
A Parallel Point-Based POMDP Algorithm Leveraging GPUs

Kyle Hollins Wray and Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts, Amherst, MA 01003
{wray, shlomo}@cs.umass.edu

Abstract

We parallelize the Point-Based Value Iteration (PBVI) algo-
rithm, which approximates the solution to Partially Observ-
able Markov Decision Processes (POMDPs), using a Graph-
ics Processing Unit (GPU). We detail additional optimiza-
tions, such as leveraging the bounded size of non-zero values
over all belief point vectors, usable by serial and parallel algo-
rithms. We compare serial (CPU) and parallel (GPU) imple-
mentations on 10 distinct problem domains, and demonstrate
that our approach provides an order of magnitude improve-
ment.

Introduction
Partially Observable Markov Decision Processes
(POMDPs) (Kaelbling et al. 1998) are a powerful mathe-
matical model which describe the interactions of an agent
in a stochastic environment, with numerous real-world
applications such as semi-autonomous driving (Wray and
Zilberstein 2015). Since POMDPs are PSPACE-hard,
approximation algorithms have been developed, such as
Point-Based Value Iteration (PBVI) (Pineau et al. 2003) and
Perseus (Spaan and Vlassis 2005). This algorithm performs
a single update equation (single instruction) over multiple
parts of the POMDP (multiple data), which is amenable to
parallelization. We present a General-Purpose Graphics Pro-
cessing Unit (GPGPU) approach to PBVI, as well as discuss
key optimizations which vastly improve performance all
point-based algorithms. To the best of our knowledge, our
approach and non-zero belief point optimization technique
are novel. Parallel PBVI for multi-core CPUs has been
explored (Shani 2010); however, GPUs enable additional
parallelism since they may execute tens of thousands of
threads. GPUs have been used with Monte Carlo value
iteration, but not PBVI (Lee and Kim 2013). Our main
contributions include: (1) GPGPU-based parallel PBVI
algorithm, (2) an optimization for PBVI, (3) experiments
that demonstrate an order of magnitude improvement, and
(4) an easy-to-use library entitled nova which contains both
our CPU and GPU implementations.

Optimizing Parallel PBVI
A POMDP is a tuple xS,A,Ω, T,O,Ry. S is a set of n
states. A is a set of m actions. Ω is a set of z observa-
tions. T : S ˆ A ˆ S Ñ r0, 1s is a state transition such

that T ps, a, s1q “ Prps1|s, aq. O : AˆSˆΩ Ñ r0, 1s is an
observation transition such that Opa, s1, ωq “ Prpω|a, s1q.
R : S ˆ A Ñ R is a reward (denoted Rps, aq). POMDPs
have a horizon h P N and a discount factor γ P p0, 1q. The
agent maintains a set of r beliefsB Ď 4n over the true state
(standard n-simplex 4n). A policy π : B Ñ A determines
which action to take based on a belief. The goal is to find
a policy that maximizes the expected reward over time, or
value function V : B Ñ R. Since it is piecewise linear and
convex, we use a set of α-vectors Γ “ tα1, . . . , αru. At time
t, the value at b is:

V tpbq “ max
aPA

ÿ

sPS

bpsqRps, aq `
ÿ

ωPΩ

max
αPΓt´1

ÿ

sPS

bpsqV tsaωα

V tsaωα “ γ
ÿ

s1PS

Opa, s1, ωqT ps, a, s1qαps1q

PBVI updates the α-vectors Γt only at a fixed set of beliefs:

Γtaω “ trV
t
s1aωα, . . . , V

t
snaωαs

T ,@α P Γt´1u

Γtb “ trRps1, aq, . . . , Rpsn, aqs
T`

ÿ

ωPΩ

argmax
αPΓt

aω

α¨b,@a P Au

Γt “ targmax
αPΓt

b

α ¨ b,@b P Bu

There are two main optimizations required for GPU al-
gorithms: (1) coalesced memory access (each thread ac-
cesses contiguous lines in memory; i.e., the same cache line)
and (2) avoid branching (e.g., avoid if-statements and keep
threads synchronized to the same instructions). Thus, all
variables (T ,B, etc.) are structured arrays which ensure that
thread “execution groups” called warps are aligned memory
accesses to the same region (coalesced access), and we use
a reduction for argmax (avoid branching).

Our approach has two steps which fully parallelize com-
puting Γtb and Γt. First, we launch threads that compute the
optimal α P Γtaω by evaluating each α¨b in parallel (rmz
blocks of r threads). Importantly, we only store the value
and index of α¨b, use a reduction to compute the maximum
in logprq, and recompute it compute αba P Γtb. Second, we
perform a similar technique for Γt for each B.

We limit array sizes to improve performance and reduce
RAM usage so that we can solve much larger POMDPs.
Specifically, we only use state-action pairs for R and limit
the size of T and B (optionally, O and A). We let ns de-
note the maximum number of successors such that ns “

Domain n m z r1 ns rz |B1| “ r1 |B2| “ 2r1 |B3| “ 3r1
GPU CPU GPU CPU GPU CPU

Tiger 2 3 2 16 2 2 0.002 0.001 0.003 0.002 0.004 0.004
Grid (4x3) 11 4 6 32 9 4 0.014 0.013 0.027 0.046 0.040 0.097
Tiger Grid 36 5 17 128 5 32 1.475 5.507 3.154 21.733 5.619 48.963
Hallway2 92 5 17 256 88 88 7.896 55.856 23.271 236.361 51.184 491.354
Tag 870 5 30 256 5 29 6.607 41.081 23.952 169.765 71.665 358.989
Rock Sample (7x8) 12545 13 2 256 1 256 8.140 45.897 17.754 170.649 40.136 344.447
Drive: San Franc. 172 8 2 256 2 2 0.073 0.216 0.144 0.803 0.259 1.741
Drive: Seattle 432 10 2 512 2 2 0.233 1.180 0.597 4.255 1.125 9.552
Drive: N.Y.C. 1064 12 2 1024 2 2 1.083 7.256 2.997 24.827 6.468 56.010
Drive: Boston 2228 12 2 2048 2 2 5.288 27.700 19.155 96.822 41.544 202.478

Table 1: Update step computation time (in seconds) for 6 well-known domains and 4 Drive cities averaged over 10 trials.

maxs,a |ts
1 P S|T ps, a, s1q ą 0u|, define S : SˆAÑ PpSq

as the mapping to available successor states, and redefine
T : S ˆ A ˆ t1, . . . , nsu Ñ p0, 1s. State sizes tend to have
a large impact on performance and memory. This common
optimization enables larger problems to be quickly solved.

To the best of our knowledge, no one has discussed a sim-
ilar optimization with respect to belief points: remove zero
values from all b P B. All uses of b are dot-products in our
PBVI equations, for which computation can be greatly re-
duced. Similarly, we let rz denote the maximum number of
non-zero belief values such that rz “ maxb |ts P S|bpsq ą
0u|, define Z : B Ñ PpSq as the mapping to non-zero be-
lief points, and redefine all b P B to be parallel arrays to the
state-arrays in Zpbq of only the non-zero values over beliefs.

Experimentation
We implemented our parallel approach using CUDA1 on an
Intel(R) Core(TM) i7-4702HQ CPU at 2.20GHz, 8GB of
RAM, and an Nvidia(R) GeForce GTX 870M graphics card
using C++, CUDA(C) 7.0, and Python 3.4.3. We compared
the computation time of a single update step of GPU and
CPU implementations. These two algorithms were run on
10 problem domains, each with a varying number of states,
actions, observations, and structure regarding the state and
observation transitions, linearly varying the number of be-
lief points within each domain. We include 4 cities from
the semi-autonomous driving domain (Wray and Zilberstein
2015), denoted Drive, using the road distance cost function.
Table 1 shows the domains and final run time results. They
represent averages over 10 trials in order to reduce any noise
resulting from our belief point expansion.

The complexity of our CPU implementation’s update step
is Opmzrnspn`rrzqq. In comparison, our GPU implemen-
tation’s complexity is Oprzpm`nsq` logprq`ns`nq. This
assumes an ideal scenario in which enough threads are cre-
ated to perform instructions in parallel. The exponential in-
crease of hardware performance and capability will likely
make this increasingly more realizable with time.

Conclusion
Our results demonstrate approximately an order of magni-
tude improvement is realizable with the current generation

1https://developer.nvidia.com/about-cuda

of GPUs. The vast asymptotic difference between our im-
plementations, however, suggests that this can be greatly im-
proved by increasing the number of threads. Additionally,
the comparison between Drive (rz!n) and domains such as
Tiger Grid (rz«n) provides strong evidence that the max-
imum number of non-zero belief points rz significantly af-
fects performance. In general, proactively incorporating how
many non-zero values are in all probability vectors (e.g., our
B optimization “trick”) can yield large performance gains.

Our work presents a new perspective on designing par-
allel algorithms for POMDPs by leveraging the power of
GPUs. Experimentation shows that our GPU-based imple-
mentation successfully outperforms our CPU-based imple-
mentation, utilizing the aforementioned optimizations. We
compiled these implementations into a single open-source
library entitled nova, which also includes parallel solvers for
other MDP models, so that others may build upon this work
to produce high-performance parallel algorithms.

Acknowledgments
This work was supported in part by NSF grant IIS-1405550.

References
Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cas-
sandra. Planning and acting in partially observable stochastic do-
mains. Journal of Artificial Intelligence Research, 101(1):99–134,
1998.
Taekhee Lee and Young J. Kim. GPU-based motion planning under
uncertainties using POMDP. In Proc. of the IEEE International
Conference on Robotics and Automation, pages 4576–4581, 2013.
Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based
value iteration: An anytime algorithm for POMDPs. Proc. of
the 18th International Joint Conference on Artificial Intelligence,
pages 1025–1032, 2003.
Guy Shani. Evaluating point-based POMDP solvers on multicore
machines. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 40(4):1062–1074, 2010.
Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artificial In-
telligence Research, 24(1):195–220, 2005.
Kyle Hollins Wray and Shlomo Zilberstein. Multi-objective
POMDPs with lexicographic reward preferences. In Proc. of the
24th International Joint Conference of Artificial Intelligence, pages
1719–1725, 2015.

