
Anytime Sensing, Planning and Action: A Practical Model for Robot Control

Shlomo Zilberstein and Stuart J. Russell

Computer Science Division
University of California

Berkeley, CA 94720 U.S.A.
shlomo, russell@cs.berkeley.edu

Abstract

Anytime algorithms, whose quality of results im-
proves gradually as computation time increases,
provide useful performance components for time-
critical planning and control of robotic systems. In
earlier work, we introduced a compilation scheme
for optimal composition of anytime algorithms. In
this paper we present an implementation of a navi-
gation system in which an off-line compilation pro-
cess and a run-time monitoring component guaran-
tee the optimal allocation of time to the anytime
modules. The crucial meta-level knowledge is kept
in the anytime library in the form of conditional
performance profiles. We also extend the notion of
gradual improvement to sensing and plan execution.
The result is an efficient, flexible control for robotic
systems that exploits the tradeoff between time and
quality in planning, sensing and plan execution.

1 Introduction

There is a wide gap between theory and practice in plan-
ning and control of robotic systems. Early theoretical work
has concentrated on the analysis of systems with perfect sen-
sors and effectors and with unlimited computational power.
This paper outlines the implementation of a model of any-
time computation that provides a more realistic theoreti-
cal foundation for robot planning and control. The model
is based on anytime algorithms [Dean and Boddy, 1988;
Horvitz, 1987] that introduce a new tradeoff in programming –
between computation time and quality of results. This degree
of freedom is especially useful when developing the perfor-
mance elements and the control mechanism of a robotic sys-
tem. The flexibility offered by anytime algorithms allows ac-
curate sensing and extended planning when time is available,
and coarse, fast sensing and planning under time pressure. It
is based on the observation that in order to cope with complex
environments in real-time, there is no need to sacrifice the
ability to do precise sensing and planning. But, as time allo-
cation becomes a degree of freedom, incremental scheduling
and constant monitoring are necessary in order to guarantee
the optimal operation of the robot. In [Russell and Zilber-
stein, 1991] we introduced a compilation scheme for optimal
composition of anytime algorithms. It offered a new approach
to the construction of complex real-time systems that sepa-

rated the arrangement of the performance components from
the optimization of their scheduling, and automated the latter
task.

In this paper we use the compilation of anytime algorithms
as part of a model for robot control. We have implemented a
navigation system in which the scheduling of anytime algo-
rithms is performed by a run-time monitoring component that
uses performance information produced by the off-line compi-
lation process. In order to reason efficiently at run-time about
time allocation, we use conditional performance profiles that
give a probabilistic description of the quality of the results of
an algorithm as a function of run-time and input quality (or
any set of input properties). This is an extension of an earlier
notion of performance profile that depends deterministically
on run-time only [Dean and Boddy, 1988].

Figure 1 shows the data flow between the main components
of the system. Sensory input is used to update the description
of the environment. This description is used both as input to
the anytime planner and as one of the factors that determine
the allocation of time by the monitor. The other factors are:
the compiled performance profile of sensing and planning, the
model of the environment, and the quality of the current best
plan.

To demonstrate this model we have selected one of the fun-
damental problems facing any autonomous mobile robot: the
capability to plan its own motion with noisy sensors. Sec-
tion 2 describes the anytime sensing module. In Section 3,
we describe the simulated environment in which the robot is
situated and how the path planning problem is solved by an
anytime abstract planner. In Section 4, we explain the com-
pilation scheme that optimally integrates the anytime compo-
nents of the system. Section 5 presents the run-time system.
We conclude with a summary of the benefits of our approach.

2 Anytime sensing

A primary goal of this work has been to extend the notion of
gradual improvement of quality to sensing. The supposition
that sensors produce a perfect domain description, as much as
the assumption of perfect planning and plan execution, con-
stitutes a major disadvantage in any model for robot control.
In our model, the presence of sensory errors is not an excep-
tion but rather the normal situation. Moreover, in order to
optimally control the quality of sensing, the model includes a
quantitative evaluation of its effect on the other components

In Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France, 1993.

 PHYSICAL
ENVIRONMENT

ANYTIME SENSING

DESCRIPTION OF
 ENVIRONMENT

ANYTIME LIBRARY

 MODEL OF
ENVIRONMENT

MONITOR

CURRENT BEST PLAN

ANYTIME PLANNING

PLAN EXECUTION

CONTRACT TIME

Figure 1: Data flow diagram

of the system.
This section describes the model of anytime sensing that we

implemented. It produces a domain description whose quality
measures the probability that an elementary (base level) po-
sition would be wrongly identified, that is, identified as free
space while actually blocked by an obstacle or vice versa.
We assume that within the area in which the sensors are ef-
fective, the quality of sensing is not affected by the robot’s
position. Our general model, however, does not require this
assumption.

Figure 2 shows the performance profile of the vision mod-
ule. It is characterized by several parameters:

�����������
	����
	��
.� �

is the minimal amount of time needed for the sensor to pro-
duce an initial domain description with quality

	 �
. Given a

shorter run-time, the sensor does not produce any description
of the domain. For a run-time � , ����� � �����

, the quality of
vision improves from

	��
to the maximal quality

	��
, which

is 1.00 in this example. Detailed analysis of anytime sensing
shows that in our domain sensing can be treated just as an
anytime computational module for the purpose of compila-
tion and monitoring. However, this proprty does not hold in
general [Zilberstein, 1993].

3 Anytime abstract planning

Our robot is situated in a simulated, two dimensional envi-
ronment with random obstacles. The robot does not have an
exact map of the environment but it has a vision capability
that allows it to create an approximate map. The accuracy of
the domain description depends on the time allocated to the
vision module. The environment is represented by a matrix

1.00

0.00
Ta Tb

Qa

quality

time

Figure 2: The performance profile of the vision module

of elementary positions. The robot can move between adja-
cent cells of the matrix at a varying speed which affects the
execution time of the plan as well as the energy consumption.
When the simulation starts, the robot is presented with a cer-
tain task that requires it to move to a particular position and
perform a certain job. Associated with each task is a reward
function that determines the value of the task as a function of
completion time. The system is designed to control the move-
ment of the robot, that is, determine its direction and speed
at each point of time, while maximizing the overall utility.
The overall utility depends on the value of the task (a time
dependent function), and on the amount of energy consumed
in order to complete it.

The run-time monitor has to determine at each point how
much time to allocate to vision and path-planning based on
factors such as the current location of the robot, the estimated
distance to the goal position, the urgency of the task, and the
quality of the plan produced so far.

Path planning is performed using an algorithm which is a
variant of the coarse-to-fine search algorithm [Lozano-Pérez
and Brooks, 1984] that allows for unresolved path segments.
In order to make it an anytime algorithm, we vary the abstrac-
tion level of the domain description. This allows the algorithm
to find quickly a low quality plan and then repeatedly refine it
by replanning a segment of the plan in more detail. The rest
of this section describes the algorithm and its performance
profile.

3.1 Abstract description of the domain

In our hierarchical (quad trees) representation, the ����� level
of abstraction corresponds to a certain coarse grid in which
every position, ��� ����� , is an abstraction of a �!#"$ �! matrix
of base-level positions. Each high level position has a certain
degree of “obstacleness” associated with it which is simply
the proportion of the matrix that is covered by obstacles.

3.2 The anytime planning algorithm

The interruptible anytime planner (ATP), shown in Figure 3,
constructs a series of plans from start to goal, whose qual-
ity improves over time. It starts with a plan generated by
performing best-first search at the highest level of abstraction
(%�& �
'). Then, it repeatedly refines the plan created so far
by selecting the worst segment of the plan, dividing it into
two segments (of identical length), and replacing each one of

ATP(start, goal, domain-description)
1 multi-path � [SEGMENTIZE(start),

PATH-FINDER(PROJECT(start, % & �
'),
PROJECT(goal, % & � '),
domain-description),

SEGMENTIZE(goal)]
2 REGISTER-RESULT(multi-path)
3 while REFINABLE(multi-path) do
4 REFINE(WORST-SEGMENT(multi-path),

domain-description)
5 REGISTER-RESULT(multi-path)
6 SIGNAL(TERMINATION)

Figure 3: The anytime planning algorithm

those segments by more detailed plans at a lower abstraction
level. The worst segment of the plan is selected according
to the degree to which the segment is blocked by obstacles
and according to its abstraction level. A special data struc-
ture, called a multi-path, is used in order to keep intermediate
results. It is a list of successive path segments of arbitrary
abstraction level. Note that the length of each segment of an
intermediate plan is invariant. As a result, the run-time of the
refinement step is approximately the same for any segment of
the plan regardless of its level of abstraction.

The PATH-FINDER is a search procedure that returns the
best path between any two positions in the same abstraction
level. The path is represented as a list of positions at the same
abstraction level. A base-level path must be obstacle-free and
hence is a route that the robot can follow. A path at a higher
level of abstraction, on the other hand, is the result of an A

�
search that minimizes the length as well as the obstacleness
of the result. It does not correspond to a particular list of
base-level positions.

3.3 Plan execution

In order to follow an abstract path, the robot must use an ob-
stacle avoidance procedure that may lengthen the route. As
long as there exists a path that connects the start and goal po-
sitions, the obstacle avoidance procedure can bring the robot
to its destination. Therefore, any abstract plan is completable
and executable – even when blocked by obstacles. Obstacle
avoidance is not a smart navigation method, but it can always
substitute for missing details in an abstract plan. The quality
of a plan

�
is defined as follows:

	������ � �
	�� � ���
��
 ��������� ����� �

�
��
 ��� ��� � � �

where
��
 ��������� � � is the length of the plan and

�����
� is the

optimal plan. Note that the higher the level of abstraction the
lower the quality of the plan. At the same time, high-level
abstract planningreduces (exponentially) the search space and
hence it is performed much faster.

The notion of executable abstract plans – regardless of their
arbitrary level of detail – is made possible by using plans as
advice that direct the base level execution mechanism but

does not impel a particular behavior. This idea was pro-
moted by [Agre and Chapman, 1990] and was experimentally
supported by [Gat, 1992]. In practice, uncertainty makes it
impossible to use plans except as a guidance mechanism.

3.4 Performance with perfect vision

We now examine the performance of the abstract planner
under the assumption of perfect domain description. Figure 4
shows the paths generated by the path finder when activated
with the start and goal positions being the lower left and upper
right corners respectively. The upper frame shows (by the
large squares drawn in broken line) an abstract plan at level 3.
The quality of the plan, 0.826, is determined by the length of
the route the robot would have followed if guided by this plan
(shown in the figure by a heavy broken line) compared to the
length of the shortest route. The lower frame shows a more
precise abstract plan with segments at levels 0 and 1. Notice
that in this example the quality of the plan reached 0.985 –
almost as good as the quality of the shortest path.

The typical performance of the planner is summarized by
its performance profile in Figure 5. The graph shows the
expected quality of the plan as a function of run-time. When
run until completion, the expected quality of the plan produced
by the abstract planner is 0.93. At the same time, its expected
completion time is only 27% of the the expected run-time
needed to compute the optimal path using the standard � �
algorithm. These figures show that anytime algorithms offer
not only more flexibility but also a better cost/performance
ratio.

3.5 Performance with imperfect vision

We now turn to examine the effect of vision errors on the
quality of planning. The following demonstration is based
on vision quality of 0.96. This figure is a measure of the
sensor’s noise level as described in the previous section. The
physical domain is identical to the one used in the previous
example, however, the map constructed by the vision module
is erroneous.

Figure 6 shows snapshots of the plan generated by the
algorithm and their qualities. Notice that as a result of lower
quality of sensing, the quality of the initial plan is only 0.760
compared to 0.826 with perfect vision. On average, as a result
of the error in the domain description, the planner produces
plans of lower quality.

Based on statistics gathered by running the planning algo-
rithm many times on randomly generated domains, we de-
rived its conditional performance profile. It describes the
expected quality of a plan based on the quality of the domain
description and run-time. Figure 7 shows the conditional per-
formance profile. Each curve shows the expected plan quality
as a function of run-time for a particular quality of vision.

4 Compilation of sensing and planning

The compilationof anytime algorithms is a process that essen-
tially extends the idea of functional composition to anytime
computation. It allows the programmer to compose a sys-
tem using anytime algorithms as components without dealing
directly with the time allocation problem. To explain the
compilation process we must first make a distinction between

(a) Level 3 plan

(b) Level 1/0 plan

Figure 4: Abstract plans with perfect vision

0.40

0.50

0.60

0.70

0.80

0.90

time (sec)

quality

0.0 5.0 10.0 15.0 20.0

Figure 5: The performance profile of the planner

interruptible algorithms and contract algorithms. Interrupt-
ible algorithms produce results of the quality “advertised” by
their performance profiles even when interrupted unexpect-
edly; whereas contract algorithms, although capable of pro-
ducing results whose quality varies with time allocation, must
be given a particular time allocation in advance. The greater
freedom of design makes it easier to construct contract algo-
rithms than interruptible ones. The compilation process cre-
ates a contract algorithm. In those cases where it is necessary
to use an interruptible algorithm, the contract algorithm can
be transformed into an interruptible one using a construction
method presented in [Russell and Zilberstein, 1991]. Having
made this distinction, we can define compilation as follows:

Definition: Compilation of anytime algorithms is the process
of deriving a contract algorithm with an optimal performance
profile from a program composed of several anytime algo-
rithms whose conditional performance profiles are given.

The input to the compiler includes a user defined function that
we call the program schema. It looks like a regular code but
some of the functions it uses may be anytime algorithms. The
compiler also gets a set of conditional performance profiles
stored in a library. The task of the compiler is to produce a
new version of the program that includes code to control the
distribution of time between the components so as to maxi-
mize the overall performance for any given time allocation.
It also creates a performance profile for the complete system,
based on the optimal time allocation.

The hardest part of the compilation is finding the time al-
location to the components that yields maximal quality. This
problem has been solved in [Zilberstein, 1993] with respect
to a rich compositional language. In the case of composi-
tion of � modules, the global optimization problem is shown
to be NP-complete by transformation from the partially or-
dered knapsack problem (which is known to be NP-complete
in the strong sense [Garey and Johnson, 1979]). However, a
local compilation technique, that works on a single program
structure at a time, significantly improves the efficiency of
compilation and is proved to yield optimal performance for
a large set of program structures. The composition of plan-
ning and sensing is a simple example of such program. It is
represented by the following program segment:
(find-path Start Goal (get-domain-description Sensor))

(a) Level 3 plan

(b) Level 1 plan

Figure 6: Abstract plans with imperfect vision

IQ 100

IQ 98

IQ 96

IQ 94

IQ 92

IQ 90

IQ 88

IQ 86

0.40

0.50

0.60

0.70

0.80

0.90

0.0 5.0 10.0 15.0 20.0 time (sec)

quality

Figure 7: The conditional performance profile of the planner

MIN

MAX

COMP

0.0 5.0 10.0 15.0 20.0 time (sec)

0.60

0.70

0.80

0.90

quality

25.0

Figure 8: Compilation of vision and planning

Figure 8 shows the performance profile that we got by
compiling this program. Also shown in that figure are the
performance profiles of two other modules: MIN, that allo-
cates to vision a minimal amount of time,

� �
, and MAX, that

allocates to vision a maximal amount of time,
� �

. The com-
piled performance profile is superior to both. The reader can
find a more detailed description of the compilation process
in [Zilberstein, 1993].

5 The run-time system

Systems composed of anytime algorithms require constant
monitoring. The compilation process provides the necessary
meta-level information to make the run-time monitoring more
efficient. In this section we explain how the run-time system
controls the time allocation to the anytime modules.

The optimization of the long-term behavior of the robot is
performed by dividing a complex task into a series of small
sensing, planning and plan execution episodes called frames.
For each frame, we use the anytime sensing and planning
modules described earlier. Since, in many cases, sensing
capability is limited to a small, local segment of the environ-
ment, it is only natural to break the navigation problem into
such frames.

The task of the meta-level control is to determine the op-
timal initial contract time for each frame. This decision –
inter-frame optimization – is made in the following way: let �
be the current time (real-time since the beginning of the exe-
cution of the task), let � � be the (estimated) number of frames
left at time � for planning and execution, let ��� be the contract
time for the next cycle of planning and execution, and let

�

be the energy used so far for plan execution. Then,

��� � ��� ��� �	�
��

��
�� � � � � � �

� ��� ����� ��� �
 �
� � �

� ��� ���
where

�� �
is the expected value of the task and

� ���
is

the expected cost of energy. Note that both the performance
profile of the system and a model of the environment are
necessary in order to compute these functions.

Once an initial contract time is determined, the system starts
allocating resources to sensing, planning and plan execution.
At the same time it continues to monitor the performance of
the anytime modules. This constant monitoring is necessary
because of the uncertainty concerning the actual quality of
plans and the actual time necessary to execute them. The
purpose of the meta-level control in this phase is to reach an
optimal plan quality for the next frame while executing a pre-
viously derived plan. For this purpose, it can modify the initial
contract time. This decision – intra-frame optimization – is
made in the following way: the monitor determines at each
point whether planning is ahead of or behind expectations by
comparing the (estimated) plan quality to the quality adver-
tised by the performance profile. It also determines whether
plan execution is ahead of or behind expectations by com-
paring the (estimated) execution time to the frame contract
time. If planning is ahead of expectations and plan execution
is behind, the monitor accelerates plan execution by alloca-
tion more resources (energy) to plan execution. If planning is
behind and plan execution is ahead, the monitor slows down
plan execution by reducing resource consumption.

This monitoring strategy can be modified in various ways.
For example, one can consider planning more than one frame
ahead, when plan execution is slow. Another possibility in
this case is to replan part of the plan that is being executed
to accelerate plan execution. However, our experiments with
the above domain show that the monitoring strategy that was
implemented is sufficient in order to achieve (within 4% er-
ror) the optimal task value that the system computes when
presented with the task.

6 Conclusion

We have presented a method to construct robotic systems and
to optimize their performance. The method is based on devel-
oping the performance components of the system as anytime
algorithms. The control of the anytime components of the
system is efficiently implemented using off-line compilation
and run-time monitoring. An implementation of the model
was presented that solves a particular path planning problem.
Our approach offers several improvements over traditional
ad hoc techniques used to construct robotic systems: it is
an optimizing rather than satisficing method; it allows com-
plex planning to be used in real-time robotic systems; it helps
construct systems when resource availability is unknown at
design time; and it efficiently integrates sensing, planning and
plan execution.

The anytime abstract planning algorithm that was presented
produced high quality results with time allocation that was
much shorter than the total run-time of a standard search al-
gorithm. This shows that the flexibilityof anytime algorithms
does not necessarily require a compromise in overall perfor-
mance, even with a fixed time allocation.

By further generalizing the various components of the sys-
tem, we aim at constructing a general, flexible mechanism for
developingself-optimizingautonomous robots whose percep-
tion, decision making and action are implemented as anytime
modules. This approach offers a more realistic theoretical
foundation for robot planning by addressing the problems
of uncertainty, limited computational power, and imprecise
sensing.

Acknowledgements

Support for this work was provided in part by the National Sci-
ence Foundation under grants IRI-8903146 and IRI-9058427
(Presidential Young Investigator Award).

References
[Agre and Chapman, 1990] P. E. Agre and D. Chapman.

What Are Plans for? In Robotics and Autonomous Systems,
6:17–34, 1990.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An Analy-
sis of Time-Dependent Planning. In Proc. Seventh Na-
tional Conference on Artificial Intelligence, pp. 49–54,
Minneapolis, Minnesota, 1988.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.
Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco, California: W. H. Free-
man and Company, 1979.

[Gat, 1992] E. Gat. Integration Planning and Reacting in a
Heterogeneous Asynchronous Architecture for Controlling
Real-World Mobile Robots. In Proc. Tenth National Con-
ference on Artificial Intelligence, pp. 809–815, San Jose,
California, 1992.

[Horvitz, 1987] E. J. Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Pro-
ceedings of the 1987 Workshop on Uncertainty in Artificial
Intelligence, Seattle, Washington, 1987.

[Lozano-Pérez and Brooks, 1984] T. Lozano-
Pérez and R. A. Brooks. in Solid Modeling by Computers,
M. S. Pickett and J. W. Boyse, Eds. pp. 293-327, Plenum,
New York, 1984.

[Russell and Zilberstein, 1991] S. J. Russell and S. Zilber-
stein. Composing Real-Time Systems. In Proc. 12th
International Joint Conference on Artificial Intelligence,
pp. 212–217, Sydney, Australia, 1991.

[Zilberstein and Russell, 1992] S. Zilberstein and S. J. Rus-
sell. Efficient Resource-Bounded Reasoning in AT-
RALPH. In Proc. First International Conference on Arti-
ficial Intelligence Planning Systems, pp. 260–266, College
Park, Maryland, 1992.

[Zilberstein, 1993] S. Zilberstein. Operational Rationality
Through Compilation of Anytime Algorithms. Ph.D Dis-
sertation, Computer Science Division, University of Cali-
fornia, Berkeley, 1993.

