
Contract Algorithms and Robots on Rays: Unifying Two Scheduling Problems

Daniel S. Bernstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
bern@cs.umass.edu

Lev Finkelstein
Computer Science Department

Technion—IIT
Haifa 32000, Israel

lev@cs.technion.ac.il

Shlomo Zilberstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
shlomo@cs.umass.edu

Abstract

We study two apparently different, but formally
similar, scheduling problems. The first problem in-
volves contract algorithms, which can trade off run
time for solution quality, as long as the amount of
available run time is known in advance. The prob-
lem is to schedule contract algorithms to run on par-
allel processors, under the condition that an inter-
ruption can occur at any time, and upon interruption
a solution to any one of a number of problems can
be requested. Schedules are compared in terms of
acceleration ratio, which is a worst-case measure of
efficiency. We provide a schedule and prove its op-
timality among a particular class of schedules. Our
second problem involves multiple robots searching
for a goal on one of multiple rays. Search strate-
gies are compared in terms of time-competitive ra-
tio, the ratio of the total search time to the time
it would take for one robot to traverse directly to
the goal. We demonstrate that search strategies and
contract schedules are formally equivalent. In addi-
tion, for our class of schedules, we derive a formula
relating the acceleration ratio of a schedule to the
time-competitive ratio of the corresponding search
strategy.

1 Introduction
In this paper, we demonstrate a connection between two prob-
lems that initially seem unrelated. The first involves comput-
ing solutions to multiple problems, under the condition that a
solution to any one of the problems can be requested at any
time. Challenges of this type arise in the design of intelligent
user interfaces, information prefetching systems, and medi-
cal diagnosis systems. The second problem involves multiple
robots searching an unknown environment for a goal. Prob-
lems of this nature arise in robotics and space exploration.
In the following paragraphs we describe the problems, along
with our contribution, in more detail.

The first problem concernsanytimealgorithms[Horvitz,
1987; Dean and Boddy, 1988; Russell and Zilberstein, 1991],
which produce solutions of different qualities depending on
available computation time. More specifically, we focus on

contract algorithms, which are anytime algorithms that re-
quire the deadline as input prior to the start of execution. With
contract algorithms, no assumptions can be made about re-
sults produced before the given deadline. This is in contrast to
the familiarinterruptiblealgorithms, which can be queried at
any point during execution. Although less flexible than inter-
ruptible algorithms, contract algorithms typically use simpler
data structures, making them easier to implement and main-
tain. An example in AI is game playing programs based on
heuristic search. For these programs, the allowed deliberation
time is usually known in advance, and is used to set internal
parameters. Another example is planning algorithms that per-
form state-space abstraction. With these algorithms, the run
time can be controlled by setting the abstraction level at the
start of execution.

Our problem can be stated as follows. We are givenn
instances of an optimization problem, along with a contract
algorithm for the problem, and we have anm-processor ma-
chine on which to run the algorithm. An interruption can oc-
cur at any time, and a solution can be requested for any one
of the problem instances. Given these constraints, we want a
good general strategy for scheduling runs of the algorithm on
the processors.

In the case of one problem instance and one processor,
Russell and Zilberstein [1991] suggested iteratively doubling
the contract lengths. With this schedule, for any interruption
time t, the last contract completed (if one exists) is always
of length at leastt/4. This factor of four is theacceleration
ratio of the schedule, a worst-case measure of its efficiency.
Zilbersteinet al. [1999] showed that no schedule can achieve
an acceleration ratio less than four.

The generalization to multiple problem instances has been
considered[Zilbersteinet al., 1999], as has the generaliza-
tion to scheduling contracts on parallel processors[Bernstein
et al., 2002]. Optimal acceleration ratios have been derived in
both cases. The more general multi-processor, multi-instance
case has not previously been studied. In this paper, we pro-
vide a schedule for this case, and we prove that this schedule
is optimal among a restricted, though still interesting, class of
schedules. The optimality proof is a nontrivial extension of
the previous proofs, and contains as a lemma a generalization
of the monotone convergence principle.

This work is most closely related to Horvitz’s continual
computation framework[Horvitz, 2001]. In his framework,

as in ours, computation is performed with limited knowledge
about the deadline or desired result. However, the assump-
tions underlying the two frameworks are different. In the con-
tinual computation framework, the limited knowledge comes
in the form of probability distributions. In contrast, our use of
acceleration ratio does not require probabilistic information.
Furthermore, contract algorithms and parallel processing are
both not considered in continual computation.

Our contract scheduling results can be directly applied to
a robot search problem. In this problem,m robots search for
a goal that is located on one ofp intersecting rays. The aim
is to minimize thetime-competitive ratio, which is the worst-
case ratio of the total time spent searching to the time for a
single robot to traverse directly to the goal. The optimal ratio
for the one-robot case was derived previously[Baeza-Yates
et al., 1993].

We address the general multi-robot case, for which search
strategies are formally equivalent to contract schedules. For
our class of schedules, we derive a formula relating the accel-
eration ratio of a schedule to the time-competitive ratio of the
corresponding search strategy. The optimal time-competitive
ratio is derived as a corollary.

This work is the first to draw a precise connection between
contract scheduling and multi-robot search, and the first to
provide nontrivial results for the multi-robot case. Kaoet
al. [1998] studied the multi-robot problem, but used a dif-
ferent performance measure. They minimized thedistance-
competitive ratio, which is the worst-case ratio of the total
distance traveled during the search to the distance between
the origin and the goal.

2 Scheduling a Contract Algorithm
2.1 Problem Description
An anytime algorithmA, when applied to an optimization
problem instancei for time t, produces a solution of some
real-valued qualityQA(t, i). The functionQA is calledA’s
performance profile. In general, one does not know an al-
gorithm’s performance profile. Nevertheless the concept of
a performance profile is useful in reasoning about anytime
algorithms. We assume that the performance profile of an
anytime algorithm on any problem instance is defined for all
t ≥ 0 and is a nondecreasing function oft.

The distinctions among different types of anytime algo-
rithms arise from different assumptions about which param-
eters are known prior to execution. When botht and i are
known in advance, the algorithm is calledcontract. When
only i is known in advance, the algorithm is calledinterrupt-
ible. For the case where both are unknown, we will say that
the algorithm ismulti-interruptible, because it acts like mul-
tiple interruptible algorithms running in parallel.

Suppose we have a contract algorithmA, which we can run
on a machine withm processors. At some unknown deadline,
a solution to one ofn problem instances will be requested.
This setup requires a multi-interruptible algorithm, which we
can create by scheduling contracts in such a way that progress
is continually made on each problem instance. Upon inter-
ruption and query, the result returned is that of the longest
completed contract dedicated to the desired problem instance.

QB(A,X)(t,0)

QB(A,X)(t,1)

time t

Processor 0
Processor 1
Processor 2

...

...

Figure 1: Scheduling a contract algorithm on three processors
to create a two-problem multi-interruptible algorithm.

The multi-interruptible algorithm’s performance profile de-
pends onA’s profile and the schedule, in a way to be formal-
ized shortly. A particular schedule for the case ofm = 3 and
n = 2 is illustrated in Figure 1.

Formally, ascheduleis a tripleX = 〈{Pk}, {Ik}, {Lk}〉,
wherePk ∈ {0, . . . ,m − 1} is the processor of contractk,
Ik ∈ {0, . . . , n − 1} is the problem instance worked on by
contractk, andLk ∈ R+ is the length of contractk. The
contract index will be assumed to start at zero. A schedule
must satisfy some minor conditions, which require a couple
more definitions to state. First, letδ be defined as

δ(x, y) =
{

1 if x = y
0 otherwise .

Next, for a given scheduleX, thecompletion timeof thekth
contract is defined as

Gk =
k∑

i=0

δ(Pi, Pk)Li.

Note that althoughG depends onX, we omit the subscript.
Dependence on the schedule will be made implicit through-
out the paper for ease of notation. For every schedule, the
index ordering must correspond to the completion time or-
dering. Furthermore, no two contracts may complete at the
exact same time. The formal statement of these two condi-
tions is thatk < l is equivalent toGk < Gl for all k, l. Also,
a schedule must haveIk = k for 0 ≤ k ≤ n − 1. This
ensures that after timet = Gn−1, a solution is available for
each problem instance.

To compare schedules, we use a worst-case metric called
acceleration ratio. The acceleration ratio tells us how much
faster our constructed algorithm would need to run in order to
ensure the same quality as if the query time and problem were
known, and a dedicated processor was assigned to producing
a result. Intuitively, it measures how well a schedule handles
the uncertainty about the problem instance and interruption
time.

Before formally defining acceleration ratio, we must state
some more technical details of the problem and present some
more definitions. First, we take the view that when a contract
completes at timet, its solution is available to be returned
upon interruption at any timeτ > t. Second, we assume that

no interruptions occur until after timet = Gn−1, so that there
is always at least one result available.

The length of the longest contract for instancei to complete
before some timet > Gn−1 is

s(i, t) = max{Lk|Gk < t andIk = i}.

The performance profile for the multi-interruptible algorithm
B(A,X) is defined for alli and allt > Gn−1 as

QB(A,X)(t, i) = QA(s(i, t), i).

We can now give a precise definition of acceleration ratio.

Definition 1 Theacceleration ratio, Rm,n(X), is the small-
est constantr for whichQB(A,X)(t, i) ≥ QA(t/r, i) for all
contract algorithmsA, all problem instancesi, and all times
t > Gn−1.

In the next section, we provide a schedule that is optimal
within a restricted, though still interesting, class of schedules.
We state below in precise terms the properties that delineate
the class of schedules under consideration. Schedules having
the three properties below will be calledcyclicschedules.

The first property states that problem instances are com-
pleted in a round-robin manner. This seems sensible, as the
desired problem instance is unknown. However, we cannot
yet prove that for every non-problem-round-robin schedule,
there is an equally good problem-round-robin schedule.

Property 1 (Problem-round-robin) Ik = k mod n for all
k.

The next property states that the lengths of contracts for
each problem instance must increase with time. Given that
performance profiles are nondecreasing, it seems that it would
never be beneficial to use a schedule that doesn’t satisfy this
property. However, as with the first property, we cannot
yet prove this. One difficulty lies in having to satisfy the
problem-round-robin property mentioned above. We would
like to be able to “remove” useless contracts from a schedule,
but we have not found a way to do this while guaranteeing
that the resulting schedule will be problem-round-robin.

Property 2 (Length-increasing)For all k, l, if Ik = Il and
k < l, thenLk < Ll.

The final property states that processors return results in a
round-robin manner. This property does not play a part in our
lower bound derivation, but it is used in drawing a connection
to the robot search problem. We introduce it at this point only
for ease of exposition.

Property 3 (Processor-round-robin) Pk = k mod m for
all k.

We can prove a lemma that allows us to cast acceleration
ratio in simpler terms when we are considering only cyclic
schedules. In the proof, the following facts are established:
acceleration ratio can be stated without reference to perfor-
mance profiles; the only interruption times that need to be
considered are completion times; and upon interruption, the
result returned is from the contract with index exactlyn less
than index of the current contract.

Lemma 1 For all cyclic schedulesX,

Rm,n(X) = sup
k

Gk+n

Lk
.

Proof: We first argue that

Rm,n(X) = max
i

sup
t>Gn−1

t

s(i, t)
.

From the definitions given above, we have

QA(s(i, t), i) = QB(A,X)(t, i) ≥ QA(t/Rm,n(X), i),

for all i andt > Gn−1. Since this holds for any algorithm
A, we can suppose an algorithmA with performance profile
QA(t, i) = t for all i. Thuss(i, t) ≥ t/Rm,n(X), and hence
Rm,n(X) ≥ t/s(i, t) for all i andt > Gn−1. This implies
that

Rm,n(X) ≥ max
i

sup
t>Gn−1

t

s(i, t)
.

To show that equality holds, assume the contrary and derive
a contradiction with the fact thatRm,n(X) is defined as the
smallest constant enforcing the inequality betweenQB(A,X)

andQA.
Next we show that

max
i

sup
t>Gn−1

t

s(i, t)
= max

i
sup
k≥n

Gk

s(i, Gk)
.

For eachi, s(i, t) is left-continuous everywhere and piece-
wise constant, with the pieces delimited by time pointsGk.
So for all i, t/s(i, t) is left-continuous and piecewise linear
and increasing. Thus, the local maxima oft/s(i, t) occur at
the pointsGk; no other times may play a role in the supre-
mum.

Finally,

max
i

sup
k≥n

Gk

s(i, Gk)
= sup

k

Gk+n

Lk

follows from the problem-round-robin and length-increasing
properties, and the fact that no two contracts can finish at the
exact same time.�

To conclude this section, we define the minimal accelera-
tion ratio form processors andn problems to be

R∗
m,n = inf

X
Rm,n(X),

where the infimum is taken over the set of cyclic schedules.
In the following sections, we provide tight bounds for this
ratio.

2.2 An Exponential Schedule
A simple approach to scheduling contract algorithms is to
have the contract lengths increase exponentially. We consider
the schedule

E = 〈k mod m, k mod n, ((m + n)/n)k/m〉.

It is easily verified that this is a cyclic schedule. The follow-
ing theorem gives an expression for this schedule’s accelera-
tion ratio.

Theorem 1 The acceleration ratio for the exponential sched-
ule is

Rm,n(E) =
(n

m

) (
m + n

n

)m+n
m

.

Proof: Let b = ((m + n)/n)1/m. The following is true for
all k:

Gk+n

Lk
=

∑k+n
i=0 δ(Pi, Pk)Li

Lk

=
∑b(k+n)/mc

i=0 L(k+n) mod m+mi

Lk

=
∑b(k+n)/mc

i=0 b(k+n) mod m+mi

bk

=
b(k+n) mod m

∑b(k+n)/mc
i=0 bmi

bk

=
b(k+n) mod m

(
n
m

) (
bm(b(k+n)/mc+1) − 1

)
bk

=
(n

m

) bk+m+n − b(k+n) mod m

bk

=
(n

m

)
bm+n −

(n

m

)
b(k+n) mod m−k.

Note that this expression is nondecreasing withk. Thus

Rm,n(E) = lim
k→∞

(n

m

)
bm+n −

(n

m

)
b(k+n) mod m−k

=
(n

m

)
bm+n

=
(n

m

) (
m + n

n

)m+n
m

.

�
There are a few things to note about the ratio we just de-

rived. As the number of processors approaches infinity, it
tends to one. This is intuitive; by adding processors, we can
get arbitrarily close to the omniscient algorithm. As the num-
ber of problems approaches infinity, the ratio tends to infinity.
Finally, the ratio depends only on the ratio of problems to pro-
cessors, and not on the absolute numbers.

We turn now to showing that no cyclic schedule can
achieve a smaller ratio.

2.3 Lower Bound
We define a function to represent the sum of the lengths of all
the contracts finishing no later than contractk finishes:

Hk =
k∑

i=0

Li.

We can derive an inequality involving only the acceleration
ratio and{Hk}.

Lemma 2 For all cyclic schedulesX and allk,

Hk+m+n ≤ Rm,n(X)(Hk+m − Hk).

Proof: Consider the contract with indexk+m+n. We define
the setU such thatu ∈ U if and only if u is the index of the
last contract on some processor to finish no later than contract
k + m + n finishes. It follows thatHk+m+n =

∑
u∈U Gu.

Note thatU contains at mostm distinct integers, each be-
tween 1 andk + m + n. SinceG is increasing,∑

u∈U

Gu ≤
m∑

i=1

Gk+i+n.

Using Lemma 1, we get
m∑

i=1

Gk+i+n ≤ Rm,n(X)
m∑

i=1

Lk+i

= Rm,n(X) (Hk+m − Hk) .

�
To derive our lower bound, we also need the following

lemma, which is a generalization of the monotone conver-
gence principle. Its proof is deferred to the appendix.

Lemma 3 Letm andn be relatively prime, and let{pk} be a
sequence of real numbers that is bounded from below by 1. If
(pk · · · pk+m−1)n/m ≥ pk+m · · · pk+m+n−1 is satisfied for
all k, then{pk} converges.

We can now prove our lower bound theorem.

Theorem 2 The optimal acceleration ratio form processors
andn problems is

R∗
m,n =

(n

m

) (
m + n

n

)m+n
m

.

Proof: Consider an arbitrary cyclic scheduleX. From
Lemma 2, we have

Rm,n(X)(Hk+m − Hk) ≥ Hk+m+n,

and thus

Rm,n(X)
(

1 − Hk

Hk+m

)
≥ Hk+m+n

Hk+m

for all k.
Now let v = gcd(m,n). We definem′ = m/v andn′ =

n/v. Note thatm′ andn′ are relatively prime. Further, let
pk = Hv(k+1)/Hvk. Note thatpk > 1 for all k. Then for all
k,

Rm,n(X)
(

1 − 1
pk · · · pk+m′−1

)
= Rm,n(X)

(
1 −

Hvk · · ·Hv(k+m′−1)

Hv(k+1) · · ·Hv(k+m′)

)
= Rm,n(X)

(
1 − Hvk

Hvk+m

)
≥ Hvk+m+n

Hvk+m

=
Hv(k+m′+1) · · ·Hv(k+m′+n′)

Hv(k+m′) · · ·Hv(k+m′+n′−1)

= pk+m′ · · · pk+m′+n′−1.

This implies that for allk,

Rm,n(X) ≥ pk · · · pk+m′+n′−1

pk · · · pk+m′−1 − 1
.

There are two cases to consider.
Case 1: There exists somek′ such that

(pk′ · · · pk′+m′−1)
n
m ≤ pk′+m′ · · · pk′+m′+n′−1.

Then we have

Rm,n(X) ≥ (pk′ · · · pk′+m′−1)
m+n

m

pk′ · · · pk′+m′−1 − 1
.

We are interested in how smallRm,n(X) can be. Letd =
pk′ · · · pk′+m′−1. Then

Rm,n(X) ≥ d
m+n

m

d − 1
.

The valued = (m+n)/n minimizes the right-hand side over
the regiond > 1. Substituting into the previous inequality,
we find

Rm,n(X) ≥
(

m+n
n

)m+n
m(

m+n
n

)
− 1

=
(n

m

) (
m + n

n

)m+n
m

.

Case 2: The inequality

(pk · · · pk+m′−1)
n
m > pk+m′ · · · pk+m′+n′−1

holds for allk.
Becausen/m = n′/m′, we can apply Lemma 3 to show

that {pk} converges, and hencelimk→∞ pk is well defined.
Then we have

Rm,n(X) ≥ lim
k→∞

pk · · · pk+m′+n′−1

pk · · · pk+m′−1 − 1

=
limk→∞ pk · · · pk+m′+n′−1

limk→∞ pk · · · pk+m′−1 − 1

=
(limk→∞ pk)m′+n′

(limk→∞ pk)m′ − 1
.

We can proceed as in the previous case but withd =
limk→∞ pk. This gives

Rm,n(X) ≥ dm′+n′

dm′ − 1
.

As in the previous case, we find that

Rm,n(X) ≥
(n

m

) (
m + n

n

)m+n
m

.

Combining this inequality with Theorem 1, we get the desired
result.�

3 Multi-Robot Search on Rays
The results from the previous section can be directly ap-
plied to a formally similar problem involving multiple robots
searching for a goal. The problem is described as follows.
Initially, m robots stand at the intersection ofp rays (with
m < p). The robots, all moving in a continuous fashion and

G

Figure 2: The search problem with three robots and five rays.

at the same speed, search for a goal at an unknown location
on one of the rays (see Figure 2). The search ends as soon as
one of the robots finds the goal. Because there are not enough
robots to cover all of the rays, finding a good search strategy
is nontrivial. At this level of detail, the search problem may
seem very different from the contract scheduling problem.
Below we provide a more precise description of the search
problem and show how the contract scheduling results can be
applied.

A search is an infinite sequence of search extents, or return
trips departing from the origin. Formally, asearch strategyis
a tripleX = 〈{Pk}, {Ik}, {Lk}〉, wherePk ∈ {0, . . . ,m −
1} is the robot executing search extentk, Ik ∈ {0, . . . , p−1}
is the ray on which search extentk takes place, andLk ∈ R+

is the length of search extentk. By adding the same con-
ditions as in the contract scheduling case, we get an exact
correspondence between schedules and search strategies. A
cyclic search strategy is defined in the same way as a cyclic
schedule.

A natural metric for the efficiency of a search strategy is
the time-competitive ratio, the worst-case ratio of the total
time spent searching to the time required for a single robot to
traverse directly to the goal. We assume that the goal is not
considered discovered until a robot actually moves beyond it.
We assume also that the location of the goal is such that it
cannot be found on the first search extent on any of the rays.
This means that for each raya, we consider only locations
t ≥ La.

Before formally defining time-competitive ratio, we need
to introduce a new function and explain its use in the defini-
tion. Let us defines(a, t) to be the index of the first search ex-
tent that goes past pointt on raya. This means that if the goal
is located at pointt on raya, then it is found during search ex-
tents(a, t). The total search time up through extents(a, t) is
2Gs(a,t). (The factor of two results from search extents going
out and back on rays.) However, since the search ends as soon
as the goal is found, the last extent does not go to completion,
and thus we must subtract out2Ls(a,t) − t. This leads us to
the following formal definition for time-competitive ratio.

Definition 2 The time-competitive ratio,

Tm,p(X) = max
a

sup
t≥La

2Gs(a,t) − (2Ls(a,t) − t)
t

.

We can now give a formula for the relationship between
acceleration ratio and time-competitive ratio for cyclic sched-
ules and search strategies.

Theorem 3 For all cyclic search strategies (schedules)X,

Tm,p(X) = 2Rm,p−m(X ′) + 1,

whereX ′ is the same asX, but withIk = k mod (p − m).
Proof: Because of the length-increasing and problem-round-
robin properties, we know that the first search extent to pass
a point on a ray comesp extents after the last extent on that
same ray. Formally, we have that for alla and allt ≥ La,

Ls(a,t)−p ≤ t < Ls(a,t).

Thus we have

Tm,p(X) = max
a

sup
t≥La

2Gs(a,t) − (2Ls(a,t) − t)
t

= max
a

sup
t≥La

2Gs(a,t) − 2Ls(a,t)

t
+ 1

= max
a

sup
t≥La

2Gs(a,t) − 2Ls(a,t)

Ls(a,t)−p
+ 1.

The last equation above expresses the intuitive notion that the
worst place for the goal to be is just out of reach of one of the
robots.

Now we have

max
a

sup
t≥La

2Gs(a,t) − 2Ls(a,t)

Ls(a,t)−p
+ 1

= sup
k

2Gk+p − 2Lk+p

Lk
+ 1

= sup
k

2(Gk+p − Lk+p)
Lk

+ 1

= sup
k

2Gk+p−m

Lk
+ 1.

The last equation requires some explanation. Because of
the processor-round-robin property, the robot that performs
search extentk + p does so immediately after completing
search extentk + p − m. ThusGk+p = Gk+p−m + Lk+p.

Finally,

sup
k

2Gk+p−m

Lk
+ 1 = 2 sup

k

Gk+p−m

Lk
+ 1

= 2Rm,p−m(X ′) + 1.

�
We define the minimal time-competitive ratio form robots

andp rays as
T ∗m,p = inf

X
Tm,p(X),

where the infimum is taken over the set of cyclic search strate-
gies. This has the following immediate consequence.

Corollary 1 T ∗m,p = 2R∗
m,p−m + 1.

4 Conclusion
In this paper, we addressed two apparently different schedul-
ing problems, one involving contract algorithms, and the
other involving robots searching on rays. For the contract
scheduling problem, we provided a schedule and proved its
optimality among the class of cyclic schedules. We further
showed how contract scheduling results can be applied to the
robot search problem, thus unifying the two problems.

A natural direction for future research is to study less re-
stricted classes of schedules and search strategies. One in-
triguing question is whether lower acceleration ratios can be
achieved with schedules that are not problem-round-robin
or length-increasing. It would also be interesting to know
whether the contract scheduling and robot search problems
have similarities beyond those that result from using cyclic
schedules and search strategies.

Acknowledgments
We thank William Hesse and Lászĺo Babai for providing key
insights into the proof of Lemma 3. We also thank Theodore
Perkins and Charles Sutton for comments on earlier drafts.
Support for this work was provided in part by the NSF un-
der grant IIS-0219606 and by NASA under grants NAG-2-
1394 and NAG-2-1463. Daniel Bernstein was supported by a
NASA GSRP Fellowship. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not reflect the views of the NSF
or NASA.

A Proof of Lemma 3
This section contains a proof of the central lemma used for
our lower bound result. It is repeated below.

Lemma 3 Letm andn be relatively prime, and let{pk} be a
sequence of real numbers that is bounded from below by 1. If
(pk · · · pk+m−1)n/m ≥ pk+m · · · pk+m+n−1 is satisfied for
all k, then{pk} converges.

Proof: We first defineqk = ln pk. Since the convergence of
{qk} implies the convergence of{pk}, we can hereafter focus
our attention on{qk}.

We have

nqk + · · · + nqk+m−1 ≥ mqk+m + · · · + mqk+m+n−1.

Let us define

rk = nqk + · · ·+ nqk+m−1 −mqk+m − · · · −mqk+m+n−1.

Note thatrk ≥ 0 for all k. Now let

sk = nqk + 2nqk+1 + · · · + mnqk+m−1 + · · · +
2mqk+m+n−3 + mqk+m+n−2.

A simple calculation shows that for allk, rk = sk − sk+1.
Because therk are all nonnegative, we havesk ≥ sk+1 for all
k. Since{pk} is bounded below by 1,{qk} is bounded from
below, and hence{sk} is bounded below. By the monotone
convergence principle,{sk} converges.

Thus we have

v + εk = nqk + 2nqk+1 + · · · + mnqk+m−1 + · · · +
2mqk+m+n−3 + mqk+m+n−2,

wherev = limk→∞ sk and limk→∞ εk = 0. This equa-
tion is a linear nonhomogeneous difference equation[Mick-
ens, 1987]. The behavior of{qk} depends on the roots of the
characteristic polynomial,

f(x) = nxm+n−2 + 2nxm+n−3 + · · · +
mnxn−1 + · · · + 2mx + m.

We know that{qk} is bounded below, and since{sk} con-
verges,{qk} is also bounded above. Thus to demonstrate
convergence, it suffices to show thatf has no roots on the
unit circle.

Consider the polynomial

g(x) = (x − 1)2f(x) = nxm+n − (n + m)xn + m.

Clearlyz = 1 is a root ofg but not off . To show thatf has
no roots on the unit circle, we will show thatg has no roots
on the unit circle other thanz = 1.

We must show that for allz, if g(z) = 0 and|z| = 1, then
z = 1. If g(z) = 0, then

nzm+n + m = (n + m)zn.

Adding the assumption that|z| = 1, we get

n + m = |n + m||z|n = |(n + m)zn| = |nzm+n + m|.
In order for the first and last expressions to be equal, we must
havezm+n = 1. Substituting back into the original equality,
we get

n + m = (n + m)zn,

which implies thatzn = 1. It is a basic property of complex
numbers that ifzm+n = zn = 1 and gcd(m,n) = 1, then
z = 1.

We have thus shown that{qk} converges, and hence{pk}
converges.�

References
[Baeza-Yateset al., 1993] Ricardo Baeza-Yates, Joseph Cul-

berson, and Gregory Rawlins. Searching in the plane.In-
formation and Computation, 106:234–252, 1993.

[Bernsteinet al., 2002] Daniel S. Bernstein, Theodore J.
Perkins, Shlomo Zilberstein, and Lev Finkelstein.
Scheduling contract algorithms on multiple processors. In
Proceedings of the Eighteenth National Conference on Ar-
tificial Intelligence, 2002.

[Dean and Boddy, 1988] Thomas Dean and Mark Boddy. An
analysis of time-dependent planning. InProceedings of
the Seventh National Conference on Artificial Intelligence,
1988.

[Horvitz, 1987] Eric Horvitz. Reasoning about beliefs and
actions under computational resource constraints. InWork-
shop on Uncertainty in Artificial Intelligence, 1987.

[Horvitz, 2001] Eric Horvitz. Principles and applications
of continual computation.Artificial Intelligence Journal,
126(1-2):159–196, 2001.

[Kaoet al., 1998] Ming-Yang Kao, Yuan Ma, Michael
Sipser, and Yiqun Yin. Optimal constructions of hybrid
algorithms.Journal of Algorithms, 29:142–164, 1998.

[Mickens, 1987] Ronald E. Mickens.Difference Equations.
Van Nostrand Reinhold Company, Inc., New York, NY,
1987.

[Russell and Zilberstein, 1991] Stuart J. Russell and Shlomo
Zilberstein. Composing real-time systems. InProceedings
of the Twelth International Joint Conference on Artificial
Intelligence, 1991.

[Zilbersteinet al., 1999] Shlomo Zilberstein, François
Charpillet, and Philippe Chassaing. Real-time problem-
solving with contract algorithms. InProceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence, 1999.

