Qi, νqi , πaiqi , λq′iqioi〉, where:

• Qi is a finite set of controller nodes.
• νqi ∈ ∆(Qi) is the initial node distribution.
• πaiqi ∈ [0, 1] is the probability of selecting action ai ∈ Ai

in controller node qi ∈ Qi.

• λq′iqioi ∈ [0, 1] is the probability of transiting to the next
controller node q′i ∈ Qi when observing oi ∈ Ωi in the
current controller node qi ∈ Qi.
Given a joint FSC ~θ = 〈θ1, θ2, · · · , θn〉, the expected va-

lue at state s and joint controller node ~q can be computed
recursively by the following Bellman equation:

V (s, ~q) =(
∏
i∈I

πaiqi)[R(s,~a) + γ
∑

s′∈S,~o∈~Ω

P (s′|s,~a)

O(~o |~a, s′)
∑
~q ′∈~Q

(
∏
i∈I

λq′iqioi)V (s′, ~q ′)]
(1)

where ~a is the joint action selected by ~q and ~q ′ is the
next joint controller node after observing ~o in joint con-
troller node ~q . Then, the goal is to find a joint FSC ~θ ∗ =

argmax~θ V (~θ) that maximizes the value function:

V (~θ) =
∑

s∈S,~q∈~Q

b0(s)(
∏
i∈I

νqi)V (s, ~q) (2)

Public-Key Homomorphic Cryptosystems
We make use of several existing cryptographic tools as the
building blocks of our approach. Specifically, in our algo-
rithm, we use a public-key additive homomorphic cryptosy-
stem, which allows the agents to encrypt the message with
a shared public key and perform the addition of encrypted
values without requiring their decryption.

In a public-key cryptosystem, encryption of messages uses
a public key that can be known to everyone, while decryp-
tion requires knowledge of the corresponding private key.
Specifically, given a pair of (sk, pk) of private and public
keys and a plaintext m, we denote c = epk(m) an encryp-
tion of m and m = dsk(c) the decryption.

In an additive homomorphic cryptosystem, the addition
computations are allowed on encrypted values without kno-
wledge of the secret key. Specifically, there is some opera-
tion · without the knowledge of sk such that for any plain-
texts m1 and m2, we have epk(m1 + m2) = epk(m1) ·
epk(m2). Based on this property, given a constant k and
the encryption epk(m), the multiplications by k can be
computed via repeated application of the operator ·, i.e.,
epk(km) = epk(m)k. Examples for such ciphers are Be-
naloh (Benaloh 1994) and Paillier (Paillier 1999) ciphers.

Privacy-Preserving Policy Iteration
We aim at optimizing each agent’s policy while preserving
their privacy. Indeed, the term privacy is quite broad, a fact
that gave rise to several categories of privacy. Here, we con-
sider three types of privacy that are relevant to multi-agent
systems (Léauté and Faltings 2013).
Definition 1 (Agent privacy). The requirement that no agent
should be able to discover the identity, or even the existence
of another agent.

Agent privacy is essential when some of the agents should
remain anonymous. For example, some enterprises may not
want their competitors or the general public to know they are
parts of certain activities for business reasons.

Definition 2 (Model privacy). The requirement that no
agent should be able to discover the model of another agent,
including its local states, actions, observations, local transi-
tion and observation probabilities, and local rewards.

Model privacy is an important issue, especially when
agents represent different parties, so that an agent cannot
gain more information about the other agents beyond what
has been revealed from its own observations.
Definition 3 (Decision privacy). The requirement that no
agent should be able to discover the decision rules used by
another agent.

Decision privacy is related to the agents’ private strate-
gies that should not be shared with their competitors or ad-
versaries for business or security reasons. Otherwise, such
information may give adversaries a competitive advantage.
Definition 4 (Semi-honest). The assumption that all agents
honestly follow the specified protocol, but might curiously
use their records of intermediate computations in order to
attempt to learn other agents’ private information.

In this paper, we adopt a common assumption in private
distributed computation (Goldreich 2009), that our agents
behave semi-honestly (a.k.a., honest but curious).
Remark 1. The agent privacy, model privacy, and decision
privacy are not preserved in state-of-the-art planning algo-
rithms for Dec-POMDPs.

Generally, state-of-the-art planning algorithms for Dec-
POMDPs do not explicitly consider privacy issues. Most of
the algorithms assume that the Dec-POMDP model is given
as prior information, before the planning phase, and the po-
licies are computed in a centralized manner. In that case, the
agents’ identities, the model, and the agents’ decisions are
known by any agent who runs the planning algorithms. The-
refore, no privacy is preserved in the planning phase. In fact,
it is non-trivial to preserve privacy in those algorithms be-
cause the full knowledge about the model is required as an
input and the agents’ policies must be jointly evaluated.

Recently, model-free methods (Wu, Zilberstein, and Chen
2010a; Wu, Zilberstein, and Jennings 2013; Liu et al. 2015)
have been proposed to solve Dec-POMDPs without the full
knowledge of the model. However, they still record a set
of samples of the agents’ policy executions. The samples
may leak the agents’ private information, from which a third
party can learn the agents’ identities, the model, and even
the agents’ decisions. Indeed, our method is also model-free
but with several modifications to protect the agents’ private
information and preserve the agent privacy, model privacy,
and decision privacy as detailed in the next sections.

Algorithm Overview
We propose the Privacy-Preserving Policy Iteration (P3I) al-
gorithm to preserve agent privacy, model privacy, and deci-
sion privacy when solving Dec-POMDPs. Similar to model-
free approaches, our method computes the policies based on
multiple trials instead of the fully specified model. In each
trial, each agent simply executes its current policy in the en-
vironment and records its local information about the exe-
cution. The local information at each time step is a tuple

〈qi, ai, oi, ri〉, consisting of the visited controller node of
the agent’s policy qi, the action taken by the agent ai, the
observation received from the environment oi, and the local
reward ri. Specifically, in the k-th trial, we denote

hki = (〈qk,1i , ak,1i , ok,1i , rk,1i 〉, · · · , 〈q
k,l
i , ak,li , ok,li , rk,li 〉)

the local information recorded by agent i where l is the trial
length and H = {〈h1

1, · · · , h1
n〉, · · · , 〈hN1 , · · · , hNn 〉} a set

of information collected from N trials.
The main steps of our algorithm are outlined as follow:

1. Each agent i initializes its local policy θ0
i and t← 0;

2. All agents use their current policies θt to performN trials
in the environment and records the results in H;

3. Each agent updates its current policy θt+1
i ← update(θti)

privately with the information sent by the other agents;
4. If no improvement for all agents’ policies, then the pro-

cess terminates; Otherwise t← t+ 1 and goto Step 2.
Starting from Step 1, each agent initializes its local policy

without information shared with others. This can be done
either by the agent’s prior knowledge or just randomly. Run-
ning the trials in Step 2 is for each agent to execute its policy
in the environment. Note that each agent only requires its lo-
cal observation to execute the policy in the Dec-POMDP set-
tings. Thus, no private information needs to be shared among
agents during the execution.

Now, the key step determines how each agent updates
its current policy privately given the information collected
from the trials. In principle, private distributed computations
can be carried out using secure function evaluation (Gold-
reich 2009), which is a general and well studied metho-
dology for evaluating any function privately. However, alt-
hough asymptotically polynomially bounded, these compu-
tations (e.g., Yao’s garbled circuit protocol (Yao 1986)) can
be too inefficient (i.e., exponential in time and space) for
practical use, particularly when the input size is large. In the
next section, we introduce a much simpler and more effi-
cient procedure that the agents can execute for carrying out
the secure computation.

Secure Policy Update
To update the policy, we need to solve the following optimi-
zation problem: ~θ t+1 = argmax~θ V

H(~θ) with information
H collected by executing the current policies in the environ-
ment. Generally, this involves two major procedures: value
estimation and policy improvement, detailed below.

Value Estimation. The first step is to compute the value
of the k-th trial by the sum of the discounted rewards:

V k =
∑lk

t=1
[γt · (

∑
i∈I

rk,ti)] (3)

Note that we assume that the rewards are shared in a privacy-
preserving manner among the agents and therefore the total
reward is the sum of the private shares of all the agents.

To ensure that value estimation preserves privacy, we en-
crypt the sum of the discounted rewards of each agent:

epk(V k) = epk(
∑
i∈I

V ki) =
∏
i∈I

epk(V ki) (4)

where V ki =
∑lk
t=1 γ

trk,ti and the sum can be correctly car-
ried out with the additive property of the additive homomor-
phic cryptosystem. Note that the discount factor γ is known
to all agents and the value V ki can be computed by agent i
privately, using only its own information hki of the k-th trial.

Now, we can conduct the secure value estimation for each
trial k as follow: (1) each agent i computes its part of the
trial value: V ki =

∑lk
t=1 γ

trk,ti , (2) each agent i encrypts
the value with a shared public key pk and sends epk(V ki) to
a computation agent1, and (3) the computation agent sums
up the encrypted values from all the agents and produces:
epk(V k) =

∏
i∈I epk(V ki). Here, we assume that the com-

putation agent does not have the private key sk so that it
cannot decrypt the value epk(V k) and know V k,∀k ∈ 1..N .

Policy Improvement. We use the Cross-Entropy (CE)
method, a probabilistic approach for stochastic optimization,
for its simplicity. Several non-private variations of the CE
method (Oliehoek, Kooij, and Vlassis 2008; Omidshafiei et
al. 2016; Clark-Turner and Amato 2017) have been success-
fully applied to optimizing Dec-POMDP policies.

The basic idea of the CE method is an iterative two-phase
process: (1) generating a set of samples according to some
parameters, and (2) selecting the best Nb of the generated
samples and using those to update the parameters. This pro-
cess repeats until some stopping condition is met. In our al-
gorithm, the sampling phase is done by the trials with the
recorded information as samples. Below, we explain how
to select the best Nb samples from the recorded trial infor-
mation and how to use them to update policies parameters,
while preserving privacy.

After running the secure value estimation, we have the
encrypted values for all N trials: {epk(V k), k ∈ 1..N}. Se-
lecting the bestNb trials is trivial if we know V k,∀k ∈ 1..N
because we can simply sort V k in descending order and
choose the trials with the top Nb values. Unfortunately, in
our algorithm, only the encrypted values epk(V k),∀k ∈
1..N are available. If we directly send all the encrypted va-
lues to some agent who has the private key sk, it may decrypt
epk(V k) and have the private information of V k, something
which we are trying to avoid.

To address this, we randomly select a masking scalarm ∈
<+, a standard cryptographic technique (Goldreich 2009),
used to protect private information V k as epk(V k)m =
epk(mV k). Given this, we send epk(V k)m to a computation
agent1 instead of epk(V k). After decryption, the computa-
tion agent gets the value of mV k instead of V k. Then, the
computation agent sorts the values based on mV k and re-
turns the order, which is identical to the one based on V k. To
further protect the indices k, we randomly permute them so
that the computation agent is not able to associate the value
mV k with any particular trial. Specifically, we map each k
to a new index k′ and recover it after the computation agent
returns the sorted order. Given the order, we select the best
Nb trials and use them to update the policy of each agent.

1The procedure of selecting the computation agent will be des-
cribed in the implementation section.

Algorithm 1: Secure Value Estimation
1 Agent 1 runs the following procedure:
2 (sk, pk)← init the private and public keys once
3 for k = 1 to N do
4 V k

1 ←
∑lk

t=1 γ
trk,t1

5 epk(V
k)← epk(V

k
1)

6 Send message 〈pk, {epk(V k)}〉 to Agent 2

7 Once Agent i ∈ 2..n− 1 receives the message from Agent
i− 1, Agent i runs the following procedure:

8 for k = 1 to N do
9 V k

i ←
∑lk

t=1 γ
trk,ti

10 epk(V
k)← epk(V

k) · epk(V k
i)

11 Send message 〈pk, {epk(V k)}〉 to Agent i+ 1

12 Once Agent n receives the message from Agent n− 1, Agent
n runs the following procedure:

13 for k = 1 to N do
14 V k

n ←
∑lk

t=1 γ
trk,tn

15 epk(V
k)← epk(V

k) · epk(V k
n)

Similar to the process above, we can reject trials with va-
lue less than the worst-performing trial from the previous
iteration’s best Nb trials. This is usually required by the CE
method to discourage convergence to a local optimum. Spe-
cifically, we maintain epk(V min) as the encrypted value of
the last one in the best Nb trials of the previous iteration. We
send epk(mV min) to the computation agent and ask it to re-
move all the elements with mV k < mV min in the returned
order. Hence the number elements of the returned order may
be less than Nb. After that, we update epk(V min) with the
value of the last one in the current best Nb trials, which cor-
responds to the value of the worst-performing trial obtained
by the current iteration.

With the best Nb trials, the policy of each agent is upda-
ted by a Maximum-Likelihood Estimate (MLE) of the para-
meters as in the standard CE method (Oliehoek, Kooij, and
Vlassis 2008). Notice that the MLE update can be conducted
independently by each agent without requiring any private
information of the other agents. To further discourage con-
vergence to a local optimum, we also apply smoothed up-
date to the policy parameter vector of each agent as follows:
θt+1
i ← αθt+1

i +(1−α)θti , where θt+1
i is the new parameter

vector, θti the old one, and α ∈ (0, 1] is the learning rate.

Implementation. We propose a distributed implementa-
tion of the aforementioned privacy-preserving policy update
process based on message passing among the agents. All of
the computations are performed merely by the agents, wit-
hout any third party. This is useful because the third party
may introduce new privacy issues. Specifically, we arrange
the agents in a chain structure ordered by their indices (i.e.,
1, 2, . . . , n). We assume that each agent i can only exchange
messages with its neighboring agents (i.e., agents i − 1 and
i+1, if existing) in the chain. With this structure, each agent
only needs to know its neighbors instead of all the other

Algorithm 2: Secure Policy Improvement
1 Agent n runs the following procedure:
2 m← select at random a positive masking scalar
3 epk(V

min)m ← mask epk(V min) with m
4 {epk(V k)m} ← mask {epk(V k)} with m
5 {epk(V k′

)m} ← randomly permutes the indices
6 Send 〈epk(V min)m, {epk(V k′

)m}〉 to Agent n− 1

7 Once Agent i ∈ n− 1..2 receives the message from Agent
i+ 1, Agent i runs the following procedure:

8 Forward message 〈epk(V min)m, {epk(V k′
)m}〉 received

from Agent i+ 1 to Agent i− 1

9 Once Agent 1 receives the message from Agent 2, Agent 1
runs the following procedure:

10 mV min ← dsk(epk(V
min)m)

11 list← ∅
12 for k′ = 1 to N do
13 mV k′

← dsk(esk(V
k′
)m)

14 if mV k′
≥ mV min then

15 list← list ∪ {〈k′,mV k′
〉}

16 order ← sort list in descending order based on mV k′

17 [k′Nb
]← select indices of top Nb pairs in order

18 Send message [k′Nb
] to Agent 2

19 Once Agent i ∈ 2..n− 1 receives the message from Agent
i− 1, Agent i runs the following procedure:

20 Forward message [k′Nb
] to Agent i+ 1

21 Once Agent n receives the message from Agent n− 1, Agent
n runs the following procedure:

22 [kNb]← recover the best Nb trials from [k′Nb
]

23 epk(V
min)← mink∈[kNb

] epk(V
k)

24 θ′n ←MLE of θn using {hk
n ∈ Hn, k ∈ [kNb]}

25 updated← (||θ′n − θn|| ≥ εn)
26 θn ← αθ′n + (1− α)θn
27 Send message 〈updated, [kNb]〉 to Agent n− 1

28 Once Agent i ∈ n− 1..2 receives the message from Agent
i+ 1, Agent i runs the following procedure:

29 θ′i ←MLE of θi using {hk
i ∈ Hi, k ∈ [kNb]}

30 updated← updated ∧ (||θ′i − θi|| ≥ εi)
31 θi ← αθ′i + (1− α)θi
32 Forward message 〈updated, [kNb]〉 to Agent i− 1

33 Once Agent 1 receives the message from Agent 2, Agent 1
runs the following procedure:

34 θ′1 ←MLE of θ1 using {hk
1 ∈ H1, k ∈ [kNb]}

35 updated← updated ∧ (||θ′1 − θ1|| ≥ ε1)
36 θ1 ← αθ′1 + (1− α)θ1
37 if updated = false or max-iters exceeded then
38 Send message finished to Agent 2
39 Terminate the procedure

40 Once Agent i ∈ 2..n receives the message from Agent i− 1,
Agent i runs the following procedure:

41 if finished then
42 Send finished to Agent i+ 1 if i 6= n
43 Terminate the procedure

agents during the message-passing procedures.
In practice, when there is a given interaction graph among

the agents such as in ND-POMDPs (Nair et al. 2005), we can
make use of that graph by finding a path in the graph that
starts with an arbitrary agent and covers all the agents. Mes-
sages can be exchanged between agents along these links.
By doing so, no additional agent identities are exposed and
agents communicate only with their neighbors in the graph.
Note that some agents may appear more than once on the
path. In that case, special tokens can be used to ensure that
each agent only does its computation once.

Algorithm 1 outlines the main procedures in our message-
passing implementation of the secure value estimation. It
starts with Agent 1 generating the private and public key pair
(sk, pk) if the keys have not been initialized earlier. The pu-
blic key pk is used by all the agents to encrypt messages
while the private key sk is kept privately by Agent 1. In
other words, only Agent 1 knows how to decrypt the mes-
sage encrypted using the public key pk. Along the chain,
each agent i first computes its share V ki of the values for
every trial k ∈ 1..N , encrypts them with the public key pk,
and then multiplies them with the values {epk(V k)} recei-
ved from Agent i − 1, if any. Given the additive homomor-
phic cryptosystem, this is equivalent to the sum of all values
from Agent 1 to Agent i without the encryption. After that,
Agent i sends the updated values {epk(V k)} and the public
key pk to Agent i + 1 when it exists. Finally, Agent n gets
the encrypted sum of values for all trials.
Proposition 1 (Correctness). Algorithm 1 correctly compu-
tes the encrypted sum of the agents’ values for all trials.

Proof. This is can be proved directly using the homomor-
phic multiplication property of the cryptosystem:

∀k ∈ 1..N, epk(V k) =
∏
i∈I

epk(V ki) = epk(
∑
i∈I

V ki) (5)

Starting from Agent 1, we apply the multiplication operator ·
incrementally, one by one for all agents. Finally, Agent n has
the encrypted sum of all agents’ values for all trials. Thus,
we conclude the correctness of our algorithm.

Proposition 2 (Complexity). Algorithm 1 requires a total of
nN encryptions and the overall exchange of n−1 messages
of size of N + 1 per message.

Note that the nN encryptions of V ki can be carried out
concurrently because they are independent of each other.

Algorithm 2 shows our implementation of the secure po-
licy improvement based on the CE method. Since Agent
n has the encrypted sum {epk(V k)} after the secure va-
lue estimation, we start the computation from Agent n. It
first selects at random a masking scalar m and uses it to
protect epk(V min), the worst value of the best Nb trials
from the previous iteration, and {epk(V k)}, which produces
epk(V min)m and {epk(V k)m}. The indices in {epk(V k)m}
are randomly permuted so {epk(V k

′
)m} do not relate to

the trial identities. Then, Agent n sends the secured messa-
ges epk(V min)m and {epk(V k

′
)m} through the chain, which

will finally reach Agent 1. After receiving the messages from
Agent n, Agent 1 decrypts the messages with the private key

sk. As aforementioned, only Agent 1 owns the private key.
Next, it makes a list with elements that have better value
than the threshold mV min. Then, the list is sorted in a des-
cending order and the indices [k′Nb

] of the top Nb elements
are selected, where [·] denotes an ordered list. Note that the
size of [k′Nb

] may be less than Nb because the elements in
the list are filtered bymV min. At the end, the message [k′Nb

]
is sent by Agent 1 through the chain to Agent n.

When Agent n receives the message originally sent by
Agent 1, it recovers [k′Nb

] and obtains the correct identities
[kNb

] of the best Nb trials. Then, the worst value epk(V min)
is updated with the value of the last element in [kNb

]. With
the best Nb trials, all the agents are ready to update their
policies. This process starts from Agent n. It first computes
the MLE of the policy parameters using the best Nb trials,
checks if there is any change made to the parameters, and ap-
plies a smoothed update to its policy parameters. The indices
[kNb

] as well as the flag updated are passed to the neighbor
on the left side of the chain. One by one, each agent updates
its policy parameters with the process similar to Agent n.
When Agent 1 finally updates its policy, it takes one more
step to check if any updates were been made to the agents’
policies. If not, it indicates that the algorithm has converged
because no improvement of the policy is possible for any of
the agents. Then, Agent 1 passes the token finished to the
agents on the right side and terminates. All the other agents
that receive the token forward it to their right-side neighbor,
if any, and also terminate. At that point, the whole process
of secure policy improvement is complete.

Proposition 3 (Correctness). Algorithm 2 correctly impro-
ves each agent’s policy parameters based on the CE method.

Proof. Notice that the key procedure is to select the best Nb
trials where trials with value V k less than the worst value
V min from the previous iteration’s bestNb trials are rejected.
In Algorithm 2, the computation is done by Agent 1 because
it is the only agent who owns the private key sk. Hence it can
decrypt the message and do the comparisons. Here, we use
the masking values mV k and mV min to protect the original
values V k and V min respectively. Given that m is a positive
value, the comparisons can be carried out correctly using the
masking values. Therefore, Agent 1 still can correctly select
he best Nb trials using the masking values instead the true
values. Finally, the true indices of the best Nb are recovered
by Agent n, who maintain a mapping between the original
indices and the permuted indices.

Given the best Nb trials, the policy improvement is done
independently by each agent using the standard procedure
of the CE method. This consists of computing the MLE of
the parameters and applying the smoothed update with some
learning rate. Thus, we conclude that our algorithm correctly
improves each agent’s policy parameters.

Proposition 4 (Complexity). Algorithm 2 requires a total
of N decryptions and exchanges at most 4(n− 1) messages
with a maximum size of N + 1 per message.

Here, the N decryptions can also be done concurrently.

Privacy Analysis
We perform an analysis of our algorithms with respect to the
three types of privacy described earlier, i.e., agent privacy,
model privacy, and decision privacy.
Proposition 5 (Agent privacy). The proposed algorithms
preserve privacy about the identity or the existence of the
non-neighboring agents in the chain.

Proof. In the proposed algorithms, the agents are organized
in a chain structure and each agent can only communicate
with the neighboring agents in the chain. All the computa-
tions are run on the chain with message passing between
two neighboring agents. All the messages used in the al-
gorithms contain no information about the identity or the
existence of the agents in the chain. Specifically, in Algo-
rithm 1, the message is 〈pk, {epk(V k)}〉, where pk is a pu-
blic key and {epk(V k)} is a set of encrypted values, one for
each trial. Algorithm 2 relies on passing the following mes-
sages: several encrypted values 〈epk(V min)m, epk(V k

′
)m〉,

a set of indices [k′Nb
], a boolean flag and a set of indices

〈updated, [kNb
]〉, and a boolean token finished. None of

them leak the private information about the identity or the
existence of the agents. After running the algorithms, agents
only know the neighboring agents in the chain. Thus, we
conclude that the algorithms preserve privacy about the iden-
tity or the existence of the non-neighboring agents.

Proposition 6 (Model privacy). The proposed algorithms
preserve privacy about the model of the other agents.

Proof. In the proposed algorithms, each agent i only records
its local information 〈qi, ai, oi, ri〉 about trials. Throughout
the algorithms, no information about the states, the transi-
tion function, and the observation function is required. The
agents know the index and the total time steps of each trial.
The information about each agent i’s controller node qi,
action ai, and observation oi is kept privately by the agent
itself. Only the local reward ri is used by the algorithms, but
it is securely protected with encryption.

Specifically, in Algorithm 1, the sum of discounted local
reward V ki is protected by encryption epk(V ki) using the pu-
blic key pk. The private key is owned only by Agent 1. In
other words, no other agents except Agent 1 can decrypt the
value epk(V ki). The algorithm does not require that the ot-
her agents directly send the value epk(V ki) back to Agent
1. Base on the semi-honest assumption, all the other agents
will not do so because this is not allowed by the algorithm.
Furthermore, only Agent 2 knows the identity and the exis-
tence of Agent 1. On the one hand, Agent 2 will not send the
intermediate message epk(V k1) · epk(V k2) back to Agent 1 as
it will leak its own private information V k2 . One the other
hand, Agent 1 will not tell Agent 2 the private key sk as this
will leak the private information V k1 of Agent 1.

In Algorithm 2, the private information of the encryp-
ted values {epk(V k)} is protected by random masking and
random permutation before they are sent to Agent 1. The
protections are conducted by Agent n. Note that the random
masking scalarm and the mapping of the random permutati-
ons are privately owned by Agent n. Therefore, after Agent

1 decrypts epk(V k
′
)m and obtains mV k

′
, it does not know

the true value V k
′

because of random masking and the re-
lation with the trials due to random permutation. Indeed, it
leaks some excessive information about the true values but
that excessive information is benign and of no practical use
for Agent 1. More specifically, agents may know that some
values are non-zero, positive, or negative after random mas-
king. However, they cannot know the true values or even nu-
merical relationship between the values. With random per-
mutation, they cannot associate the values with any specific
trials. Therefore, agents cannot infer the private information
of the other agents’ model or behavior with these numbers.

Thank to the semi-honest assumption, Agent 1 will not
leak mV k

′
to Agent n and Agent n will not share infor-

mation about the random masking and random permutation
with Agent 1. In fact, Agents 1 and n do not know the iden-
tity or the existence of each other and cannot directly com-
municate with each other without all the other agents bet-
ween them. The computation of MLE and smoothed update
are done by each agent independently without referring to
the model knowledge of the other agents. Therefore, we con-
clude that the algorithms preserve model privacy.

Proposition 7 (Decision privacy). The proposed algorithms
preserve privacy about the decision of the other agents.

Proof. This is straightforward because agents do not share
their policies with each other and the policies are optimi-
zed locally by each agent in the algorithms. Additionally,
the local information recorded in the trials is either kept
privately by each agent (e.g., actions, observations, etc.) or
protected by encryption (i.e., rewards) throughout the al-
gorithms. Hence the agents are not able to learn the other
agents’ policies from the trials. Thus, we conclude that the
proposed algorithms preserve decision privacy.

Experiments
We implemented our algorithm and tested it on 6 common
benchmark problems2 for Dec-POMDPs (i.e., Dec-Tiger,
Broadcast Channel, Meeting in a 3×3 Grid, Box Pushing,
Recycling Robots, and Mars Rovers). For each problem in-
stance, we first ran our algorithm to generate policies and
then evaluated the policies by simulation. In the algorithm,
we set the number of trials N = 1000 and the size of best
trials Nb = 10. To simulate the private settings, we rand-
omly split reward values among the agents so each agent
owned its local portion of the rewards. Note that an agent’s
local rewards should be hidden from the other agents as this
is an important aspect of model privacy. The encryption and
decryption operations were performed by the common Java
implementation of the Paillier cryptosystem3.

Since P3I is a privacy-preserving variation of the CE
method, we compared it with DICE (Oliehoek, Kooij, and
Vlassis 2008) — the vanilla CE method for Dec-POMDPs.
The goal is to empirically evaluate the performance of our
privacy-preserving techniques. As expected, both P3I and

2http://masplan.org/problem domains
3https://www.csee.umbc.edu/∼kunliu1/research/Paillier.html

Table 1: Runtime Results of Benchmark Problems

Problem Runtime (sec.)
DICE P3I Parallel P3I

Dec-Tiger 3.9 ± 0.2 7350 ± 260 424 ± 9
Broadcast Channel 4.5 ± 0.1 7070 ± 214 433 ± 12

Meeting in Grid 11.3 ± 1.0 6424 ± 180 381 ± 11
Box Pushing 6.1 ± 0.3 6907 ± 254 425 ± 12

Recycling Robots 4.3 ± 0.3 7404 ± 277 433 ± 12
Mars Rovers 11.8 ± 1.0 6897 ± 158 443 ± 10

DICE produced policies with identical quality for all the tes-
ted problems. This confirms the correctness of P3I. In what
follows, we mainly analyze the runtime of P3I on the 6 ben-
chmark problems as shown in Table 1.

As expected, the most time-consuming operations of P3I
are the encryption and decryption. This is not surprising
since the Paillier cryptosystem requires much more complex
operations than the CE method. For instance, in the Box Pus-
hing problem, the encryption and decryption operations took
more than 99% of the total time while the CE method only
required less than 1% of the time for sampling and policy
updating. As we pointed out above, the time complexity of
P3I for encryption and decryption depends on the number of
trials. This is confirmed by our results. As Table 1 shows,
the runtime of P3I is around 7000 seconds for all the tested
problems as we used 1000 trials for all instances. We also
observed that the runtime of P3I only increased linearly as
the number of trials grows.

Fortunately, the encryption and decryption operations in
P3I can be run concurrently as the encryption and decryp-
tion of the trial values are independent of each other. The
runtime results of the parallel P3I on a machine with 40 co-
res is shown in Table 1 as Parallel P3I. As we can see, pa-
rallel P3I achieved one order of magnitude improvement in
runtime. The runtime can be further reduced if more CPU
cores are available. As with P3I, the runtime of parallel P3I
is about 400 seconds across all problem instances.

In summary, we can see that privacy in P3I comes at a cost
in runtime as the encryption and decryption operations are
time-consuming. The runtime can be improved by running
these operations concurrently on a multi-core machine.

Conclusions
We present P3I — the first privacy-preserving planning algo-
rithm for solving Dec-POMDPs based on message passing
among the agents and a public-key homomorphic cryptosy-
stem to encrypt the messages. We proved the correctness and
analyzed the complexity of P3I. Most importantly, we ana-
lyzed the privacy properties of P3I and proved that it pre-
serves agent privacy of non-neighbors, model privacy, and
decision privacy. Experimental results on six Dec-POMDP
benchmark problems confirm our propositions and show
that running the time-consuming encryption and decryption
operations concurrently can substantially improve the run-
time of P3I. In the future, we plan to integrate our privacy-
preserving techniques with other Dec-POMDP solvers that
are more sample efficient and investigate model-based ap-

proaches where private and public actions are explicitly spe-
cified (Brafman 2015).

Acknowledgments
This work was supported in part by the National Natu-
ral Science Foundation of China (grant No. 61603368), the
Youth Innovation Promotion Association of CAS (grant
No. 2015373), the Natural Science Foundation of Anhui
Province (grant No. 1608085QF134) and the US National
Science Foundation (grant No. IIS-1405550).

References
Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009. Incre-
mental policy generation for finite-horizon DEC-POMDPs.
In Proceedings of the International Conference on Automa-
ted Planning and Scheduling, 2–9.
Benaloh, J. 1994. Dense probabilistic encryption. In Works-
hop on Selected Areas of Cryptography, 120–128.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4):819–840.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proc. of the Internatio-
nal Joint Conference on Artificial Intelligence, 1530–1536.
Clark-Turner, M., and Amato, C. 2017. COG-DICE: An al-
gorithm for solving continuous-observation Dec-POMDPs.
In Proc. of the International Joint Conference on Artificial
Intelligence, 4573–4579.
Dibangoye, J. S.; Amato, C.; Buffet, O.; and Charpillet, F.
2016. Optimally solving Dec-POMDPs as continuous-state
MDPs. Journal of Artificial Intelligence Research 55:443–
497.
Goldreich, O. 2009. Foundations of Cryptography: Volume
2, Basic Applications. Cambridge University Press.
Grinshpoun, T., and Tassa, T. 2014. A privacy-preserving
algorithm for distributed constraint optimization. In Proc.
of the International Conference on Autonomous Agents and
Multiagent Systems, 909–916.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2015. Proba-
bilistic inference techniques for scalable multiagent decision
making. Journal of Artificial Intelligence Research 53:223–
270.
Léauté, T., and Faltings, B. 2013. Protecting privacy
through distributed computation in multi-agent decision ma-
king. Journal of Artificial Intelligence Research 47:649–
695.
Liu, M.; Amato, C.; Liao, X.; Carin, L.; and How, J. P. 2015.
Stick-breaking policy learning in Dec-POMDPs. In Proc. of
the International Joint Conference on Artificial Intelligence,
2011–2018.
Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M. 2005.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In Proc. of the AAAI
Conference on Artificial Intelligence, 133–139.

Oliehoek, F. A.; Spaan, M. T. J.; Amato, C.; and Whiteson,
S. 2013. Incremental clustering and expansion for faster
optimal planning in Dec-POMDPs. Journal of Artificial In-
telligence Research 46:449–509.
Oliehoek, F. A.; Kooij, J. F. P.; and Vlassis, N. 2008.
The cross-entropy method for policy search in decentralized
POMDPs. Informatica 32(4).
Omidshafiei, S.; Agha-Mohammadi, A.-A.; Amato, C.; Liu,
S.-Y.; How, J. P.; and Vian, J. 2016. Graph-based
cross entropy method for solving multi-robot decentralized
POMDPs. In Proc. of the IEEE International Conference on
Robotics and Automation, 5395–5402.
Paillier, P. 1999. Public-key cryptosystems based on com-
posite degree residuosity classes. In Proc. of the Internati-
onal Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 99, 223–238.
Pajarinen, J. K., and Peltonen, J. 2011. Periodic finite state
controllers for efficient POMDP and DEC-POMDP plan-
ning. In Proc. of Neural Information Processing Systems,
2636–2644.
Ramchurn, S. D.; Huynh, T. D.; Wu, F.; Ikuno, Y.; Flann, J.;
Moreau, L.; Fischer, J. E.; Jiang, W.; Rodden, T.; Simpson,
E.; Reece, S.; Roberts, S.; and Jennings, N. R. 2016. A
disaster response system based on human-agent collectives.
Journal of Artificial Intelligence Research 57:661–708.
Sakuma, J.; Kobayashi, S.; and Wright, R. N. 2008. Privacy-
preserving reinforcement learning. In Proc. of the Internati-
onal Conference on Machine Learning, 864–871.
Tassa, T.; Zivan, R.; and Grinshpoun, T. 2015. Max-sum
goes private. In Proc. of the International Joint Conference
on Artificial Intelligence, 425–431.
Wu, F.; Ramchurn, S. D.; Jiang, W.; Fischer, J. E.; Rodden,
T.; and Jennings, N. R. 2015. Agile planning for real-world
disaster response. In Proc. of International Joint Conference
on Artificial Intelligence, 132–138.
Wu, F.; Zilberstein, S.; and Chen, X. 2010a. Rollout sam-
pling policy iteration for decentralized POMDPs. In Proc.
of the Conference on Uncertainty in Artificial Intelligence,
666–673.
Wu, F.; Zilberstein, S.; and Chen, X. 2010b. Trial-based
dynamic programming for multi-agent planning. In Proc. of
the AAAI Conference on Artificial Intelligence, 908–914.
Wu, F.; Zilberstein, S.; and Chen, X. 2017. Multi-agent plan-
ning with baseline regret minimization. In Proc. of the In-
ternational Joint Conference on Artificial Intelligence, 444–
450.
Wu, F.; Zilberstein, S.; and Jennings, N. R. 2013. Monte-
carlo expectation maximization for decentralized POMDPs.
In Proc. of the International Joint Conference on Artificial
Intelligence, 397–403.
Yao, A. C.-C. 1986. How to generate and exchange secrets.
In Proc. of IEEE Symposium on Foundations of Computer
Science, 162–167.
Zhang, S., and Makedon, F. 2005. Privacy preserving lear-
ning in negotiation. In Proceedings of ACM Symposium on
Applied Computing, 821–825.

