
Journal of Intelligent Information Systems, 23:1, 67–97, 2004
c© 2004 Kluwer Academic Publishers. Printed in The United States.

Dynamic Composition of Information
Retrieval Techniques∗

ANDREW ARNT arnt@cs.umass.edu
SHLOMO ZILBERSTEIN shlomo@cs.umass.edu
JAMES ALLAN allan@cs.umass.edu
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

ABDEL-ILLAH MOUADDIB mouaddib@info.unicaen.fr
Département d’informatique, Université de Caen, 14032 Caen Cedex, France

Received May 29, 2002; Revised May 30, 2003; Accepted July 31, 2003

Abstract. This paper presents a new approach to information retrieval (IR) based on run-time selection of the
best set of techniques to respond to a given query. A technique is selected based on its projected effectiveness with
respect to the specific query, the load on the system, and a time-dependent utility function. The paper examines
two fundamental questions: (1) can the selection of the best IR techniques be performed at run-time with minimal
computational overhead? and (2) is it possible to construct a reliable probabilistic model of the performance of
an IR technique that is conditioned on the characteristics of the query? We show that both of these questions can
be answered positively. These results suggest a new system design that carries a great potential to improve the
quality of service of future IR systems.

Keywords: progressive processing, information retrieval, opportunity cost, meta-level control

1. Introduction

Information retrieval (IR) systems such as web search engines are becoming increasingly
prominent as the Internet grows in both amount of information indexed and the number of
users. While gains are being made to improve the performance and effectiveness of these
systems, the majority share a common characteristic: they are static. These IR systems
are constructed by chaining together a fixed set of IR techniques such as query formation,
query evaluation, precision improvement, recall improvement, clustering, and results vi-
sualization. Once the system is completed and put into operation, the same sequence of
operations is performed on every query processed by it. This static nature of IR systems
reflects the methods used to evaluate new IR techniques. An IR technique is typically tested
offline to determine if the technique is “good” enough to be included in an IR system. In
these experiments a test collection consisting of a set of queries and a set of documents is
used. Each document has been tagged with relevance judgments for each query in the test

∗This work was supported in part by the National Science Foundation under grants IIS-9907331 and INT-9612092,
and by the Library of Congress and Department of Commerce under cooperative agreement number EEC-9209623.

68 ARNT ET AL.

collection. A document is tagged “relevant” if it satisfies the information need posed by the
query.

To quantify how good the retrieval performance of an IR system is, two basic measures
of retrieval performance are used in the IR community. Recall is the fraction of relevant
documents that are retrieved by the system out of the entire collection, while precision is
the fraction of documents retrieved by the system that are relevant. It is desirable, however,
to have a single number that describes the performance. One of the most used evaluation
measures is average precision: the mean of the precision ratios obtained after each relevant
document is retrieved, using zero as the precision for relevant documents that are not
retrieved. It has been shown to be both stable and a good indicator of overall system
performance (Buckley and Voorhees, 2000).

If the new technique is found on average to substantially improve a quality metric such
as average precision (i.e. it improves the mean average precision), and is computationally
reasonable, then it is considered to be a good technique and is added to the system (Buckley
and Voorhees, 2000). Unfortunately, there are inherent problems with this methodology.
First, although the technique improves overall retrieved document quality, there are likely
to be queries where the quality of the retrieved documents would be unchanged or even
decrease with use of the technique. Secondly, people may disagree on whether a document
is relevant to a given query. Studies have shown that relevance judgments made by different
people can vary substantially (Swanson, 1988). Therefore the judgments tagged in the test
collection may not necessarily correspond to those of the user who actually issues a query
to the system.

We describe a new, dynamic approach to the design of IR systems. In this approach,
IR techniques are chosen at run-time on a per-query or even a per-user basis, with the
goal of optimizing the overall quality of service of the system, where quality of service is
defined in terms of both the quality (average precision) of the retrieved documents and the
timeliness with which they are returned. This approach involves picking techniques to use
based on a probabilistic description of each technique’s expected performance in terms of
both processing time and change in quality of the result. There are several factors that can
influence what modules are chosen to be executed:

Module characteristics: If the expected execution time of each of the IR modules is known,
then when the IR system is very busy and has a long queue of queries to process, it
can conserve system resources by running less computationally intensive tasks on the
query. This amounts to a trade off between quality of the retrieved documents and system
resources. If the expected contribution of that module to the quality of the final result is
known, we can consider that as well.

Query characteristics: Some IR operations may not be suitable for queries that have certain
properties. For example some expansion techniques are designed to be used with shorter
queries (Allan and Raghavan, 2002), and other general purpose techniques been shown to
have harmful effects on longer queries (Singhal and Pereira, 1999). In a dynamic system,
each query can be examined as it is received to determine which IR tasks are likely to
give the best results.

Intermediate results: Intermediate results generated as part of the IR process can be used
to help decide which modules to select for the rest of the retrieval. An example of

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 69

intermediate results that would be useful to examine are the initial set of documents
returned by LCA (as described below) or some other local feedback technique (Croft
and Harper, 1979; Attar and Fraenkel, 1977). Furthermore, we can observe how much
time has been used in computing these intermediate results, which can also influence our
decision.

User characteristics: The dynamic IR system can use information that is provided by or
collected from the user to decide which IR methods will produce the best results for
queries issued by that user. One example of this is estimating a cost model that reflects
how much value the current user places on the speed of retrieval versus the quality of
retrieval.

A dynamic IR system provides several clear benefits over static IR systems. It can be more
flexible and robust while at the same time providing a greater quality of service. Primarily,
we can increase the overall quality of the documents returned by the system. Incoming
queries can be quickly characterized and retrieval techniques can be chosen that have been
empirically determined to work best on queries with same or similar characteristics. Above
all, techniques that are likely to not change or even reduce the quality of retrieved documents
can be avoided. Current static IR systems cannot offer such flexibility.

Furthermore, a dynamic system has the ability to regulate the trade off between retrieved
document quality and system resources consumed. For example, cost-benefit analysis can
be done at run time to determine whether it is worthwhile to invest system resources in
applying a technique that may result in only a small improvement in retrieved document
quality. This leads to savings in computational resources. Such a system can also reason
about techniques that have both large variance in expected execution time and retrieved
document quality.

The major question is then how to actually pick which IR modules to execute on an
incoming query. This decision must be made in such a way as to be able to adapt quickly to
any feedback that can be obtained from the system as the query is processed. This feedback
can consist of such things as the quality of intermediate results, running time of modules
already executed, and number of queries waiting to be serviced. An additional issue is how to
gather feedback from the system; specifically how to determine the quality of intermediate
results.

In this paper, we develop a computational model necessary for fast run-time selection of
the best IR techniques and provide a case study of building a predictive probabilistic model
of the performance of an IR technique suitable for the model. In Section 2 we develop
effective mechanisms for run-time selection of best IR techniques based on the progressive
processing model. In Section 3 we detail a method for training artificial neural networks that
take query characteristics as input and output whether a certain IR technique is expected to
improve or degrade the quality of retrieved documents if run on the query. The IR technique
examined is Local Context Analysis (LCA), a method for query expansion (Xu and Croft,
2000). We show that predictions can be made accurately enough to give a small improvement
to overall average precision. Related work is discussed in Section 4. We conclude with a
discussion of the implications of this research and examine possible future strategies for
meta-level control of IR systems.

70 ARNT ET AL.

2. Progressive processing of information retrieval tasks

In this section we develop a task representation and corresponding meta-level control mech-
anisms that make it possible to dynamically compose information retrieval techniques. We
use the progressive processing approach, an extremely general framework to solving prob-
lems under time constraints (Mouaddib, 1993). The approach relies on providing the system
with a task structure composed of a set of problem solving methods and a set of constraints
on execution. The constraints allow the system to produce useful solutions by executing
a subset of the entire task structure. Additional information included in the task structure
describes the duration of each method and how the quality of the result depends on the
selected methods.

The most simple example of a task structure is a sequence of methods, each of which
can increase the expected quality of the result. This approach has been used to develop a
progressive processing solution to train scheduling (Mouaddib, 1993). Different topologies
of task structures offer more flexibility in designing the system, but they also increase the
complexity of selecting the best subset at run-time.

Among existing resource-bounded reasoning techniques, the progressive processing
model resembles most the design-to-time approach (Garvey and Lesser, 1993). But un-
like other techniques for run-time method selection, we develop an adaptive approach that
is suitable for dynamic environments. An information retrieval search engine is a partic-
ularly good application because it is characterized by high level of uncertainty regarding
the duration of the process and the quality of the result. In addition, there may be large
variability in the number of queries that require a response at any given time. By taking a
context dependent, dynamic approach to the problem we aim at significantly improving the
average quality of service provided by such systems.

The progressive processing approach offers a natural framework to describe the set of
information retrieval techniques available to the system. Figure 1 shows a simple task
structure also known as a progressive processing unit (PRU). The input of a PRU is a query
composed of a list of keywords. The task structure has three processing levels. The first
level includes three alternative techniques to improve the initial query: (a) scan the query
using concept recognizers to identify company names, dates, locations, personal names,
and so on; (b) examine the query for pairs of words that have high statistical likelihood
of being related and enhance the query with that information; and (c) perform part-of-
speech analysis to identify noun phrases within the query. The second level includes two
alternative techniques that can improve the query’s recall ability by expanding it to include
related words and phrases: (d) use of Local Context Analysis (LCA), a statistical method
for expanding queries that relies upon in-context analysis of word co-occurrence (Xu and
Croft, 1996); and (e) use of InFinder, an association thesaurus that is faster than LCA and
does not capture context as well (Conrad and Utt, 1994). Finally, the third level performs
the actual query evaluation and returns the results. Quality in this application is measured
by the number of relevant documents within the top n documents retrieved (i.e., precision
in the retrieved set).

Because the task structure is known in advance, our objective is to solve as much of
the problem as we can off-line and minimize the overhead of meta-level control. This is

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 71

Concept recognizers

(a)

Identify & add
 statistical pairs

(b)

Identify & add
noun phrases

(c)

Identify LCA concepts
(d)

Add InFinder expansion terms
(e)

Evaluate query & return docs
(f)

Figure 1. Illustration of a progressive processing task for an information retrieval search engine.

particularly challenging because we operate in a dynamic environment and cannot predict
the set of queries waiting for execution at each point.

2.1. The meta-level control problem

This section defines the specific type of progressive processing task structure used in our
application and the resulting meta-level control problem. By meta-level control, we refer
to the process that monitors the base-level computation and selects the particular subset
of methods to be used in response to each query. The selection of methods is done at run-
time based on the progress being made with the particular query and the remaining queries
waiting for execution. While previous approaches to meta-level control of progressive pro-
cessing could handle either rapid domain change (Mouaddib and Zilberstein, 1997) or a high
level of duration uncertainty (Mouaddib and Zilberstein, 1998), the technique described in
this paper addresses effectively the combination of high level of uncertainty and dynamic
environments.

Each information retrieval request is handled by a fixed progressive processing task
structure. A formal definition of the components of the task structure is given below.

Definition 1. A progressive processing unit (PRU) is composed of a sequence of processing
levels, (l1, l2, . . . , lL). The first level receives the input query and the last one produces the
result.

Note that unlike other progressive processing models, the intermediate results in this
application have no value. Intermediate levels can in some cases be skipped, but only the
final level produces the desired result.

Definition 2. Each processing level, li , is composed of a set of pi alternative modules,
{m1

i , m2
i , . . . , m pi

i }, and a binary variable that indicates if that level is able to be skipped
during processing. We use skipi = 1 when level li is skippable and 0 otherwise. The last
level is unskippable, so skipL = 0 always.

72 ARNT ET AL.

Each module can perform the logical function of level li , but each has different computational
characteristics defined below.

Definition 3. The module descriptor, P j
i ((q ′, δ) | q, li−1), of module m j

i is the probability
distribution of output quality and duration for a given input quality and previous level
executed.

Note that q is a discrete variable representing estimated quality and δ is a discrete variable
representing duration. The module descriptor specifies the probability that module m j

i takes
δ time units and returns a result of quality q ′ when the quality achieved by the previously
executed level is q . Module descriptors are similar to conditional performance profiles of
anytime algorithms (Zilberstein and Russell, 1996). They are constructed empirically by
collecting performance data for a sample set of inputs.

In the IR setting described here, quality is a measure of how well the retrieved documents
satisfy the information need expressed in the query. Thus we use the average precision
measure as q . Note that for intermediate levels the definition is not as clear, as there may
not yet be any set retrieved documents. In these cases, q is a rough estimate of the expected
final quality given the current state of the retrieval process. We discuss later how to use
machine learning techniques to estimate this otherwise unobservable value.

When the system responds to a particular query, it receives an immediate reward defined
as follows.

Definition 4. A time-dependent utility function, U (q, t), measures the utility of a solution
of quality q if it is returned t time units after the arrival time of the query.

We assume that there is a given constant T such that ∀q, t > T : U (q, t) = 0. That is,
responding to a request more than T time units after its arrival has no value. The time-
dependent utility function is an arbitrary description of user preferences. It can measure,
for example, the amount of money a user is willing to pay for a response to a query given
its quality and waiting time. Although we assume that the utility function is fixed, the
approach we develop can be generalized to allow different utility functions to be attached
to each query. However, the set of functions must be known in advance. The utility function
provides a means of quantifying the quality of service of the overall retrieval system. It
reflects the preferences of the users of system with respect to the desirability of good results
versus the time it takes to get them. It is possible to model users so as to fit them into a
predefined set of categories, each corresponding to a different utility function.

Suppose that the system maintains a set of information retrieval queries, W , with arrival
times {a1, a2, . . . , an}. The set of queries is updated dynamically as new requests arrive.
The system processes the queries in a first-in-first-out order using a progressive processing
unit to handle each query.

Given a set of queries, the module descriptors of all the components of the progressive
processing unit, and a time-dependent utility function, we define the following control
problem.

Definition 5. The reactive control problem is the problem of selecting a set of alternative
modules so as to maximize the expected utility over the set of information retrieval queries.

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 73

Maximizing the expected utility directly corresponds to providing the optimal quality of
service to users of the system. The meta-level control is “reactive” in the sense that we
assume that the module selection mechanism is very fast, largely based on off-line analysis
of the problem.

2.2. Optimal control of a single PRU

We begin with the problem of meta-level control of a single progressive processing unit
corresponding to a single task. This problem can be formulated as a simple form of a
Markov decision process (MDP). MDPs have been studied in operations research as a
model of sequential decision-making. They have been adopted as a framework for artificial
intelligence research in decision-theoretic planning (Dean et al., 1995) and reinforcement
learning (Barto et al., 1995). MDPs allow reasoning about actions with uncertain outcomes
in order to determine a course of action that maximizes expected utility. The defining
property of a Markov process is that state transitions depend only on the current state and
the control action.

In our case, the states of the MDP represent the current state of a computational process.
The state includes the current level of the PRU, the quality produced so far, and the elapsed
time since the arrival of the request. The rewards are defined by the utility of the solution
which depends on both quality and time. There are two possible actions: to execute a module
of the next processing level or to skip that processing level if allowed. The transition model
is defined by the descriptor of the module selected for execution. The rest of this section
gives a formal definition of the MDP and the reactive controller produced by solving it.

2.2.1. State representation. The execution of a single progressive processing unit, u, can
be seen as an MDP with a finite set of states S = {[li , q, t]} ⋃ {[fail, t]} where 0 ≤ i ≤ L
indicates the last executed or skipped level, 0 ≤ q ≤ 1 is the quality produced by the
last executed module, and 0 ≤ t ≤ T is the elapsed time since the arrival time, au , of the
query. Note that quality is discretized and normalized to be in the range [0 . . . 100]. All the
intermediate modules use a uniform representation of input and output (a “query” in our
application). Note also that T is the maximum delay after which we consider the response to
be useless. When the system is in state [li , q, t], the i-th level has been skipped or executed.
The states [fail, t] represent termination at time t without any useful result. We distinguish
between different failure states because failure can occur before the deadline; the earlier it
occurs, the more valuable the state because it leaves more time for executing the remaining
queries in the queue.

2.2.2. Transition model. The initial state of the MDP is [l0, qinit, t], where t is the elapsed
time since the arrival of the request (t = currenttime − au), qinit is the initial quality of the
query (0 in our application), and l0 is a dummy variable indicating that no levels have been
executed or skipped yet. The initial state indicates that the system is ready to start executing a
module of the first level of the PRU. The terminal states are all the states of the form [lL , q, t]
or [fail, t]. The former set represents successful completion of the last level and the latter set
represents failure. Other states such as [li , qmax, t] (reaching maximal intermediate quality)

74 ARNT ET AL.

or [li , q, T] (reaching the deadline before the execution of the last level) are not considered
terminal states. A terminal state can be reached from state [li , q, T] by executing a series
of skip actions until a failure state is reached. Similarly skip actions can take the automaton
from state [li , qmax, t] to the last level executing the fewest number of modules possible
because no execute action can improve the intermediate quality. In practice, the skip action
is implemented as a module with no duration that causes no change in quality.

In every nonterminal state the possible actions are: E j
i+1 (execute the j-th module of the

next level) and Si+1 (skip the next level). To complete the transition model, we need to
specify the probabilistic outcome of these actions. Equations (1)–(4) define the transition
probabilities for any nonterminal state [li , q, t].

The Si+1 action is deterministic. It skips the next level without affecting the quality or
elapsed time. As noted earlier, it can be implemented as an additional “dummy” module
whose execution takes no time and has no effect on quality.

Pr([li+1, q, t] | [li , q, t], Si+1, skipi+1 = 1) = 1 when 0 ≤ i < L − 1 (1)

Skipping when a level marked as unskippable results in failure. Therefore, skipping the last
level always results in failure.

Pr([fail, t] | [li , q, t], Si+1, skipi+1 = 0) = 1 (2)

The E j
i+1 action is probabilistic. Duration and quality uncertainties define the new state.

Equation (3) determines the transitions following successful execution and Eq. (4) deter-
mines the transition to the failure state when the deadline, T , is reached.

Pr
(
[li+1, q ′, t + δ]

∣∣ [li , q, t], E j
i+1

) = P j
i+1((q ′, δ) | q) when t + δ ≤ T (3)

Pr
(
[fail, T]

∣∣ [li , q, t], E j
i+1

) =
∑

q ′,δ>T −t

P j
i+1((q ′, δ) | q) (4)

It is easy to see that this process satisfies the Markov assumption because the probabilistic
outcome of each action (executing a particular module) depends only of that module’s
descriptor.

2.2.3. Rewards and the value function. Rewards are determined by the given time-
dependent utility function applied to the final result (produced by the last level of the
PRU). The utility depends on the quality of the result and the elapsed time. Keep in mind
that in our application the intermediate results are useless and therefore have no direct re-
wards associated with them. We now define a value function (expected reward-to-go) over
all states. The value of terminal states is defined as follows:

V ([lL , q, t]) = R(q, t) = U (q, t) (5)

V ([fail, t]) = R(0, t) = U (0, t) (6)

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 75

The value of nonterminal states of the MDP is defined as follows.

V ([li , q, t]) = max
a

V ([li+1, q, t]) If a = Si+1, skipi+1 = 1

V ([fail, t]) If a = Si+1, skipi+1 = 0

EV
(
[li , q, t]

∣∣ E j
i+1

)
If a = E j

i+1, 0 < j ≤ pi

(7)

Such that the expected value

EV
(
[li , q, t]

∣∣ E j
i+1

) =
∑

q ′,δ>T −t

P j
i+1((q ′, δ) | q)V ([fail, T])

+
∑

q ′,δ≤T −t

P j
i+1((q ′, δ) | q)V ([li+1, q ′, t + δ])

The value function is defined as the maximum over all actions with the top expression
representing the value of a skip action for any skippable level li , the middle expression
representing the value of a skip action for an unskippable level, and the bottom expression
representing the value of an execute action.

This concludes the definition of an MDP. This MDP has a finite-horizon (determined by
the number of levels) and no cycles (because time, level number or both are incremented by
each action). Therefore, the MDP can be solved easily using standard dynamic programming
algorithms or using search algorithms such as AO∗.

Proposition 1. Given a progressive processing unit u and a time-dependent utility func-
tion U (q, t), the optimal policy for the corresponding MDP provides an optimal reactive
controller for u.

Proof: There is a one-to-one correspondence between the reactive control problem and
the Markov decision process. We also know that the PRU transition model satisfies the
Markov assumption. From the optimality of the resulting policy for the MDP, we conclude
that it provides optimal reactive control for the progressive processing problem. �

2.2.4. The effect of discretization. The above proof of optimality assumes that the com-
putational model is a precise description of the progressive processing task structure. In
practice however, it is necessary to discretize the representation of both time and quality.
The number of states of the resulting MDP is proportional to the product of the number of
the number of discrete quality levels and the maximum execution time. Both of these are
system parameters that must be determined with care. The maximum execution time, in
particular, can be quite large. A small time unit leads to a more effective controller at the
expense of a larger state-space. The choice of a unit of quality has a similar effect. These
units introduce a tradeoff between the size of the policy and its effectiveness.

In this application we have only a rough approximation of quality (as described in
Section 3), so no more than a very coarse discretization of quality is necessary. The dis-
cretization for time (which is easily observed) can be determined empirically to find a good
trade-off between policy size, execution time, and accuracy of control.

76 ARNT ET AL.

2.3. Optimal control of multiple PRUs using opportunity cost

Suppose now that we need to schedule the execution of multiple PRUs. We assume that there
are n + 1 queries whose arrival times are a0 ≤ a1 ≤ · · · ≤ an . One approach to construct
an optimal schedule is to generalize the solution presented in the previous section. We can
simply construct a larger MDP for the combined sequential decision problem including the
entire set of n + 1 PRUs. To do that, each state must also include i , the request number,
leading to a general state represented as [i, l, q, t]. Note that t is measured relative to the
arrival time of the first request in the queue.

This rather complex MDP is still a finite-horizon MDP with no loops. Moreover, the
only possible transitions between different PRUs are from a terminal state of one PRU to
an initial state of a succeeding PRU. Therefore, we can solve this MDP by computing an
optimal policy for the last PRU for any starting time between 0 and T +an+1 −a0, then use
the value of its initial states to compute an optimal policy for the previous PRU and so on.
The time interval for the starting time is defined by the constraint that all the requests must
be processed between the arrival of the first request, a0, and the deadline of processing the
last request, an+1 + T . To further simplify and unify all the control policies, we measure
time relative to the arrival of the first request, always starting from zero.

Proposition 2. Given a set, W, of progressive processing units and a time-dependent
utility function U (q, t), the optimal policy for the corresponding MDP is an optimal reactive
control for W .

This is an obvious generalization of Proposition 1. The complete proof, by induction on
the number of PRUs, is omitted.

We now show how to reformulate the effect of the remaining n requests on the execution
of the first query. This reformulation preserves the optimality of the solution, but it suggests
a more efficient control structure that will be developed below.

Definition 6. Let V ∗
i (t) = V ([i, l0, q0, t]) denote the expected value of the optimal policy

for the last n − i + 1 PRUs.

To compute the optimal policy for the i-th PRU, we can simply use the following modified
reward function.

Ri (q, t) = U (q, t + a0 − ai) + V ([i + 1, l0, q0, t]) (8)

The new reward for responding to the i-th query is composed of the immediate reward
(defined by the time-dependent utility function) and the reward-to-go (defined by the re-
maining PRUs). In contrast, Eq. (5) refers only to immediate reward, ignoring the reward
that could be gained from executing the remaining PRUs. Alternatively, the new reward
function can be represented as follows.

Ri (q, t) = U (q, t + a0 − ai) + V ∗
i+1(t) (9)

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 77

Therefore, the best policy for the first PRU can be calculated if we use the following
reward function for its terminal states:

R0(q, t) = U (q, t) + V ∗
1 (t) (10)

Definition 7. Let OC(t) = V ∗
1 (0) − V ∗

1 (t) be the opportunity cost at time t .

The term opportunity cost is borrowed from economics where it normally represents
the highest value alternative that must be foregone when a choice is made. In our case,
this alternative refers to starting to process the remaining queries immediately. Hence, the
opportunity cost measures the loss of expected value due to delay in the starting point of
executing the remaining n queries.

Definition 8. Let the OC-policy be a control policy for the first PRU computed with the
following reward function:

R(q, t) = U (q, t) − OC(t)

The OC-policy is the policy computed by deducting from the actual reward for the
first task the opportunity cost of its execution time. Unlike the reward function used in
Section 2.2.3, this definition captures both the reward for responding to the current query
as well as the loss of value due to delay of the remaining queries.

Proposition 3. Controlling the first PRU using the OC-policy is optimal.

Proof: From the definition of OC(t) we get:

V ∗
1 (t) = V ∗

1 (0) − OC(t) (11)

To compute the optimal schedule we need to use the reward function defined in Eq. (9) that
can be rewritten as follows:

R0(q, t) = U (q, t) + V ∗
1 (0) − OC(t) (12)

But this reward function is the same as the one used to construct the OC-policy, except for
the added constant V ∗

1 (0). Because adding a constant to a reward function does not affect
the policy, the conditions of Proposition 2 are met and the resulting policy is optimal. �

Proposition 3 suggests an optimal approach to scheduling the entire n + 1 requests by
first using an OC-policy for the first query that takes into account the opportunity cost of the
remaining n queries. Then the OC-policy for the second query is used taking into account
the opportunity cost of the remaining n − 1 queries and so on. To be able to implement this
approach we need to have the control policies readily available. This issue is addressed in
the following section.

78 ARNT ET AL.

2.4. Reactive control based on estimated opportunity cost

In the previous section, we presented an optimal solution to the control problem of multiple
progressive processing units without accounting for its computational complexity. In par-
ticular, the opportunity cost must be computed and revised quickly each time a new request
arrives. Once the opportunity cost is revised, a new policy for the current PRU must be con-
structed. Finding the exact opportunity cost requires the construction of an optimal policy
for the entire set of queries. In practice, this may slow down substantially the operation of
the system.

In order to provide an effective reactive controller for dynamic progressive processing,
it is necessary to:

1. use a fast approximation scheme to estimate the opportunity cost; and
2. use pre-compiled policies for different levels of opportunity cost.

The rest of this section explains this method in detail and evaluates it with respect to four
types of task structures.

2.4.1. Estimating the opportunity cost. The opportunity cost is defined in terms of the
function V ∗

1 which represents the value of an optimal policy for the remaining tasks in the
queue. Thus, it can be estimated by approximating this function. We have examined two
approximation schemes: a naı̈ve approach based on fast run-time approximation and an
off-line learning approach.

2.4.1.1. Naı̈ve approximation. A naı̈ve approach to approximating the cumulative value
of the remaining tasks is to quickly add the expected values of the queries in the queue
without taking into account the opportunity cost. In this calculation, the start time of exe-
cuting a query is the expected end time of the previous one. The following set of equations
summarizes this approximation scheme.

V ∗
1 (t) � V ([l0, q0, t + a0 − a1]) + V ∗

2 (t + τ1)
...

V ∗
i (t) � V ([l0, q0, t + a0 − ai]) + V ∗

i+1

(
t +

j=i∑
j=1

τ j

)

...

V ∗
n (t) = V ([l0, q0, t + a0 − an])

(13)

where V [l, q, t] is the value function defined in Section 2.2.3 for a single PRU. Therefore,
V ∗

1 can be approximated as follows:

V ∗
1 (t) �

i=n∑
i=1

V

[
l0, q0, t + a0 +

(∑
j<i

τ j

)
− ai

]
(14)

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 79

In these equations, τi is the expected duration of processing query i . Note that τi depends
on the duration of the previous tasks. Let τ (d) be the expected duration of the optimal
single-PRU policy when starting at time d relative to the arrival time of the query. Then τi

is computed using τ with the expected starting time of task i relative to its arrival time. The
starting time of task i relative to a0 is t + ∑

j<i τ j . This time relative to the arrival time of
query i (ai) is d = t + a0 + (

∑
j<i τ j) − ai . Therefore,

τ0 = 0,

τi = τ

(
t + a0 +

(∑
j<i

τ j

)
− ai

)
.

(15)

The function τ (expected duration) can be computed for any finite-horizon MDP once the
optimal policy is available by simply evaluating the optimal policy with respect to duration
instead of reward. The function can be computed once off-line, making it easy to revise
the opportunity cost when a new request is added. By ignoring the opportunity cost, the
naı̈ve approximation consistently allocates more time to the first queries and leaves less
time for the last queries in the queue. It is definitely not optimal, but it provides a simple,
fast approximation.

2.4.1.2. Learning the opportunity cost function. Another approach is to estimate the op-
portunity cost using some features that characterize the remaining PRUs in the queue. Using
a data set composed of randomly generated queues of one of the synthetic PRUs as described
in Table 1 for which the precise opportunity cost is known (calculated off-line), we can learn
a feature-based opportunity cost function. Then, this function can be used at run-time to
quickly approximate the opportunity cost for any given set of queries.

The synthetic PRUs are constructed by randomly specifying the module descriptors
P j

i ((q ′, δ) | q) for each module in the PRU. Type A is representative of the characteristics
of an actual information retrieval application, while the others are used to test scalability.

The features used in our experiment are the total number of PRUs in the queue and the
average waiting time of the PRUs in the queue.

We evaluated the the effectiveness of this approach by conducting the following exper-
iments. A dataset of queues was generated using a simple model of query arrival time (a
random number between 0 and 3 requests arrive over a period of ten time units). The exact
opportunity cost was computed at each of the time units for 100 randomly generated queues.

Table 1. Four types of PRUs used in evaluation.

PRU type L Modules per level T

A 3 6 300

B 3 15 300

C 3 6 1000

D 3 15 1000

80 ARNT ET AL.

A simple 1-Nearest-Neighbor algorithm is used, where a Euclidean distance metric on
the features determines the closest data queue to the test queue. The estimated opportunity
cost for each time unit is then determined by the exact opportunity cost of the closest data
queues for that time unit.

2.4.1.3. Comparison of opportunity cost approximation methods. We now compare the
performance of the naı̈ve method for opportunity cost approximation against the 1-Nearest-
Neighbor function approximation technique described above. Performance using no oppor-
tunity cost is given for comparison. This is based on an optimal policy for a single task,
which ignores the entire queue of requests (using Eq. (5) to define the reward). Unlike the
naı̈ve method, in this case the reward function does not take into account the reward-to-go
as defined by Eqs. (8) and (9).

To perform this comparison, 50 different PRU arrival queues were randomly generated
for each of the four PRU types described in Table 1. They were generated by having a
random number between 0 and 3 requests arrive at each time unit over a period of ten time
units (using a unit size of 10 seconds). Note that all the PRUs in a given queue correspond to
the same task structure. For each arrival queue, we estimated OC(t) at each of the possible
arrival times using both estimation methods. We then computed the exact opportunity cost.
Table 2 gives the average relative error for each of the methods. As expected, 1NN generally
outperforms the Naı̈ve method.

We also observed how often actions chosen by the estimated OC policy differed from
those specified by the optimal policy. These values are also given in Table 2. We see that
both of the estimation methods perform very well, with the 1NN method actually generating
a policy identical to the optimal for PRUs of type A. Ignoring the opportunity cost leads to
a large action error (up to 35%). It is interesting to note that in PRUs of type D, the action
error is small for all three approaches. The large number of alternatives and high level of
uncertainty about duration make the value of the second-best action closer to the value of

Table 2. Comparison of OC approximation methods.

PRU type OC Est method Est OC error Action error

A None N/A 20.345

Naı̈ve 34.102 2.014

1NN 7.178 0.0

B None N/A 18.422

Naı̈ve 10.550 5.586

1NN 2.813 4.678

C None N/A 35.185

Naı̈ve 6.042 0.971

1NN 2.668 0.233

D None N/A 1.453

Naı̈ve 1.142 1.302

1NN 2.255 0.376

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 81

the best action. Note also that in this case the naı̈ve method provides the more accurate
estimate of OC, but it also leads to larger error in action selection. A possible explanation
is that while the estimate is more accurate in general, it is less accurate for some critical
cases in which a small error makes a difference in action selection.

These results are encouraging, and imply that such estimation techniques should provide
adequate results in non-synthetic applications.

2.4.2. Pre-compiled control policies. To make the meta-level control truly reactive for
large task structures, one may want to avoid computing a new policy (for a single PRU)
each time the opportunity cost is revised. To avoid this, the space of opportunity cost can be
divided into a small set of regions representing typical situations. For example, there could
be just three regions that capture low, medium, and high loads. For each region, an optimal
policy would be computed off-line and stored in a library. At run-time, the system will
first estimate the opportunity cost and then use the appropriate pre-compiled policy from
the library. These policies remain valid as long as the overall task structure and the utility
function are fixed. Because the dependency of the control decisions on the opportunity cost
is monotonic (higher costs imply less time for execution), we anticipate that a small set of
classes that correspond to qualitatively different action selection policies will be sufficient.

Another advantage of the use of pre-compiled policies is the ability to react to dynamic
changes. Control policies can be switched during the execution of a single request if the
opportunity cost changes. This is possible because the policies share the same state space.

3. Probabilistic modeling of local context analysis

The above reasoning techniques have relied on the notion of observable quality of both
intermediate results and final returned documents of an information retrieval system, where
we define quality as the average precision of the returned documents. This is problematic
for a few reasons. First, the quality of the final returned documents is unknown, since there
is no way of knowing a priori what documents are relevant to the query at hand. Secondly,
intermediate results are often in the form of a single bag-of-words query. It is even more
difficult to define quality in this case as there are no documents on which to base quality,
much less documents with known relevance judgments. Therefore, to effectively implement
a progressive processing IR system, we must be able to quickly estimate quality of both
intermediate queries and final returned document sets.

One obvious benefit of a dynamic IR system is that we can try to avoid using techniques
that may hurt retrieval quality for a given query. There are few IR methods that improve
retrieval on all queries, all of the time.

IR researchers typically publish only results of their systems on collections of queries
rather than on a query-by-query basis. Nonetheless, there are a few occasions when this in-
formation is presented, and gives evidence to the fact that otherwise “helpful” IR techniques
can hurt performance on some queries.

Xu and Croft (1996) show that a local feedback-based query expansion technique im-
proves the average precision on the 49 TREC4 collection queries from 25.2% to 27.9%.
Similarly, LCA is shown to improve the average precision from 25.2% to 31.1%. However,

82 ARNT ET AL.

the average precision is hurt on 21 of the 49 queries by the local feedback technique, and
on 11 of 49 by LCA .

Crouch et al. (2001) describe an algorithm for query expansion that performs reranking
of the initial document set based on a comparison with unstemmed terms in the original
query. Stemming refers to removing obvious prefixes and suffixes from terms in documents
and queries, prior to any indexing or retrieval. They state that 31 of the 149 queries tested
were hurt by their technique, while overall average precision was increased.

Singhal and Pereira (1999) present a method for document expansion in which the doc-
ument corpus is composed of documents created from speech recognition programs. Since
speech recognition is far from perfect, the documents in the corpus containing many tran-
scription errors (on the scale of 24% to 60%). Speech documents are augmented with terms
from documents in a non-speech text corpus in hopes of restoring terms that were lost in
transcription. They show when performing document expansion based a text corpus not
closely related to the speech corpus that their method drops the mean average precision
0.7% on long queries, while the mean average on all queries is increased 12%.

In this section we give a simple example of this estimation using artificial neural networks
(ANNs) to estimate quality for the modules of a single IR technique, Local Context Analysis.
We show that ANNs trained on a select subset of available data can be used to attain modest
gains in retrieval performance by running LCA only on those queries that are predicted
to improve retrieval performance. In Section 3.5 we show how this online prediction can
be expressed in the framework of a simple PRU. Lastly, in Section 3.6, we demonstrate
a full progressive processing system based on this PRU. We show that using progressive
processing allows the retrieval system to perform at a high level of service over a wide range
of server loads.

3.1. Local context analysis

One of the major obstacles IR systems must overcome is the word mismatch problem (Xu,
1997), which refers to the fact that users of IR systems often use different words in their
queries to describe the same information need. This can lead to many relevant documents
not being retrieved by the system. For example, the user’s query may use the word “car”,
but some documents might only use the word “automobile”, and therefore would not be
retrieved. One of the most effective ways to overcome the word mismatch problem is
through query expansion, where a user’s query is expanded by adding new terms to it
before performing the retrieval step.

Query expansion methods have been studied for many years. One of the first attempts,
in Sparck Jones (1971), clustered words based on co-occurrence frequencies in the docu-
ment collection, and expanded queries based on those clusters. This is known as a global
technique, as the entire document corpus is analyzed to obtain the word clusters. In local
analysis, only the top ranked documents retrieved for the original query are examined to
obtain expansion terms and was first studied in Attar and Fraenkel (1977) and Croft and
Harper (1979). This method is known as local feedback or pseudo relevance feedback, and
forms of it have become common in IR literature (Yang et al., 1998; Robertson and Walker,
1997; Davis and Dunning, 1996; Allan, 1995).

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 83

InQuery
System

User’s
Query

Doc 1

Doc n

Doc 3

Doc 2

Concept m

Concept 3

Concept 2

Concept 1

InQuery
System

New Doc 1

New Doc N

New Doc 3

New Doc 2

Combine
to Form

Expanded
Query

LCA System

Get and
Rank

Concepts

Figure 2. Diagram of the LCA process.

LCA is currently one of the more successful query expansion techniques. It applies ideas
from global analysis methods, such as phrase identification and use of term context, to
the set of top ranked documents used in local feedback (Xu and Croft, 1996). We choose
to perform our experiments on LCA not only because its overall good performance, but
because an implementation was easily accessible.

The LCA process is detailed below and in figure 2:

– First, the user’s query is run through InQuery, an IR system developed at the University
of Massachusetts (Callan et al., 1995). InQuery returns a list of documents ranked in
order of estimated relevance to the query.

– The top n documents are selected from the list, and are analyzed to find “concepts.” A
concept is either a noun or a sequence of nouns. Each concept is given a weight based
on co-occurrence of query terms with that concept and the IDF (see Section 3.2.1 for
a definition) values of the concept. Essentially, LCA is finding those noun phrases that
occur very often near query terms in the top ranked documents, while not occurring with
high frequency in the overall document collection. The concepts are ranked in order of
decreasing weight.

– The top m concepts are merged into the user’s original query, creating a new expanded
query.

– The expanded query is run through InQuery, and the documents retrieved are returned to
the user.

We use n = 100 and m = 26, as these values have produced good empirical results. An
example expansion using LCA is shown in figure 3 (Xu and Croft, 1996).

On average, LCA has been shown to improve retrieval performance. But as shown above,
LCA can also hurt retrieval on some queries. For example, if very few of the documents
returned in the initial pass of InQuery are relevant to the original query, then the concepts
that are added to the query will be mostly noise, causing the retrieval performance to drop

84 ARNT ET AL.

Figure 3. Example LCA concepts for the query “What are the different techniques used to create self induced
hypnosis?”

significantly. Furthermore, if a query is initially quite long, there may be little advantage
to including additional search terms. Thus, it is advantageous to be able to use LCA on a
per-query basis.

3.2. Methodology

We want to predict, given a query, if using LCA will improve or hurt the retrieval performance
for that query. This prediction must be very fast, since it happens at runtime. A sensible
thing to do is to first create a set of training queries. The actual average precision obtained by
just InQuery and by InQuery with LCA query expansion on these queries can be computed
by using the relevance-tagged document sets as described above. The training data then
can be fed into a machine learning algorithm, training it to classify if LCA will improve
the average precision for the input query. Artificial neural networks (ANNs) are well suited
for this problem, as they are robust with respect to complex, noisy training data and have
near-instantaneous evaluation of the learned target function (Mitchell, 1996).

3.2.1. The data set. For our queries and tagged document sets, we made use of the TREC
queries, with corresponding TREC document collections and relevance judgments as de-
scribed in Table 3 (Voorhees, 1999). The shortest formulations of the TREC queries (the
title fields) were chosen, as they are most typical of queries given to a web-based search
engine (Croft et al., 1995). Furthermore, shorter queries have a higher potential for word

Table 3. Queries, document collections, and relevance judgments used in our experiments.

Query numbers Doc. collection TREC

51–100 disk 3 TREC-2

101–150 disk 3 TREC-3

151–200 disks 1 & 2 TREC-3

201–250 disks 2 & 3 TREC-4

251–300 disks 2 & 4 TREC-5

301–350 disks 4 & 5 TREC-6

351–400 disks 4 & 5 TREC-7

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 85

mismatch, so they should allow LCA expansion to make more of an impact on retrieval
performance.

Because ANNs require numerical inputs, we must use statistics derived from each query
in lieu of the actual query. These are the ‘query features’. Those features considered are as
follows:

Query Length: The length of the query after stopwords have been removed. A stopword is a
very common word adding no meaning to the query: e.g. the, with, but, said. Since shorter
queries have more potential for useful terms to be added via expansion, it seems logical
that LCA would be more likely to result in increased performance in shorter queries as
opposed to longer queries. This feature requires negligible online computation time to
determine.

IDF Statistics: The Inverse Document Frequency (IDF) of a given term is defined as log(D
d)

where D is the total number of documents in the collection, and d is the number of
documents in the collection that contain that term. The IDF is generally low for commonly
occurring terms, and high for rare ones. The IDF is determined for each term in the query
(with stopwords removed), and the Mean IDF, the Max IDF, and the Min IDF over the
query terms are computed. If the IDF values for each term in the vocabulary are cached,
then computing these features also takes negligible online computation time.

LCA Weights: The m = 26 weights computed by the “Get and Rank Concepts” phase of LCA
reflect the co-occurrence of the top concepts with the query terms. If the concept weights
are low that indicates that these concepts may not be closely related to the original terms,
and thus retrieval performance may be hurt by adding them to the query. Determining these
features takes significant computation time, as an entire InQuery retrieval is performed,
noun phrases are identified and tagged, and weights are computed. However, if the system
decides not to use LCA, the returned documents from InQuery are already available, and
therefore it is not necessary to run InQuery again.

LCA Weight Statistics: Once the m = 26 LCA weights are obtained, various statistics based
on them are computed in an attempt to facilitate the ANN training. We consider the
Mean, Median, and Standard Deviation of the following: All weights, top 5 weights, top
10 weights, middle 6 weights, middle 12 weights, bottom 10 weights, bottom 5 weights.
Computing all of these requires little computation time beyond computing the weights
themselves.

3.3. Training method

The NevProp4 neural network simulator was used in our experiments (Goodman, 1998).
Many networks were created and trained using various combinations of the inputs described
above. Each network was fully connected with a single layer of symmetric logistic hidden
units (with range −0.5 to 0.5). For each combination of inputs, three networks were created
with the number of hidden units set to be equal to either the number of inputs, half the number
of inputs, or a quarter of the number of inputs. The output of the network is dichotomous: the
output should be 0 if the network predicts that LCA will not improve the average precision,
and 1 if it will. Therefore, a single asymmetric logistic output unit with range 0.0 to 1.0 is
used.

86 ARNT ET AL.

Half of the 350 queries were randomly selected to use as training data. The quickprop
algorithm was used to update the network weights (Fahlman, 1988). To avoid overfitting of
the training data, we used cross-validation with a 10% holdout. This means that 17 queries
randomly picked from the training set are set aside to use as ‘temporary’ testing data, and
the neural net is trained on the remaining 158 until the classification error on the ‘temporary’
testing queries begins to increase. This step is repeated 10 times (randomly picking 17 new
queries to hold out each time) for each network to reduce the variance usually associated
with cross-validation. The mean testing error over the 10 cross-validation runs is calculated.
The network is then reset and retrained using all 175 training queries, stopping training when
the mean testing error is achieved.

The best network is then tested against the 175 queries not used in training as an indication
of overall network performance.

3.3.1. Results. The two best performing networks are presented here. The first network
(PredAll) uses the concept weight median statistics, query length, and IDF mean as inputs
with 10 hidden units. The second (PredFast) uses just the IDF min and max, with 2 hidden
units. Notice that the PredFast network does not use any of the query features that involve
LCA, so it is not necessary to perform the “Get and Rank Concepts” portion of LCA to
use this network to make the prediction. The results are presented in Table 4. “Num Times
LCA Used” shows how many times LCA was chosen to be executed on the queries. “Num
Hurt by LCA” shows how many times the decision to use LCA hurts retrieval performance
on a query. The “InQuery” column shows the results for just plain InQuery retrieval, while
the “Inq+LCA” column shows the results if LCA is used on every query. As a metric for
comparison, the “Perfect” column shows the results if the predictions were made perfectly,
using LCA if and only if retrieval quality is increased.

Table 4. Results for PredAll and PredFast.

InQuery Inq+LCA PredAll PredFast Perfect

Train (175)

Num LCA used 0 (0%) 175 (100%) 106 (61%) 52 (30%) 73 (42%)

Num LCA hurt 0 (0%) 102 (58%) 50 (47%) 26 (50%) 0 (0%)

Avg precision 0.241 0.255 0.255 0.246 0.264

% over InQuery +5.77 +6.02 +2.38 +9.68

% over Inq+LCA +0.24 −3.20 +3.70

Avg CPU time 5.240 16.921 10.448 8.096 8.364

Test (175)

Num LCA used 0 (0%) 175 (100%) 93 (53%) 53 (30%) 61 (35%)

Num LCA hurt 0 (0%) 114 (65%) 60 (65%) 40 (75%) 0 (0%)

Avg precision 0.231 0.246 0.238 0.234 0.254

% over InQuery +6.51 +2.83 +1.08 +9.61

% over Inq+LCA −3.46 −5.09 +2.91

Avg CPU time 4.587 15.668 8.308 6.829 7.387

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 87

PredAll shows a small improvement over Inq+LCA on the training data, but does not
improve over Inq+LCA on the testing data. PredFast does not improve over Inq+LCA on
either data set. However, both networks used much less CPU time than Inq+LCA, while
providing a modest performance gain over using just InQuery. Not surprisingly, PredAll
outperforms PredFast, but also uses almost 2 seconds more CPU time per query.

Note that as a research-oriented IR system, InQuery is not designed for speed. This
explains why the average running times in all cases are much larger than what one would
expect on a commercial system. The great majority of CPU time is spent in the InQuery
itself, so plugging in a faster retrieval engine would uniformly scale all CPU times listed
above, resulting in almost no relative change between the average running times for different
methods.

3.4. Threshold training

For many of the queries it is observed that using LCA changes the average precision very
little. These queries basically amount to noise when training an ANN. Furthermore, (Sparck
Jones, 1974) suggests that small changes in precision (i.e. less than 5%) are not noticeable
to users of an IR system. Perhaps performance can be improved by focusing attention on
those queries where LCA changes the average precision greatly. We will train the network
only on those queries where the average precision changes more than some percentage (we
use a 5% threshold). A network trained in such a way should perform very well on test
queries that are above the precision change threshold (or would be, if the actual precisions
were known). Intuitively, it is anticipated that the network should predict somewhat well
those new queries that are just under the threshold, and that the predictive ability degrades
smoothly as the precision change decreases.

The same network parameters as described above are used in these experiments. The train-
ing set is created by first finding all queries where using LCA produces an above-threshold
change in precision relative to using just InQuery. Then half of those above-threshold queries
are randomly selected to be in the training set. The networks are trained using the cross-
validation with early stopping method described in Section 3.3. The best network is then
tested on all remaining queries, regardless of whether they are above the threshold.

3.4.1. Threshold training results. Results are presented in Table 5. We present testing
results for both the entire test set and just those test queries above the threshold used for
training. The best network for the 5% threshold case (PredAll5) used all concept weight
statistics, the query length, and the IDF mean as inputs, with 7 hidden units. Without using
LCA-derived features, the best network (PredFast5) used the IDF min and max, with 2
hidden units.

These results are more encouraging, with both networks showing modest performance
improvements over Inq+LCA on both train and test data. However, notice that by restricting
the training data, the resulting training set is very small (just 40 queries). Furthermore,
there are only eight training instances where LCA does not improve the precision. This lack
of negative training examples makes prediction more difficult. Presumably adding more
queries above the threshold to the training set would further improve prediction accuracy.

88 ARNT ET AL.

Table 5. Results for PredAll5 and PredFast5.

InQuery Inq+LCA PredAll5 PredFast5 Perfect

>�5% train (40)

Num LCA used 0 (0%) 40 (100%) 33 (82%) 38 (95%) 32 (80%)

Num LCA hurt 0 (0%) 8 (20%) 1 (3%) 6 (16%) 0 (0%)

Avg precision 0.338 0.409 0.428 0.416 0.431

% over InQuery +21.26 +26.72 +23.16 +27.76

% over Inq+LCA +4.50 +1.56 +5.35

Avg CPU time 5.267 15.401 14.168 14.245 10.994

Test (310)

Num LCA used 0 (0%) 310 (100%) 267 (86%) 299 (96%) 102 (33%)

Num LCA hurt 0 (0%) 208 (67%) 172 (64%) 198 (66%) 0 (0%)

Avg precision 0.223 0.230 0.231 0.230 0.237

% over InQuery +3.17 +3.77 +3.18 +6.10

% over Inq+LCA +0.58 +0.01 +2.84

Avg CPU time 4.868 16.410 15.410 15.867 7.473

>�5% test (39)

Num LCA used 0 (0%) 39 (100%) 34 (87%) 38 (97%) 26 (67%)

Num LCA hurt 0 (0%) 13 (33%) 9 (26%) 13 (34%) 0 (0%)

Avg precision 0.313 0.352 0.360 0.350 0.381

% over InQuery +12.67 +15.05 +11.83 +21.89

% over Inq+LCA +2.18 −0.74 +8.18

Avg CPU time 4.577 11.957 10.818 11.811 9.567

Also notice that the ‘fast’ prediction network does not save much CPU time in this
case. The computation time saved in not computing the LCA concept weights was negated
by the fact that those networks predict that LCA improves nearly every query, so the
concept weights are computed nevertheless as part of the LCA process. We conclude that the
information obtained from the intermediate results is crucial in making accurate predictions.

3.5. LCA prediction as a progressive processing task

Given that we have successfully trained a classifier, how do we express this as a PRU? One
possibility is shown in figure 4. On the first level the system must generate LCA concepts.
On the second level, it can choose to either create the LCA-expanded query or continue with
the original query (the skip action, shown in the diagram for clarity). The final level does
the actual retrieval on the query output by the second level. We use the PredAll5 classifier
described in Section 3.4 to estimate the query quality after execution of the first level.

We must specify module descriptors P j
i ((q ′, δ) | q) for each of the modules described

above (Recall that q represents query quality, and δ the query duration). We make the

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 89

Return docs

skip

Generate
LCA concepts

Create LCA
expanded query

Figure 4. LCA prediction as a PRU.

simplifying assumption that q ′ and δ are conditionally independent, so it suffices to show
P j

i (q ′ | q) and P j
i (δ | q) for each of the modules listed above. We can estimate the duration

distributions by empirical analysis of the modules on a group of queries. We use the training
subset of the TREC queries discussed above and assume that duration is independent of
quality.

Generate LCA concepts. The distribution of running time for this module is P1
1 (δ) =

N ′(δ | 11.34, 11.67) where N ′(x | µ, σ) here represents the probability of x under a
normal distribution with mean µ and standard deviation σ , with the probability mass
redistributed so that P(x ≤ 0) = 0. There is no dependence on q as all queries start with
q = 0.

We model the quality distribution as an approximation of the output of the PredAll5
classifier, with the adjustment that instead of using the output value x of the network, we
will use 100 ∗ (1 − x). This gives us qualities on a nice 0 to 100 scale, where queries
that are predicted to not be improved by LCA will be given a high quality, and those that
may be helped by LCA are given a lower quality. We can use a mixture of two normal
distributions to fit the output of the network for all training queries.

P1
1 (q) = 3

4
N ′(q | 55.9, 35.6) + 1

4
N ′(q | 7.9, 10.1)

Create LCA expanded query. Once the concepts have been generated, creating the new
query is near instantaneous, independent of the value of q. We must then do retrieval on
this new query, which we empirically observe to be: P1

2 (δ) = N ′(δ | 4.955, 3.768)
For quality, the incoming quality is ‘inverted’:
P1

2 (q ′ = (100−q) | q) = 1. This encourages the use of the expanded query in cases when
the classifier has said that LCA is likely to improve the query, and lessens the incentive
to use LCA when it is predicted to not be helpful.

Return docs. In this step, nothing has to be done except to return the documents to the user.
The duration will be zero, and the quality will be unchanged.

90 ARNT ET AL.

Although this example was quite simple, it gives an idea of how to formulate a progressive
processing task when the application domain has semi-observable quality.

3.6. Progressive processing using online LCA prediction

With the PRU defined we can now examine how a progressive processing controller will
behave in a simulated information retrieval system. We compare the progressive processing
controller with three other policies in an environment that simulates queries arriving over
time at a server which must respond to them.

3.6.1. Query arrival model. To simulate queries arriving over time we use a simple model.
At each time t , there is probability pa of any queries being added to the queue. When
queries do arrive, the number arriving is 0 with probability 0.25, 1 with probability 0.4, 2
with probability 0.25, and 3 with probability 0.1. During our experiments, we vary pa to
simulate low and high load conditions. When pa = 0.025, the load on the server is very
light, while at pa = 0.2 the load is very heavy.

In order to do any evaluation of this experiment, we need to use queries which have rele-
vance judgments available; Therefore the actual queries arriving at the server are randomly
selected, with replacement, from the testing set described in Table 5.

3.6.2. Control policies. We examine the behavior of four different control policies in this
environment.

Neighbor. We approximate the optimal control policy using the 1NN strategy described in
Section 2.4.1. To do this, we create a set of 100 precompiled policies offline for various
queue states encountered over the range of arrival probabilities.

Greedy. This is the single PRU control policy discussed in Section 2.2. Recall that this
policy maximizes the utility for the task at the head of the queue, but ignores any waiting
queries.

LCA All. This handcoded policy will chose to run LCA on every query. It will also abort
the head query in either of two situations: First if the maximum waiting time T has been
exceeded for that query, or also if the queue has grown to length greater than 5, and
no modules have yet been executed. The value 5 was chosen because it gave the best
empirical results. This kind of fixed aborting policy is a more traditional way for a server
to cope with an overload of work.

LCA None. This policy will always skip the LCA expansion, and will abort the head query
under the same conditions as LCA All.

3.6.3. Experimental setup and parameters. For every arrival rate pa, we randomly gen-
erate a query arrival sequence for time 0 to 1000. We then use each of the above control
policies to process the incoming stream of queries over time. We record the quality q (av-
erage precision) of the documents returned for each query. We use this quantity and the
total processing time t for the query to compute the total utility value of the query using
the utility function defined below. Processing ends when the time is greater than 1000 and

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 91

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

U
q

q

-600

-500

-400

-300

-200

-100

 0

 0 20 40 60 80 100

U
t

t

Figure 5. Plots of Ut and Uq .

all queries have been completed or aborted. We then compute average quality and average
utility metrics over all queries that arrived during the experiment.

We repeat the above procedure 20 times and record the mean of the average quality and
average utility metrics for each control policy and arrival rate.

We also need to define the time-dependent utility function U (q, t), as this function defines
the overall quality of service that we wish to maximize. We choose to define U as the sum
of the two functions Uq (q) and Ut (t) where

Uq (q) = −100e(−0.03q) + 100

Ut (t) = −10e(0.04t) + 10

These two functions are shown in figure 5. Uq demonstrates the law of diminishing returns,
where as quality increases, the same unit increase in quality gives less increase in utility.
Similarly, Ut shows an increasing penalty as time progresses, reflecting the fact that the
value to the user of the final output drops with increasing slope as time progresses.

Quality is discretized to tens, while time discretized into units. We set the maximum
possible wait time after which queries must be aborted to T = 100.

3.6.4. Results. In figure 6 we observe that for higher loads, all policies experience a drop in
average utility per query. For the Greedy policy this drop is extreme (continuing downward
until reaching −110 average utility per query for pa = 0.2), due to the fact that the system
just tries to maximize utility in the current query, regardless of the state of the queue.
Therefore, this policy never “pre-emptively” aborts a query, as the other three policies do in
some form, and it will also never skip the LCA process unless doing so will provide greater
utility for the current query. The LCA All policy suffers from the inability to skip as well:
the system must invest the time to perform the LCA expansion for every query, even though
doing so may have adverse effect of increasing the waiting time for all those remaining
in the queue. The LCA None policy turns out to be fairly competitive with the Neighbor
policy, but recall that the length of the queue above which aborts would automatically occur
was optimized empirically.

Figure 7 demonstrates how for all policies the average quality of the returned documents
decays as the load on the server increases (we say that an aborted query has quality 0). The

92 ARNT ET AL.

-10

 0

 10

 20

 30

 40

 50

 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

A
ve

ra
ge

 u
til

ity
 p

er
 q

ue
ry

Arrival probability, pa

Neighbor
Greedy
LCA all

LCA none

Figure 6. The average utility achieved per query for various server loads.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

A
ve

ra
ge

 a
vg

. p
re

ci
si

on
 p

er
 q

ue
ry

Arrival probability, pa

Neighbor
Greedy
LCA all

LCA none

Figure 7. The quality of the returned documents decays as server load increases.

LCA All policy has the most extreme drop, due to the fact that many queries must be aborted
due to excessive queue length or exceeding T . Note that the Neighbor policy has a higher
average quality than LCA None when the load is light, due to the fact that it can often use
LCA to boost quality on queries which are predicted to be helped by the technique, while
at higher loads, this opportunity becomes increasingly rare.

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 93

3.7. Discussion

Although the results on predicting the effectiveness of LCA are somewhat weak due to a
scarcity of training data, and perhaps too simple a feature set, we see that such prediction is
still valuable when built into the progressive processing system. Training the ANN classifier
on only ‘extreme’ examples provides us the ability to predict with confidence when LCA
will greatly improve or greatly harm a query. The rough quality estimates provided by the
classifier allow for a robust policy to be computed that will use LCA only when the classifier
is confident that the query will be improved, while taking into account the ramifications
to the rest of the queue if that computation time is so invested. As server load increases,
and the queue grows, the LCA prediction must be increasingly confident if the system is to
choose to run LCA.

4. Related work

There has been much research into the application of machine learning techniques to the
creation and configuration of IR systems. One of the earliest examples is the AIR system of
Belew (1986). It used relevance feedback from users to train a three layer neural network of
authors, index terms, and documents. In Leuski (2001), reinforcement learning was used to
develop a system to help guide users through a collection of retrieved documents. A good
survey of other applications of machine learning techniques to the retrieval process itself is
given in Chen (1995). These can be called “adaptive” IR systems in that their parameters
are slowly learned and tuned over time. However, the work presented here is fundamentally
different and novel, in that the IR system is dynamically reconfigured to use best techniques
for a given query, user, and server load at runtime.

The ability to dynamically adjust computational effort based on the availability of com-
putational resources and the projected benefit from continued computation has been stud-
ied extensively by the AI community since the mid 1980’s. These efforts have led to the
development of a variety of techniques such as anytime algorithms (Dean and Boddy,
1988; Zilberstein and Russell, 1996), design-to-time (Garvey and Lesser, 1993), flexible
computation (Horvitz, 1988), imprecise computation (Liu et al., 1991), and progressive
reasoning (Mouaddib, 1993; Mouaddib and Zilberstein, 1997). Each resource-bounded
reasoning approach addresses two fundamental questions: how to introduce computa-
tional tradeoffs into the base-level problem-solving process and how to control these
tradeoffs so as to optimize the utility of the system. For example, in the case of any-
time algorithms, the base-level problem solving technique is an interruptible, iterative
improvement process that provides multiple solutions to a given problem whose quality
improves with computation time. Using a variety of representations of the performance
of the algorithm, researchers have proposed several techniques to control anytime algo-
rithms such as a static allocation of the algorithm’s running time before it starts (Horvitz,
1987; Boddy and Dean, 1994), a myopic stopping criterion based on the marginal value
of computation (Horvitz, 1990; Russell and Wefald, 1991), and a non-myopic approach
that treats the stopping criterion as a sequential decision problem (Hansen and Zilberstein,
1996).

94 ARNT ET AL.

Resource-bounded reasoning techniques offer a disciplined approach to managing com-
putational resources in complex systems. Currently, the primary method for achieving
real-time performance is based in many cases on speeding up individual algorithms in a
generate-and-test manner until an acceptable performance is reached. In contrast, resource-
bounded reasoning techniques allow a system to perform a computation based on a well-
defined notion of the value of computation (Horvitz, 1990; Russell and Wefald, 1991) which
measures the net gain in performance. The gain is calculated by projecting the improvement
in response quality on the one hand and the cost of computation on the other hand.

From a resource-bounded reasoning perspective, the dynamic selection of information
retrieval techniques present several unique challenges. First, the set of queries waiting for
processing is changing rapidly, making it necessary to revise the value of computation.
Second, the effect of a technique on the precision of the response may not be immediate. It
may depend on further processing, making it impossible to use the more classical myopic
approach to estimating the value of computation (Horvitz, 1990; Russell and Wefald, 1991).
A myopic estimate of the value of a computation is based on the assumption that the final
system response will be returned at the end of the computation. We treat the problem as
a sequential decision problem, factoring into the value function the ability of the system
to make further decisions before returning the result. These two characteristics, a rapidly
changing set of queries and a non-myopic approach, distinguish our solution from previous
work in resource-bounded reasoning.

The progressive processing framework used in this paper is related to a large body of
work within the systems community on imprecise computation (Liu et al., 1991). Each
task in that model is decomposed into a mandatory subtask and an optional subtask. The
mandatory subtask must be executed to produce results of some initial value; the optional
subtask may be executed to increase the value of the results. With few exceptions, tasks
in this model are assumed to be independent and to have individual deadlines. A variety
of scheduling algorithms have been developed for imprecise computation under different
assumptions about the optional part. Our model allows for a richer representation of qual-
ity and duration uncertainty and quality dependency. Unlike imprecise computation, the
schedule constructed in this paper is a conditional schedule; the selection of IR techniques
is conditioned on the actual execution time and outcome of previous techniques. As a result,
the system can handle effectively a high level of uncertainty.

The application of dynamic programming to solve the problem of meta-level control
of computation has been previously used by Hansen and Zilberstein (1996) to control
interruptible anytime algorithms. Optimal monitoring of progressive processing tasks using
a corresponding MDP has been studied by Mouaddib and Zilberstein (1998) with respect to a
simpler task structure and without the notion of quality uncertainty and quality dependency.

The use of pre-compiled control policies to construct a highly reactive real-time system
has been studied by several researchers. For example, Greenwald and Dean (1998) show
how a real-time avionics control system can use a library of schedules that cover all pos-
sible situations. Each schedule is conditioned on the state of the flight operation. Another
advantage of the use of pre-compiled control policies is the reduction of communications
in interleaved planning/execution systems since the approach determines which module to
select given the current state of execution.

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 95

The notion of opportunity cost that we use to measure the effect of the delay in processing
existing queries is borrowed from economics. It has been used previously in meta-level
reasoning by Russell and Wefald (1991). Horvitz (1997) uses a similar notion to develop
a model of continual computation in which idle time is used to solve anticipated future
problems.

To review, the work presented in this paper differs from previous uses of machine learning
in IR in that other methods learn a fixed system, but we use the learned classifiers to
dynamically reconfigure the IR system at runtime. The progressive processing method for
control of computation differs from previously explored approaches in that we use a non-
myopic approach that can effectively handle the high levels of uncertainty resulting from
the rapidly changing set of waiting queries.

5. Conclusions

This paper examined the possibility of run-time selection of the best information retrieval
techniques for a given query. We first developed a new approach to representing the problem
within the progressive processing framework. The resulting meta-level control was solved
by reformulating it as a Markov decision problem. It was shown that an optimal policy for a
set of tasks can be constructed by controlling a single progressive processing unit, taking into
account the opportunity cost associated with the remaining queries. A fast approximation
of the opportunity cost was developed that allows a reactive controller to select the best IR
techniques using a library of pre-compiled control policies.

We then examined the ability to predict the performance of IR techniques using LCA as a
case study. We showed that online query prediction using threshold training can provide an
improvement in retrieval performance. Although the results were only modestly good, they
demonstrate that is possible to predict success well enough to help retrieval effectiveness
and improve efficiency on average. A simple example PRU structure based on this prediction
was given, and a full progressive processing system based on this structure was built and
compared to other meta-level control strategies.

We have shown that time-consuming IR techniques can be integrated in a robust way into
systems, even when it is not beneficial to use them on every query, or in situations where the
system is under high-load. The overhead introduced by the run-time selection mechanism
is minimal because it is based on off-line learning methods.

Future work should address a few issues: More training queries are needed, especially
more negative instances. Creating training queries is hardly a trivial task, as hundreds of
manual relevance judgments have to be made. At the very least, there is the possibility
that future TREC conferences might provide more queries. Secondly, the query features
used were fairly arbitrary. We simply used features that were easy to collect and compute,
that were not ‘tuned’ to the task of online query prediction. Perhaps with more carefully
engineered features, prediction performance could be increased. However, we have found
no obvious candidates thus far. Additionally, new IR modules can be designed with this
framework in mind, allowing for techniques that may only be beneficial to a only a specific
kind of query, or that may take a larger amount of computional resources than would
otherwise be tolerable in a static IR system. As long as the success rate is somewhat

96 ARNT ET AL.

predictable, this dynamic selection system can benefit from them. Finally, the methods
for computing the optimal policy presented here do not consider query arrivals that may
occur while a module is running. If the query arrival rate can be modeled and future events
anticipated, there may be an opportunity to increase overall quality of service.

Although we investigate only LCA here, online query prediction could be a useful tool
for many different IR techniques. Online query prediction is an important step in developing
a truly dynamic information retrieval system. While the results presented here are modest,
we feel that dynamic information retrieval systems present a previously unexplored method
for improving retrieval performance in terms of both quality and speed. Furthermore, the
progressive processing framework allows us to take into account such things as system load
and query priority when deciding to use some IR technique.

References

Allan, J. (1995). Relevance Feedback With Too Much Data. In Research and Development in Information Retrieval
(pp. 337–343).

Allan, J. and Raghavan, H. (2002). Using Part-of-Speech Patterns to Reduce Query Ambiguity. In Proceedings of
the 25th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval.

Attar, R. and Fraenkel, A.S. (1977). Local Feedback in Full-Text Retrieval Systems. Journal of the ACM, 24(3),
397–417.

Barto, A., Bradtke, S.J., and Singh, S.P. (1995). Learning to Act Using Real-Time Dynamic Programming. Artificial
Intelligence, 72, 81–138.

Belew, R.K. (1986). Adaptive Information Retrieval: Machine Learing in Associative Networks. Ph.D. thesis,
University of Michigan.

Boddy, M. and Dean, T. (1994). Decision-Theoretic Deliberation Scheduling for Problem Solving in Time-
Constrained Environments. Artificial Intelligence, 67, 245–285.

Buckley, C. and Voorhees, E.M. (2000). Evaluating Evaluation Measure Stability. In Proceedings of the 23rd
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp.
33–40).

Callan, J.P., Croft, W.B., and Broglio, J. (1995). TREC and Tipster Experiments with InQuery. Information
Processing and Management, 31(3), 327–343.

Chen, H. (1995). Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic
Algorithms. Journal of the American Society for Information Science, 46(3), 194–216.

Conrad, J.G. and Utt, M.H. (1994). A System for Discovering Relationships by Feature Extraction from Text
Databases. In W.B. Croft and C.J. van Rijsbergen (Eds.), Proceedings of the 17th Annual International ACM-
SIGIR Conference on Research and Development in Information Retrieval (pp. 260–270).

Croft, W.B., Cook, R., and Wilder, D. (1995). Providing Government Information on the Internet: Experiences with
THOMAS. In Proceedings of the Second Annual Conference on the Theory and Practice of Digital Libraries.

Croft, W.B. and Harper, D.J. (1979). Using Probabilistic Models of Document Retrieval Without Relevance
Information. Journal of Documentation, 35, 285–295.

Crouch, C.J., Crouch, D.B., and Chen, Q. (2001). Initial Experiments in Short Query Retrieval. Technical Report
TR-00-01, University of Minnesota Duluth.

Davis, M. and Dunning, T. (1996). A TREC Evaluation of Query Translation Methods for Multi-Lingual Text
Retrieval. In Proceedings of TREC-4.

Dean, T. and Boddy, M. (1988). An Analysis of Time-Dependent Planning. In Proceeedings of the Seventh National
Conference on Artificial Intelligence (pp. 49–54).

Dean, T., Kaelbling, L.P., Kirman, J., and Nicholson, A. (1995). Planning Under Time Constraints in Stochastic
Domains. Artificial Intelligence, 76, 35–74.

Fahlman, S.E. (1988). An Empirical Study of Learning Speed in Back-Propagation Networks. Technical Report,
Carnegie Mellon University.

DYNAMIC COMPOSITION OF INFORMATION RETRIEVAL TECHNIQUES 97

Garvey, A. and Lesser, V. (1993). Design-to-Time Real-Time Scheduling. IEEE Transactions on Systems, Man,
and Cybernetics, 23(6), 1491–1502.

Goodman, P.H. (1998). NevProp Software, Version 4. University of Nevada, Reno.
Greenwald, L. and Dean, T. (1998). A Conditional Scheduling Approach to Designing Real-Time Systems. In

Artificial Intelligence Planning Systems (pp. 224–231).
Hansen, E.A. and Zilberstein, S. (1996). Monitoring the Progress of Anytime Problem-Solving. In Proceedings

of the Thirteenth National Conference on Artificial Intelligence (pp. 1229–1234).
Horvitz, E.J. (1987). Reasoning About Beliefs and Actions Under Computational Resource Constraints. In Pro-

ceedings of the Workshop on Uncertainty in Artificial Intelligence.
Horvitz, E.J. (1988). Reasoning Under Varying and Uncertain Resource Constraints. In National Conference on

Artificial Intelligence (pp. 111–116).
Horvitz, E.J. (1990). Computation and Action Under Bounded Resources. Ph.D. thesis, Stanford University.
Horvitz, E.J. (1997). Models of Continual Computation. In Fourteenth National Conference on Artificial Intelli-

gence (pp. 286–293).
Leuski, A. (2001). Interactive Information Organization: Techniques and Evaluation. Ph.D. thesis, University of

Massachusetts at Amherst.
Liu, J., Lin, K., Shih, W., Yu, A., Chung, J., and Zao, W. (1991). Algortihms for Scheduling Imprecise Computations.

IEEE Transactions on Computers, 24(5), 58–68.
Mitchell, T.M. (1996). Machine Learning. New York, US: McGraw Hill.
Mouaddib, A.I. (1993). Contribution au Raisonnement Progressif et Temps rel dans un Univers Multi-Agents.

Ph.D. thesis, Univeristy of Nancy I.
Mouaddib, A.I. and Zilberstein, S. (1997). Handling Duration Uncertainty in Meta-Level Control of Progressive

Processing. In Fifteenth International Joint Conference on Artificial Intelligence (pp. 1201–1206).
Mouaddib, A.I. and Zilberstein, S. (1998). Optimal Scheduling of Dynamic Progressive Processing. In Thirteenth

Biennial European Conference on Artificial Intelligence (pp. 449–503).
Robertson, S.E. and Walker, S. (1997). On Relevance Weights with Little Relevance Information. In Proceedings of

the 20th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval
(pp. 16–23).

Russell, S. and Wefald, E. (1991). Do the Right Thing: Studies in Limited Rationality. Cambridge, MA: MIT Press.
Singhal, A. and Pereira, F. (1999). Document Expansion for Speech Retrieval. In Research and Development in

Information Retrieval (pp. 34–41).
Sparck Jones, K. (1971). Automatic Keyword Classification for Information Retrieval. Butterworths, London.
Sparck Jones, K. (1974). Automatic Indexing. Journal of Documentation, 30, 393–432.
Swanson, D.R. (1988). Historical Note: Information Retrieval and the Future of an Illusion. Journal of the American

Society for Information Science, 39, 92–98.
Voorhees, E.M. (1999). Overview of the Eighth Text REtrieval Conference. In Proceedings of TREC-8.
Xu, J. (1997). Solving the Word Mismatch Problem through Automatic Text Analysis. Ph.D. thesis, University of

Massachusetts at Amherst.
Xu, J. and Croft, W.B. (1996). Query Expansion Using Local and Global Document Analysis. In Proceedings of

the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 4–11).

Xu, J. and Croft, W.B. (2000). Improving the Effectiveness of Information Retrieval with Local Context Analysis.
ACM Transactions on Information Systems, 18(1), 79–112.

Yang, Y., Carbonell, J.G., Brown, R.D., and Frederking, R.E. (1998). Translingual Information Retrieval: Learning
from Bilingual Corpora. Artificial Intelligence, 103(1/2), 323–345.

Zilberstein, S. and Russell, S.J. (1996). Optimal Composition of Real-Time Systems. Artificial Intelligence, 82(1/2),
181–213.

