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Abstract. This paper is concerned with the implications of limited computational resources and uncer-
tainty on the design of autonomous systems. To address this problem, we redefine the principal role
of sensor interpretation and planning processes. Following Agre and Chapman’s plan-as-communication
approach, sensing and planning are treated as computational processes that provide information to an ex-
ecution architecture and thus improve the overall performance of the system. We argue that autonomous
systems must be able to trade off the quality of this information with the computational resources re-
quired to produce it. Anytime algorithms, whose quality of results improves gradually as computation
time increases, provide useful performance components for time-critical sensing and planning in robotic
systems. In our earlier work, we introduced a compilation scheme for optimal composition of anytime
algorithms. This paper demonstrates the applicability of the compilation technique to the construction
of autonomous systems. The result is a flexible approach to construct systems that can operate robustly
in real-time by exploiting the tradeoff between time and quality in planning, sensing and plan execution.
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soning, uncertainty

1. Introduction

Resource-bounded reasoning is concerned with
the implications of limited computational re-
sources on the design of intelligent systems (Si-
mon, 1982; Dean and Boddy, 1988; D’Ambrosio,
1989; Horvitz, 1989; Russell and Wefald, 1991).
Recent work in this field, in particular in the
area of anytime computation (Boddy and Dean,
1994; Zilberstein and Russell, 1993), is promising
to close an existing gap between the theoretical
work on sensing and planning and the constraints
of real-world applications.

Early work on such planning systems as
STRIPS and NOAH devoted substantial effort to
monitoring of planning and plan execution (Fikes,
Hart and Nilsson, 1972; Sacerdoti, 1977). How-
ever, later work in the AT community has concen-
trated on systems with perfect sensors and effec-
tors and with unlimited computational power (see
(Drummond and Tate, 1989) for a comprehen-
sive survey). These, sometimes hidden, assump-

tions have restricted the applicability of the re-
sults. The first step towards a more successful
system architecture is to generalize the role of
planning and sensing! in autonomous systems. In
Section 2, we propose a new approach to sens-
ing and planning as sources of information whose
goal is to improve the performance of the system.
This approach provides a more realistic theoret-
ical foundation for sensing, planning and control
of autonomous agents.

Anytime computation plays a central role in
the implementation of our approach. Anytime al-
gorithms (Dean and Boddy, 1988; Horvitz, 1989)
introduce a new tradeoff in programming — be-
tween computation time and quality of results.
This degree of freedom is especially useful when
developing the deliberative components and con-
trol mechanism of a robotic system. The flexibil-
ity offered by anytime algorithms allows accurate
sensing and extended planning when time is avail-
able, and coarse, fast sensing and planning under
time pressure. It is based on the observation that



in order to cope with complex environments in
real-time, there is no need to sacrifice the ability to
do precise sensing and planning. In Section 3, we
show how the sensing and planning components
of an agent can be implemented as anytime algo-
rithms. An automated compilation scheme is used
in order to optimally compose the components of
the system (Zilberstein, 1993). In addition to of-
fering a trade off between quality and time, the
new approach separates two important aspects of
autonomous agents, namely, the construction of
the deliberative components and the optimization
of performance. The latter task is achieved by a
utility-maximizing run-time monitor.

Run-time monitoring is another important
component of our approach. As time allocation
to the anytime sensing and planning components
becomes a degree of freedom, incremental schedul-
ing and constant monitoring are necessary in or-
der to guarantee the optimal allocation of time.
In Section 4, we describe how the run-time mon-
itoring component allocates computation time to
the anytime modules based on the performance
information produced by the compilation process.
In order to reason efficiently at run-time about
time allocation, the monitor uses conditional per-
formance profiles that give a probabilistic descrip-
tion of the quality of the results of an algorithm as
a function of run-time and input quality (or any
set of input properties). This is an extension of an
earlier notion of performance profile that depends
on run-time only (Dean and Boddy, 1988).

To demonstrate our approach we have selected
one of the fundamental problems facing any mo-
bile system: the capability to plan its own mo-
tion with noisy sensors. Our experiments with a
simple, simulated domain are designed to demon-
strate our approach. They show that resource-
bounded reasoning and anytime computation can
simplify the construction and improve the perfor-
mance of autonomous systems. In Section 5, we
show that the advantages of our approach can be
applied to the construction of real-world robots.
We conclude with a summary of the benefits of
our approach and the long-term goals of this re-
search.

2. Theroleof sensingand planningin autonomous
systems

Sensing and planning are computational processes
aimed at helping an autonomous robot (or an
“agent”) to act intelligently in the world. The
goal of sensing and planning is to improve the
performance of an agent by providing certain
types of information. A similar idea, termed
plan-as-communication, was introduced by Agre
and Chapman (1990). Agre and Chapman con-
fronted this approach with the more traditional
approaches that they term plan-as-program. The
plan-as-program view takes plan use to be like
program execution. Plans are built from a set of
parameterized primitives (such as PUT-ON(x,y))
using a set of composition operators. Executing
a plan means carrying out its primitive actions
and monitoring conditions specified by the plan-
ner, and performing little or no reasoning about
the activity in which the agent is engaged. The
plan-as-program view has several disadvantages
related to its computational complexity, inability
to handle imprecise sensory data and uncertainty.
It also requires that plans be too detailed and it
fails to relate the plan to the concrete situation.

We share Agre and Chapman’s view of tradi-
tional planning. Our approach is similar to their
plan-as-communication idea, but we offer an ad-
ditional important step. Since sensing and plan-
ning provide information to the execution archi-
tecture, their execution should be managed based
on the value of this information. Moreover, since
the quality of the information degrades over time,
an autonomous system should trade off the qual-
ity of the information against the computation
time needed to produce it. The rest of this sec-
tion explains our approach to sensing and plan-
ning and describes its implications on the design
of autonomous systems.

2.1. Sensing and planning asinformation sources

At the heart of any robotic system lies an exe-
cution architecture that interacts with the physi-
cal world by performing certain external actions.
(The term external action refers to the interac-
tion between the robot and the environment. It
is used to distinguish external actions from in-



Physical World

Fig. 1. In practice, the sensing and planning components
of a robot interact with the execution architecture, not di-
rectly with the physical world.

ternal actions such as sensor data interpretation,
planning, and monitoring.) The goal of sensing
and planning is to provide the execution architec-
ture with information that can improve the se-
lection of actions. We distinguish between the
actions selected by the planner to construct the
plan and the actions selected by the execution ar-
chitecture which are the actual actions performed
by the robot. The two processes may be totally
different and may sometimes disagree. The perfor-
mance improvement that achieved by the sensing
and planning processes is reflected by the system
achieving more of its goals in less time.

The execution architecture (or executor) com-
municates with and coordinates the operation of
the main components of the system that are shown
in Figure 1. The primary task of the execution ar-
chitecture is to monitor the execution of external
actions that change the physical world. The re-
covery mechanism can suggest ways to overcome
certain “simple” failures. Recovery is normally
performed using a simple planning mechanism, for
example using a greedy approach to quickly re-
store the necessary conditions rather than search-
ing for an optimal way. Recovery can also be im-
plemented as a reactive component. The planner
receives task definitions and information about
the current state from the execution architecture
and it creates information (in the form of an ab-
stract plan) that helps to achieve the goals of the
system. Different representations of states, oper-

773

ators and plans may be used by different systems,
but the general role of the execution architecture
as described above remains the same.

The sensing and planning modules of a robot
should be designed to support a particular eze-
cution architecture. Unfortunately, much of the
work on sensing and planning within the AT com-
munity has been carried out with respect to either
trivial or ill-specified execution architectures?.
For example, in STRIPS-style planning and many
of its descendants it is assumed that execution is
the obvious process of carrying out the actions
one by one subject to some ordering constraints.
The correctness of a plan is established based on
off-line analysis (termed temporal projection) that
shows that the goal is true after the plan is exe-
cuted. The state of the domain is totally accessible
without any realistic sensing and monitoring.

In reality, planning must be accompanied by an
execution architecture that can translate the plan
into individual external actions, monitor their ex-
ecution, recognize various types of failures, re-
cover from “simple” failures, and otherwise rely
on re-planning. More recent attempts to de-
sign planning systems have recognized the central
role of the execution architecture. For example,
the Entropy Reduction Engine (ERE) (Bresina
and Drummond, 1990) is designed to integrate
planning and reaction for control of NASA’s au-
tonomous rover. The ERE architecture includes
three components, reactor, projector and reducer,
that have the capability to operate independently
and perform their assigned task. Planning per-
formed by the projector is provided as advice to
the reactor in order to improve its performance.
Similarly, the reductor provides the projector with
search control advice. The same approach has
been applied in (Lyons and Hendriks, 1992) to
construct a “kitting” robot. But non of these sys-
tems has the capability to dynamically vary the
quality of planning.

The robotics community has a longer tradition
of integrating planning with reaction. The typi-
cal approach has been to introduce a planner on
top of a reactive execution architecture. For ex-
ample, SROMA (Xiadong and Bekey, 1988) is an
adaptive scheduler for mechanical assembly tasks
that utilizes plans that are generated off-line. The
run-time scheduler adapts planned actions to the



available resources. The planner in this architec-
ture generates a complete plan off-line which is
then down loaded into a reactive component. The
reactive component is allowed to modify action
ordering or introduce minor deviations. A similar
approach has been used by (Fox and Kempf, 1985)
for robot assembly tasks and by (Fraichard and
Laugier, 1991) for robot motion planning. What
distinguishes our approach from those systems is
its capability to control the quality of planning on-
line in order to respond to resource constraints.

2.2. Implications on the design of the sens-
ing and planning components

Sensing and planning help agents to choose ac-
tions intelligently. The ultimate goal of an agent
is not to derive accurate domain description, “op-
timal” plans, or even “correct” (when generated)
plans, but rather to transform the physical envi-
ronment into a desired state and thus perform a
certain task. We describe such goals using time-
dependent utility functions that define the de-
sirability of certain world configurations. Time-
dependent utility functions extend the traditional
notion of goals (by allowing partial goal satisfac-
tion) and the traditional notion of deadline (by
allowing gradual loss of utility as a function of
time). Given such a utility function, sensing and
planning should be designed and evaluated within
the context of a complete working system. While
traditional computational properties such as com-
plexity, correctness, and completeness are very im-
portant, they do not fully represent the goal of
sensing and planning. The rest of this section an-
alyzes the implications of the above definition of
sensing and planning on their design and imple-
mentation.

The value of sensing and planning Sensing
and planning are computational processes and as
such they do not immediately change the exter-
nal environment or achieve the ultimate goals of
an agent. For this reason, the outcome of sensing
and planning should be treated as a potentially
valuable piece of information. The value of this
information depends on three factors:

1. The objective quality of the information. In
sensing, quality reflects the accuracy of the do-
main description. In planning, quality reflects
the efficiency of the solution to the problem de-
fined by the initial planning conditions.

2. The time at which the sensing and planning in-
formation Becomes available to the system and
the extent of change that might have occurred
in the domain.

3. The capability of the agent to interpret the in-
formation produced by the sensing and plan-
ning processes and to exploit it effectively.

Standard decision-theoretic techniques can be
used to determine the value of planning both an-
alytically and experimentally (Howard, 1966; Zil-
berstein and Russell, 1993). This approach decou-
ples the value of planning and sensing from their
absolute correctness. Moreover, approximate in-
formation may be more valuable than precise in-
formation, if it can be produced much faster and if
the robot has the necessary recovery mechanisms
to cope with erroneous information.

Sensing and planning as resource-bounded
computation The various factors that deter-
mine the value of a plan are not independent. In
particular, the deliberation time required to im-
prove the quality of a plan will normally degrade
the overall utility of the agent. Similar considera-
tions apply to the quality of the domain descrip-
tion generated by the sensing process. Hence, it is
useful to analyze sensing and planning as resource-
bounded activities and to develop planning sys-
tems that can trade off planning quality for delib-
eration time. Since in many domains the value of
continued planning is context dependent, a util-
ity maximizing approach must rely on constant,
real-time monitoring of the planning process.

Dean and Boddy (1988), Horvitz (1989), Rus-
sell and Zilberstein (1991) and others have shown
that anytime algorithms offer a simple means by
which an agent can trade off decision quality for
deliberation time. In addition, efficient techniques
have been developed for composition and monitor-
ing of systems that are composed of anytime al-
gorithms (Zilberstein, 1993). We show that these
techniques are useful for constructing and control-
ling the sensing and planning components of au-
tonomous systems.



Over the past several years, the Al commu-
nity has been concerned with the capability of
deliberative systems to operate robustly in real-
time domains. Some successful system architec-
tures that combine deliberative and reactive com-
ponents include Guardian (Hayes-Roth, 1992) a
medical monitoring application based on a black-
board (BB*) architecture, Phoenix (Howe et al.,
1990) a real-time system to control fire fighting,
PRS (Ingrand et al, 1992) a general architec-
ture for combining reaction and deliberation and
CIRCA (Musliner et al. 1995) an architecture that
combines real-time operation with AI techniques
by cooperation between two separate subsystems.
While these systems have totally different struc-
ture and characteristics, they share the assump-
tion that deliberative Al techniques are inherently
unpredictable in terms of performance. Our work
is based on the capability to project (and opti-
mize) performance using performance profiles. In
this paper, we concentrate on the problem of max-
imizing ezpected performance rather than provid-
ing a particular performance guarantee. However,
performance guarantees can be provided with any-
time algorithms by using a more informative type
of performance profiles (Zilberstein, 1995).

Sensing and planning as ongoing processes
Historically, planning has been closely associ-
ated with problem solving and similar search
techniques have been widely used in both ar-
eas (Hendler et al., 1990). However in many “real-
world” environments planning is much more than
problem solving. Besides the richer representation
of operators and goals in planning, the main differ-
ence between planning and problem solving is the
temporal scope. In particular, a planning prob-
lem can contain much more than a single problem
solving episode. Many autonomous systems are
designed to operate in an environment over an ex-
tended period of time. Their long term goal may
be “keep all the machines in this room working” or
“keep track of all the targets in region Z”. Trans-
lating such a high level goal into action may not
have a fixed solution that can be derived and im-
plemented. Achieving such goals requires an on-
going situation assessment, planning, and action.

To summarize, sensing and planning may in-
volve more than a single problem solving episode.
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In order to construct successful autonomous sys-
tems we need to modify the basic definitions of
sensing and planning and treat them as resource-
bounded, reasoning activities that provide useful
information to an execution architecture in select-
ing actions. The overall utility of these processes
is determined by the effect that they have on the
overall performance of the system.

3. Flexible sensing and planning using anytime
computation

The term “anytime algorithm” was coined by
Dean in the late 1980’s in the context of his
work on time-dependent planning. Anytime al-
gorithms are algorithms whose quality of results
improves gradually as computation time increases,
hence they offer a tradeoff between resource con-
sumption and output quality. Many existing pro-
gramming techniques produce useful anytime al-
gorithms. Examples include iterative deepening
search, variable precision logic, and randomized
techniques such as Monte Carlo algorithms or fin-
gerprinting algorithms. For a survey of such pro-
gramming techniques and examples of algorithms
see (Zilberstein, 1993).

Various metrics can be used to measure the
quality of a result produced by an anytime al-
gorithm. In particular, the following three met-
rics have been proved useful in anytime algorithm
construction: certainty — reflects the degree of cer-
tainty that the result is correct, accuracy —reflects
the degree of accuracy or how close is the approx-
imate result to the exact answer, and specificity
— reflects the level of detail of the result. In the
third case, the anytime algorithm always produces
correct results, but the level of detail is increased
over time. The anytime planning algorithm pre-
sented in this section offers a good example of us-
ing specificity as a quality measure.

It should be emphasized that the notion of in-
terrupted computation is almost as old as com-
putation itself. However, traditionally, interrup-
tion was used primarily for two purposes: abort-
ing the execution of an algorithm whose results
are no longer necessary, or suspending the exe-
cution of an algorithm for a short time because a
computation of higher priority must be performed.
Anytime algorithms offer a third type of interrup-
tion: interruption of the execution of an algorithm



whose results are considered “good enough” by
their consumer. We show that this type of in-
terruption has many benefits for autonomous sys-
tems. The rest of this section describes a partic-
ular implementation of anytime sensing and plan-
ning, the conditional performance profiles of these
algorithms, and the way they were composed.

The application described in this section is a
simulated navigation system that is composed of
an anytime sensing module, an anytime planning
module, a plan execution mechanism and a run-
time monitor. The sensing and planning processes
may seem oversimplified, but they capture enough
of the problem complexity to demonstrate our ap-
proach. The primary purpose of this demonstra-
tion is to show how the conditional performance
profiles of the components are constructed and
represented, how the overall performance profile
of the system is derived, and how the execution of
the anytime components is monitored.

In our demonstration, a robot is situated in a
two dimensional environment with random obsta-
cles. The robot does not have an exact map of
the environment but it has a vision capability that
allows it to create an approximate map. The ac-
curacy of the domain description depends on the
time allocated to the vision module. The envi-
ronment is represented by a matrix of elementary
positions. The robot can move between adjacent
cells of the matrix at a varying speed which af-
fects the execution time of the plan as well as the
energy consumption. When the simulation starts,
the robot is presented with a certain task that
requires it to move to a particular position and
perform a certain job. For example, the robot
may need to carry a box from one location to
another. Associated with each task is a reward
function that determines the value of the task as
a function of completion time. The system is de-
signed to control the movement of the robot, that
is, determine its direction and speed at each point
of time, while maximizing the overall utility. The
overall utility depends on the value of the task (a
time dependent function), and on the amount of
energy consumed in order to complete it.

A run-time monitor has to determine at each
point how much time to allocate to the anytime
sensing and path planning modules based on such
factors as the current location of the robot, the es-

timated distance to the goal position, the urgency
of the task, and the quality of the plan produced
so far.

3.1. Anytimesensing

A primary goal of this work has been to exam-
ine the applicability of anytime algorithms in sen-
sor interpretation problems. Instead of assuming
that sensors produce a perfect domain description
or that they have a fixed error, we assume that
the data produced by sensors may have variable
quality that depends on the time allocated to the
process. Moreover, our approach uses a proba-
bilistic description of the effect of sensory error on
the other components of the system in order to
optimally control the quality of sensing.

One technique that allows sensing quality to
be traded for computation time is wvariable sam-
pling resolution. It is based on a simple principle
that by increasing the sampling resolution, one in-
creases the amount of data and hence the quality
of the information that the sensors provide. At
the same time, a higher sampling resolution re-
quires an increase in computational resources to
process the data. This principle applies to many
different types of sensors, for example, when us-
ing a CCD camera, the sampling resolution relates
to the overall number of pixels and to the num-
ber of bits used per pixel to record image bright-
ness values. Another technique for anytime sens-
ing is based on varying the frequency of sensing.
This approach applies in particular to situations
in which a sequence of periodic sensor readings
are integrated using certain filters (e.g. Kalman
filters). High sensing frequency reduces the un-
certainty and thus increases the quality of the in-
formation produced by the sensor. But, again,
higher sensing frequency requires more computa-
tional resources.

In our application, sensing is performed by a
simulated vision system whose goal is produce a
two dimensional map of the local environment of
the robot. The domain description identifies cer-
tain regions as “obstacles” and others as “free
space”. The quality of the sensing process mea-
sures the probability that an elementary (base-
level) position would be identified correctly as an
obstacle or free space. For example, when sens-
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Fig. 2. The performance profile of the vision module

ing quality is 0.98, there is a probability of 0.02
that an elementary position blocked by an obsta-
cle would be labeled as free space or vice versa.
We assume that the quality of sensing is uniform
within the area in which the sensors are effective.
In other words, the quality of sensing is not af-
fected by the robot’s position. This assumption,
however, is not required by our general model.
The assumption only simplifies the simulation pro-
gram itself.

Figure 2 shows the performance profile of the
vision system. It is characterized by four parame-
ters that can be controlled: T,, T}, Q., and Q. T,
is the minimal amount of time needed for the sens-
ing process to produce an initial domain descrip-
tion with quality @,. Given a shorter run-time,
the sensor does not produce any description of the
domain. For a run-time t, T, < t < T}, the qual-
ity of sensing improves from @, to the maximal
quality @p, which is 1.00 in this example. With
real sensors, the maximal possible quality may be
less than 1.00 since some small level of noise is
normally unavoidable.

In this paper, anytime sensing is treated in a
similar way to the computational components of
the system. However, certain type of sensors,
in particular active sensors, require a more com-
plex treatment. The reason is the fact that ac-
tive sensors may have a significant effect on the
state of the environment and thus may have ad-
ditional influence on the planning process (Zilber-
stein, 1993). For example, in medical diagnosis,
sensing may involve various tests that affect the
condition of the patient. The anytime sensing pro-
cesses that we describe in this paper are used for
information gathering only and have no effect on
the state of the environment.
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Fig. 3. The “obstacleness” of high-level domain positions
represents the proportion of the region covered by obsta-
cles. The obstacleness of the above three regions is 3/8.

3.2. Anytime abstract planning

Path planning is performed using an iterative
refinement algorithm, similar to the coarse-to-
fine search algorithm (Lozano-Pérez and Brooks,
1984). We make the algorithm an anytime algo-
rithm by by varying the abstraction level of the
domain description and by allowing for unresolved
path segments. As a result, the algorithm can find
quickly a low quality plan and then repeatedly re-
fine it by re-planning a segment of the plan in
more detail. The rest of this section describes the
algorithm and its performance profile.

Abstract description of the domain In our hierar-
chical (quad trees) representation, the n** level of
abstraction corresponds to a certain coarse grid
in which every position, (i,j), is an abstraction
of a 2™ x 2™ matrix of base-level positions. For
example, in the first level of abstraction each po-
sition corresponds to a 2 X 2 matrix of base-level
positions. The size of the base-level positions is
determined by the minimum size of an obstacle.
Each high level position may include some base-
level positions that are blocked by an obstacle and
others that are clear. To represent this informa-
tion, we associate with each high level position
a degree of obstacleness which is defined by the
proportion between the number of blocked base-
level positions and the total number of base-level
positions. For example, the obstacleness of the
three regions shown in Figure 3 is 3/8. Note that
obstacleness alone does not provide complete in-
formation on the possibility of crossing the region,



ATP (start, goal, domain-description)
1 multi-path < [SEGMENTIZE(start),
PATH-FINDER(PROJECT(start, Limqz),
ProOJECT(goal, Lpqz),
domain-description),

SEGMENTIZE(goal)]
2 REGISTER-RESULT(multi-path)
3 while REFINABLE(multi-path) do
4 REFINE(WORST-SEGMENT (multi-path),
domain-description)
5 REGISTER-RESULT(multi-path)
6 SIGNAL(TERMINATION)

Fig. 4. The anytime planning algorithm

but the lower the degree of obstacleness the easier
it is to cross the region.

The anytime planning algorithm The interruptible
anytime planner (ATP), shown in Figure 4, con-
structs a series of plans from start to goal, whose
quality improves over time. It starts with a plan
generated by performing best-first search at the
highest level of abstraction (Ly,qz). Then, it re-
peatedly refines the plan created so far by select-
ing the worst segment of the plan, dividing it into
two segments (of identical length), and replacing
each one of those segments by more detailed plans
at a lower abstraction level. The worst segment
of the plan is selected according to the degree to
which the segment is blocked by obstacles and ac-
cording to its abstraction level®. A special data
structure, called a multi-path, is used in order to
keep intermediate results. It is a list of succes-
sive path segments of arbitrary abstraction level.
Note that the length of each segment of an in-
termediate plan is invariant, since the refinement
step cuts the segment into two parts while increas-
ing the resolution. As a result, the run-time of the
refinement step is approximately the same for any
segment of the plan regardless of its level of ab-
straction. The algorithm does not include a fixed
mechanism (such as a threshold) to terminate the
refinement process. This decision is made by the
monitor taking into account the particular state
of the environment.

The PATH-FINDER is a search procedure that
returns the best path between any two positions

in the same abstraction level. The path is repre-
sented as a list of positions at the same abstrac-
tion level. A base-level path must be obstacle-free
and hence is a route that the robot can follow. A
path at a higher level of abstraction, on the other
hand, is the result of best-first search that mini-
mizes the length as well as the obstacleness of the
result. The algorithm is similar to A* except that
its heuristic evaluation is,

f(p) = (1 =a)(g(p) + h(p)) +olp) (1)

where g(p) is an estimate of the distance from the
initial position, h(p) is an optimistic estimate of
the distance to the goal, o(p) is a measure of the
obstacleness of the path, and « is the weight of
the obstacleness factor. Note that the notion of
admissibility, typically a property of A*, is not
generally relevant to abstract search techniques
since there is no guarantee of getting the short-
est base-level path even when the abstract paths
are optimal. But the experimental results show
that this function is a good heuristic for our do-
main. Obviously, different planning tasks would
require a different evaluation function for finding
bad segments of the plan.

Plan execution Abstract plans do not provide a
specific path that the robot can follow. In order
to follow an abstract plan, the robot must use:

1. A mechanism to map a abstract action into a
sequence of base-level actions.

2. A mechanism to repair simple problems that
may arise in constructing the sequence of base-
level actions.

In our case, an obstacle avoidance procedure was

used to perform the two tasks. As long as there

exists a path that connects the start and goal posi-
tions, the obstacle avoidance procedure can bring
the robot to its destination. Therefore, any ab-
stract plan is completable and executable — even
when blocked by obstacles. Obstacle avoidance is
not a smart navigation method, but it can always
substitute for missing details in an abstract plan.
The quality of an abstract plan is determined
by the length of the actual path that the robot fol-
lows when guided by the plan. More specifically,
the quality of a plan P is defined as follows:
length(P,,y)

Quality(P) = length(Path(P)) @




Path Quality = 0.826

(a) Level 3 plan

Path Quality = 0.805

(c) Level 2/1 plan

Path Quality = 0.847

(b) Level 2 plan

Path Quality = 0.985

(d) Level 1/0 plan

Fig. 5. Abstract plans with perfect vision

where length(Path(P)) is the length of the ac-
tual path that the robot follows when guided by
the abstract plan P, and P,,;, is a shortest path
at the base-level. Using off-line simulation, we

can determine the exact quality of any given plan.

When the robot is performing a real-time task,
the exact quality of an intermediate plan cannot
be determined (since the length of the actual path
the robot will follow is unknown). But, the quality

of plans can be estimated using the performance
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Path Quality = 0,760

(a) Level 3 plan

Path Quality = 0.893

(c) Level 2/1 plan

Path Quality = 0,836

(b) Level 2 plan

Path Quality = 0.985%

(d) Level 1/0 plan

Fig. 6. Abstract plans with imperfect vision

profile of the planner and the amount of planning
time.
The notion of executable abstract plans — re-

gardless of their arbitrary level of detail — is made

possible by using plans as advice that direct the
base-level execution mechanism but does not im-
pel a particular behavior. This idea was originated
by (Agre and Chapman, 1990) and was experi-
mentally supported by (Gat, 1992). In practice,
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Fig. 7. The performance profile of the planner with perfect
vision.

uncertainty makes it hard to use plans except as
a guidance mechanism.

Performance with perfect vison We now examine
the performance of the abstract planner under
the assumption that it is provided with a per-
fect domain description. Figure 5 shows several
intermediate paths generated by the path finder
when activated with the start and goal positions
being the lower left and upper right corners re-
spectively. Frame (a) shows (by the large squares
drawn in broken line) an abstract plan at level 3.
The quality of this plan, 0.826, is determined by
the length of the route the robot would have fol-
lowed if guided by this plan (shown in the figure
by a heavy broken line) compared to the length of
the shortest route. Frames (b), (¢) and (d) show
how the quality of the plan is gradually improving.
Frame (d) shows an abstract plan with segments
at levels 0 and 1. Notice that in this example the
algorithm generates a plan whose quality is 0.985,
almost as good as the quality of the shortest path.

The typical performance of the planner is sum-
marized by its performance profile in Figure 7.
The graph shows the expected quality of the plan
as a function of run-time. Performance profiles are
constructed by collecting statistics from 200 runs
of the planner with randomly generated instances
of the environment.

When run until completion*, the anytime plan-
ner produces a plan whose expected quality is
0.93. At the same time, its expected comple-
tion time is only 27% of the the expected run-
time needed to compute the optimal path us-
ing the standard A* algorithm. These figures
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show that that even without sophisticated mon-
itoring, anytime algorithms offer a much better
cost/performance ratio. In other words, the flexi-
bility of the algorithm does not mean that it takes
more time to compute a base-level plan. It only
means that the algorithm is not guaranteed to find
the optimal solution. In many autonomous sys-
tems, it is undesirable to spend the time needed to
compute optimal plans before action can be per-
formed.

Performancewith imperfect vison We now turn to
examine the effect of vision errors on the quality of
planning. We have tested the planning algorithm
with vision quality in the range 0.88-1.00 (corre-
sponding to 0-12% error). The following demon-
stration is based on vision quality of 0.96. This
figure is a measure of the sensor’s noise level as
described in the previous section. The physical
domain is identical to the one used in the previ-
ous example, however, the map constructed by the
vision module is erroneous.

Figure 6 shows several intermediate plans gen-
erated by the algorithm and their qualities. No-
tice that as a result of lower quality of sensing, the
quality of the initial plan is only 0.760 compared
to 0.826 with perfect vision. Looking at a large
set of problem instances, this experiment confirms
the basic intuition that as a result of sensory noise
(and error in the domain description), the planner
produces plans of lower quality.

Based on statistics gathered by running the
planning algorithm 200 times (per given vision
quality) on randomly generated domains, we de-
rived its conditional performance profile. It de-
scribes the expected quality of a plan based on the
quality of the domain description and run-time.
Figure 8 shows the conditional performance pro-
file. Each curve shows the expected plan quality
as a function of run-time for a particular sensing
quality. Note that the graph shows consistent and
gradual degradation of plan quality as a function
of sensing quality.

3.3. Compilation of sensing and planning

Compilation of anytime algorithms is an impor-
tant technique to build real-time system with any-
time algorithms. It allows the programmer to
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Fig. 9. Compilation of the sensing and planning modules
yields an optimal performance profile for the overall sys-
tem.

compose a system using anytime algorithms as
components without dealing directly with the time
allocation problem. To explain the compilation
process we must first make a distinction between
interruptible algorithms and contract algorithms.
Interruptible algorithms produce results of the
quality “advertised” by their performance pro-
files even when interrupted unexpectedly; whereas
contract algorithms, although capable of produc-
ing results whose quality varies with time alloca-
tion, must be given a particular time allocation in
advance. The greater freedom of design makes it
easier to construct contract algorithms than inter-
ruptible ones.

The compilation process is designed to compute
off-line the best possible performance profile of a
system composed of anytime algorithms. The re-
sult of the compilation is a contract algorithm.
In those applications where it is necessary to use
an interruptible algorithm, the contract algorithm
can be transformed into an interruptible one using
a construction method presented in (Russell and
Zilberstein, 1991). Having made this distinction,
we can define compilation as follows:

Plan Execution Frame

Planning Frame

Fig. 10. The navigation system executes an abstract plan
while performing anytime sensing and planning for the next
execution cycle.

Definition: Compilation of anytime algorithms
is the process of deriving a contract algorithm with
an optimal performance profile from a program
composed of several anytime algorithms whose
conditional performance profiles are given.

The input to the compiler includes a user de-
fined program composed of anytime algorithms.
The compiler also gets a set of conditional per-
formance profiles stored in a library. The task of
the compiler is to calculate the best performance
profile of the program based on the performance
profiles of the components. In addition, the com-
piler generate some information that is used by the
run-time monitor to allocate time to the compo-
nents. The composition of planning and sensing is
a simple example of a program composed of any-
time algorithms. It is represented by the following
program segment:

(find-path Start Goal
(get-domain-description Sensor))

Let Qs(t) be the performance profile of the
sensing module and @Qp(g,t) be the conditional
performance profile of the planning module. The
compiler calculates the optimal performance pro-
file Q¢ (t) by solving the following equation:

Qc(t) = max {Qr(Qs(ts),tr)}  (3)

tp+ts



Figure 9 shows the resulting performance profile.
Also shown in that figure are the performance pro-
files of two other modules: MIN, that allocates to
sensing a minimal amount of time, 7;,, and MAX,
that allocates to sensing a maximal amount of
time, T,. The compiled performance profile is su-
perior to both. It shows that a commitment to a
fixed quality of sensory data at design time is a
major disadvantage in autonomous systems that
operate under variable time pressure.

Further analysis of the above compilation tech-
nique shows that when the composed anytime sys-
tem includes n modules, the compilation problem
is NP-complete in the strong sense (Zilberstein,
1993; Zilberstein and Russell, 1995). However, a
local compilation technique, that works on a sin-
gle program structure at a time, significantly im-
proves the efficiency of compilation and is proved
to yield optimal performance for a large set of pro-
gram structures. The local compilation technique
applies to situations where the planning and sens-
ing modules themselves are composed of several
anytime algorithms.

4. Meta-level control of anytimesensing and plan-
ning

To take advantage of their flexibility, systems
composed of anytime algorithms require run-time
monitoring to determine the optimal time alloca-
tion to each component. The compilation pro-
cess provides the necessary meta-level informa-
tion to enable efficient run-time monitoring. Vari-
ous monitoring strategies can be implemented de-
pending on the nature of the task and its time-
dependent utility function. The most basic moni-
toring strategy is to calculate the optimal alloca-
tion to the components prior to their activation
based on the compiled performance profile of the
system. In this section we present an improve-
ment of this approach that involves monitoring of
the actual progress made by the anytime compo-
nents and adjusting the initial contract time ac-
cordingly.

?7? 13

4.1. Breaking alargetask into small frames

Many autonomous systems do not have global
sensing capability that covers the entire domain.
Instead, the sensors provide local information with
respect to the current position of the system.
Therefore, we must distinguish between two lev-
els of planning. Global (coarse) planning is per-
formed using some prior (or accumulated) knowl-
edge about the entire domain, while local plan-
ning is performed based on sensory information.
The optimization of the long-term behavior of the
robot can be performed by dividing a complex task
into a series of small sensing, planning and plan
execution episodes. We call such episodes frames.
In mobile robot navigation, the frames can be gen-
erated by a global planning process using any com-
bination of the following techniques:
1. A coarse map representing the entire domain.
2. A simple trajectory towards the destination.
3. A partial map of the domain that is based on
exploration.
In our application, no prior knowledge of the do-
main is assumed, so the robot can only use a tra-
jectory towards the destination in order to gener-
ate the frames. Figure 10 illustrates this idea.

4.2. Inter-frame optimization

For each frame, the meta-level control has to de-
termine the optimal initial contract time. This
decision, referred to as inter-frame optimization,

is made in the following iivay:
et

t be the current time (real-time since the begin-
ning of the execution of the task),

ft be the (estimated) number of frames left at
time ¢ for planning and execution, and

e+ be the energy used so far by the robot for plan
execution.

Then for any contract time, £ — ¢, we can calculate

the following domain dependent functions:

VOT(t, fi,t.) is the expected value of the task
calculated based on the expected completion
time. The expected completion time is the cur-
rent time plus the expected execution time of
the plan (whose quality depends on the con-
tract time t.), plus the expected execution time
of the remaining frames.
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COE(ey, ft,tc) is the expected cost of energy. It
is the sum of the amount of energy used so far,
the expected amount of energy to cross the next
frame (given that execution time should be t.),
and the estimated amount of energy for the re-
maining frames.

The best initial contract time, ¢}, is determined

by the following equation:

th =arg rr%ax{VOT(t, fiste) — COE(ey, fr, tc)}

(4)

Notice that both VOT and COE depend on the
particular model of the environment as well as on
the performance profile of the system.

4.3. Intra-frame optimization

Once an initial contract time is determined, the
system starts allocating resources to sensing, plan-
ning and plan execution. At the same time it con-
tinues to monitor the performance of the anytime
modules. This constant monitoring is necessary
because of the uncertainty concerning the actual
quality of plans and the actual time necessary to
execute them. The purpose of the meta-level con-
trol in this phase is to reach an optimal plan qual-
ity for the next frame while executing the current
plan. This goal is achieved by an adaptive modi-
fication of the original contract time by a process
referred to as intra-frame optimization.

The monitor determines at each point whether
planning is ahead of or behind expectations by
comparing the estimated plan quality to the qual-
ity advertised by the performance profile. It also
determines whether plan execution is ahead of or
behind expectations by comparing the estimated
execution time to the frame contract time. If plan-
ning is ahead of expectations and plan execution
is behind, the monitor accelerates plan execution
by allocating more resources (energy) to plan ex-
ecution. If planning is behind and plan execution
is ahead, the monitor slows down plan execution
by reducing resource consumption.

This monitoring strategy can be modified in
various ways. For example, one can consider plan-
ning more than one frame ahead, when plan ex-
ecution is slow. Another possibility in this case
is to improve parts of the plan that is being ex-

ecuted. The better the monitoring strategy the
better it responds to unpredictable situations and
the higher the overall utility it achieves. One
good measure of the performance of the monitor-
ing component is how close is the overall utility to
the best expected result projected initially by the
contract time calculation. The results in our do-
main show that the monitoring strategy described
above is sufficient in order to achieve within 4%
error the optimal task value that the system com-
putes initially. Obviously, this figure may be dif-
ferent in more realistic implementations. How-
ever, we strongly believe that the capability pre-
sented in this paper to adaptively modify the re-
sources allocated to sensing and planning pro-
cesses carry great benefits for real-world applica-
tions. We are currently working on the develop-
ment of monitoring policies that are sensitive to
such factors as the variance of the performance of
the anytime algorithms, the time-dependent util-
ity of the system, how well the run-time monitor
can estimate the quality of the currently available
solution, and the cost of monitoring (Hansen and
Zilberstein, 1995).

5. Thepath toreal-world applications

The experimental part of this work successfully
demonstrates our approach, but the simplicity of
the simulated domain may raise some questions re-
garding the applicability of the technique to real-
world applications. Some questions relate to such
simplifying assumptions as uniform sensing qual-
ity, horizontal rectangular obstacles and a naviga-
tion environment with no dead-ends. These as-
sumptions are not likely to hold in many real-
world applications. The key question however
is not whether the particular sensing and plan-
ning algorithms that we used will generalize to
other domains, but whether different anytime al-
gorithms, some of which are readily available,
could be used instead in conjunction with our
compilation and monitoring techniques. The rest
of this section describes several anytime sensor
interpretation and planning techniques that can
handle more complex domains. Possible violation
of our simplifying assumptions is also discussed.



5.1. Anytime sensing in the real-world

A large number of programming techniques can be
used to construct anytime algorithms for realistic
sensing tasks. RESUN (Carver and Lesser, 1991)
is a blackboard-based sensor interpretation sys-
tem that gathers evidence in an incremental man-
ner to resolve particular sources of uncertainty.
Reduction of uncertainty improves the quality of
the interpretation over time. Another technique
that is widely used in sensor data interpretation
is Bayesian reasoning (Pearl, 1988). Several use-
ful algorithms for evaluation of Bayesian networks
and influence diagrams are based on incremental
accumulation of evidence and offer a time/quality
tradeoff. One example called bounded condition-
ing has been developed by (Horvitz et al., 1989).
Bounded conditioning monotonically refines the
bounds on posterior probabilities in a Bayesian
network and converges on the exact probabili-
ties of interest. The approach allows a reasoner
to exchange computational resources for incre-
mental reduction of uncertainty. The algorithm
solves a probabilistic inference problem in com-
plex Bayesian networks by breaking the problem
into a set of mutually exclusive, tractable subprob-
lems and ordering their solutions by the expected
effect that each subproblem will have on the final
answer. Another technique for anytime evaluation
of belief networks using state-space abstraction is
presented in (Wellman and Liu, 1994).

Another class of sensing techniques is based
on integration, (or fusion), of multiple sensor
readings using certain filters (e.g. Kalman filters)
or certain reasoning techniques (e.g Dempster-
Shafer). Such sensing methods can be converted
into anytime algorithms by varying the number
of sensor readings. For example, Hutchinson and
Kak (1989) present a technique for gradually re-
ducing the ambiguity in the world description
over time using the Dempster-Shafer theory of
evidence. Hager and Mintz (1987) developed a
decision-theoretic technique for selecting optimal
sensing strategies. They treat sensors as noisy
information sources and associate a certain risk
function with each sensing operation.

The variable resolution technique that we used
in simulation can be used in practice in con-
junction with different sensor interpretation tech-
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niques. Both processing time and the quality of
the domain description (in terms of detail and cor-
rectness) will normally increase as the resolution
of the raw-data is increased.

5.2.  Anytime planning in complex domains

Planning in complex domains is normally based on
search and reasoning, both of which can be per-
formed by incremental improvement algorithms.
For example, Elkan (1990) present a rule-based,
abductive strategy for discovering and revising
plausible plans. In his approach, candidate plans
are found quickly by allowing them to depend on
assumptions. His formalism makes explicit which
antecedents of rules have the status of default con-
ditions. Candidate plans are refined incrementally
by trying to justify the assumptions on which they
depend. This model was implemented by replac-
ing the standard depth-first exploration strategy
of Prolog with an iterative-deepening version. The
result is an anytime algorithm for incremental ap-
proximate planning.

Another  approach, variable  precision
logic (Michalski and Winston, 1986), is concerned
with problems of reasoning with incomplete in-
formation and resource constraints. Variable
precision logic offers mechanisms for handling
trade-offs between the precision of inferences and
the computational efficiency of deriving them.
Michalski and Winston address primarily the is-
sue of variable certainty level and employ censored
production rules as an underlying representational
and computational mechanism. These censored
production rules are created by augmenting ordi-
nary production rules with an exception condition
and are written in the form “if A then B unless
C,” where C is the exception condition. Systems
using censored production rules are free to ignore
the exception conditions when resources are tight.
Given more time, the exception conditions are ex-
amined, lending credibility to high-speed answers
or changing them.

A large class of planning and scheduling tech-
niques operate on fully formed plans, gradually
improving an existing plan rather than generating
one from scratch (Alterman, 1988). Our abstract
planner falls under this category. Unfortunately,
there are no guarantees that gradual refinement
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will always improve the quality of a plan. In do-
mains that include dead-ends (which cannot al-
ways be detected at the higher abstraction levels),
the planner will have to backtrack in some situa-
tions. But our technique does not rely on mono-
tonicity of quality improvement with respect to
every problem instance. It relies on the improve-
ment of the erpected quality over many problem
instances — a property that is easier to maintain.

Finally, abstraction techniques have been used
in several Al planning systems. State abstraction
was introduced by ABSTRIPS (Sacerdoti, 1974).
More recent systems such as ALPINE (Knoblock,
1990) can automatically generate abstraction hier-
archies for robot planning. PABLO (Christensen,
1990) is a nonlinear planner that reasons hierar-
chically by generating abstract predictions. It can
produce a sequence of executable actions should
it be interrupted before the final plan has been
completed.

5.3. Increasingthelevel of parallelismin thesystem

In our demonstration, sensor interpretation and
planning are performed by a single processor in
parallel to plan execution. In principle, however,
sensor interpretation could be performed by a sep-
arate processor. This additional degree of paral-
lelism will require a different monitoring scheme,
but it does not contradict the basic premises of our
approach: that sensing should be implemented as
an anytime process and that it should be con-
trolled based on its expected effect on the system’s
performance.

The compilation technique remains essential in
systems that perform sensing and planning in par-
allel, since both the sensing and planning compo-
nents could be composed of several anytime algo-
rithms. For example, a speech recognition mod-
ule can first classify the speaker (in terms of gen-
der, accent, and other features that help calibrate
the interpretation module), then generate possi-
ble interpretations, and finally perform linguistic
verification and determine the best interpretation.
Each one of these activities can be implemented
using one or more anytime algorithms.

6. Conclusion

We have presented a new approach to sensing
and planning in autonomous systems which im-
proves their capability to operate in real-time with
limited computational resources. Our approach
is based on developing the sensing and planning
components of the system as anytime algorithms
and representing their performance using condi-
tional performance profiles. The control of the
anytime components of the system is implemented
using off-line compilation and run-time monitor-
ing. An implementation of the model was pre-
sented in the area of mobile robot navigation. Our
approach offers several advantages in addressing
computational costs in autonomous systems: it is
an optimizing rather than satisficing method; it
allows complex planning to be used in real-time
robotic systems; and it helps construct systems
when resource availability is unknown at design
time.

In addition to the sensing and planning algo-
rithms presented in this paper, there is a grow-
ing number of anytime algorithms that are read-
ily available and that can handle complex tasks.
When combined with our compilation and mon-
itoring techniques, these algorithms have major
advantages over traditional methods whose out-
put quality is predetermined.

Further work on real-world applications is
needed in order to evaluate our approach. By
improving the various components of the system,
we aim at constructing a general, flexible mech-
anism for developing self-optimizing autonomous
systems whose perception, decision making and
action are implemented as anytime modules. This
approach offers a more realistic theoretical foun-
dation for robot planning by addressing the prob-
lems of uncertainty, limited computational power,
and imprecise sensing.
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Notes

1. The term “sensing” in this paper refers to the compu-
tational task of perceptual data interpretation rather
then the mechanical process of sensing.

2. A comprehensive survey of classical planning systems
can be found in (Drummond and Tate, 1989).

3. The actual score function to determine the worst seg-
ment is the sum of the abstraction level and the number
of positions that are blocked with respect to the plan
moving direction.

4. Running the anytime planner until completion involves
calculating an initial path at the highest abstraction
level and refining all its segments until a base-level plan
is produced.
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