
Bounded Policy Iteration for Decentralized POMDPs

Daniel S. Bernstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
bern@cs.umass.edu

Eric A. Hansen
Dept. of CS and Engineering
Mississippi State University
Mississippi State, MS 39762
hansen@cse.msstate.edu

Shlomo Zilberstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
shlomo@cs.umass.edu

Abstract
We present a bounded policy iteration algorithm for
infinite-horizon decentralized POMDPs. Policies
are represented as joint stochastic finite-state con-
trollers, which consist of a local controller for each
agent. We also let a joint controller include a cor-
relation device that allows the agents to correlate
their behavior without exchanging information dur-
ing execution, and show that this leads to improved
performance. The algorithm uses a fixed amount
of memory, and each iteration is guaranteed to pro-
duce a controller with value at least as high as the
previous one for all possible initial state distribu-
tions. For the case of a single agent, the algorithm
reduces to Poupart and Boutilier’s bounded policy
iteration for POMDPs.

1 Introduction
The Markov decision process (MDP) framework has proven
to be useful for solving problems of sequential decision mak-
ing under uncertainty. For some problems, an agent must
base its decision on partial information about the system
state. In this case, it is often better to use the more gen-
eral partially observable Markov decision process (POMDP)
framework. Though POMDPs are difficult to solve in the
worst case, much progress has been made in the development
of practical dynamic programming algorithms [Smallwood
and Sondik, 1973; Cassandra et al., 1997; Hansen, 1998;
Poupart and Boutilier, 2003; Feng and Zilberstein, 2004].
Even more general are problems in which a team of deci-

sion makers, each with its own local observations, must act
together. Domains in which these types of problems arise
include networking, multi-robot coordination, e-commerce,
and space exploration systems. To model such problems, we
can use the decentralized partially observable Markov deci-
sion process (DEC-POMDP) framework. Though this model
has been recognized for decades (see, e.g., [Witsenhausen,
1971]), there has been little work on efficient algorithms for
it.
Recently, an exact dynamic programming algorithm was

proposed for DEC-POMDPs [Hansen et al., 2004]. Though
the algorithm was presented in the context of finite-horizon

problems, there are various ways to extend it to the infinite-
horizon case. However, in both cases, it suffers from the fact
that the memory requirements grow quickly with each itera-
tion, and in practice it has only been used to solve very small
problems. It is likely that any optimal algorithm would suf-
fer this problem, as finite-horizon DEC-POMDPs have been
shown to be NEXP-complete, even for just two agents [Bern-
stein et al., 2002].
In this paper, we present a memory-bounded dynamic

programming algorithm for infinite-horizon DEC-POMDPs.
The algorithm uses a stochastic finite-state controller to rep-
resent the joint policy for the agents. A straightforward ap-
proach is to use a set of independent local controllers, one for
each agent. We provide an example to illustrate that higher
value can be obtained through the use of shared randomness.
As such, we define a joint controller to be a set of local con-
trollers along with a correlation device. The correlation de-
vice is a finite-state machine that sends a signal to all of the
agents on each time step. Its behavior can be determined prior
to execution time, and thus it does not require that the agents
exchange information after receiving local observations.
Our algorithm generalizes bounded policy iteration for

POMDPs [Poupart and Boutilier, 2003] to the multi-agent
case. On each iteration, a node is chosen from one of the
local controllers or the correlation device, and its parameters
are updated through the solution of a linear program. The
generalization has the same theoretical guarantees as in the
POMDP case. Namely, an iteration is guaranteed to produce
a new controller with value at least as high for every possible
initial state distribution.
In our experiments, we applied our algorithm to idealized

networking and robot navigation problems. Both problems
are too large for exact dynamic programming, but could be
handled by our approximation algorithm. We found that the
addition of a correlation device gives rise to better solutions.
In addition, larger controllers most often lead to better solu-
tions.
A number of approximation algorithms have been devel-

oped previously for DEC-POMDPs [Peshkin et al., 2000;
Nair et al., 2003; Emery-Montemerlo et al., 2004]. How-
ever, the previous algorithms do not guarantee both bounded
memory usage and monotonic value improvement for all ini-
tial state distributions. Furthermore, the use of correlated
stochastic policies in the DEC-POMDP context is novel. The

importance of correlation has been recognized in the game
theory community [Aumann, 1974], but there has been little
work on algorithms for finding correlated policies.

2 Background
In this section, we present our formal framework for
multi-agent decision making. A decentralized partially-
observable Markov decision process (DEC-POMDP) is a tu-
ple 〈I, S, {Ai}, {Oi}, P, R〉, where

• I is a finite set of agents indexed 1, . . . , n

• S is a finite set of states
• Ai is a finite set of actions available to agent i and

!A = ×i∈IAi is the set of joint actions, where !a =
〈a1, . . . , an〉 denotes a joint action

• Oi is a finite set of observations for agent i and !O =
×i∈IOi is the set of joint observations, where !o =
〈o1, . . . , on〉 denotes a joint observation

• P is a set of Markovian state transition and observation
probabilities, where P (s′,!o|s,!a) denotes the probability
that taking joint action !a in state s results in a transition
to state s′ and joint observation !o

• R : S × !A → % is a reward function
In this paper, we consider the case in which the process

unfolds over an infinite sequence of stages. At each stage, all
agents simultaneously select an action, and each receives the
global reward and a local observation. The objective of the
agents is to maximize the expected discounted sum of rewards
received. We denote the discount factor γ and require that
0 ≤ γ < 1.

3 Finite-State Controllers
Our algorithm uses stochastic finite-state controllers to rep-
resent policies. In this section, we first define a type of con-
troller in which the agents act independently. We then provide
an example demonstrating the utility of correlation, and show
how to extend the definition of a joint controller to allow for
correlation among agents.

3.1 Local Finite-State Controllers
In a DEC-POMDP, each agent must select an action based on
its history of local observations. Finite-state controllers pro-
vide a way to represent local policies using a finite amount
of memory. The state of the controller is based on the ob-
servation sequence, and the agent’s actions are based on the
state of its controller. We allow for stochastic transitions
and stochastic action selection, as this can help to make
up for limited memory. This type of controller has been
used previously in the single-agent context [Platzman, 1980;
Meuleau et al., 1999; Poupart and Boutilier, 2003].
Formally, we define a local finite-state controller for agent

i to be a tuple 〈Qi,ψi, ηi〉, where Qi is a finite set of con-
troller nodes, ψi : Qi → ∆Ai is an action selection function,
and ηi : Qi × Ai × Oi → ∆Qi is a transition function. The
functions ψi and ηi parameterize the conditional distribution
P (ai, q′i|qi, oi).

s
2

s
1

+R

+R

–R–R

AA

BB

AB

BA

BB

AA

AB

BA

Figure 1: This figure shows a DEC-POMDP for which the
optimal memoryless joint policy requires correlation.

Taken together, the agents’ controllers determine the con-
ditional distribution P (!a, !q ′|!q,!o). This is denoted an inde-
pendent joint controller. In the following subsection, we
show that independence can be limiting.

3.2 The Utility of Correlation
The joint controllers described above do not allow the agents
to correlate their behavior via a shared source of randomness.
We will use a simple example to illustrate the utility of cor-
relation in partially observable domains where agents have
limited memory. This example generalizes the one given in
[Singh et al., 1994] to illustrate the utility of stochastic poli-
cies in single-agent partially observable settings.
Consider the DEC-POMDP shown in Figure 1. This prob-

lem has two states, two agents, and two actions per agent (A
and B). The agents each have only one observation, and thus
cannot distinguish between the two states. For this example,
we will consider only memoryless policies.
Suppose that the agents can independently randomize their

behavior using distributions P (a1) and P (a2), and consider
the policy in which each agent chooses either A or B accord-
ing to a uniform distribution. This yields an expected reward
of −R

2 per time step, which results in an expected long-term
reward of −R

2(1−γ) . It is straightforward to show that no in-
dependent policy yields higher reward than this one for all
states.
Next, let us consider the larger class of policies in which

the agents may act in a correlated fashion. In other words, we
consider all joint distributions P (a1, a2). Consider the policy
that assigns probability 1

2 to the pair AA and probability 1
2 to

the pair BB. This yields an average reward of 0 at each time
step and thus an expected long-term reward of 0. The dif-
ference between the rewards obtained by the independent and
correlated policies can be made arbitrarily large by increasing
R.

3.3 Correlated Joint Controllers
In the previous subsection, we established that correlation can
be useful in the face of limited memory. In this subsection, we
extend our definition of a joint controller to allow for correla-
tion among the agents. To do this, we introduce an additional
finite-state machine, called a correlation device, that provides

Variables: ε, x(c, ai), x(c, ai, oi, q′i)
Objective: Maximize ε
Improvement constraints:

∀s, q−i, c V (s, !q, c) + ε ≤
∑

"a

P (a−i|c, q−i)[x(c, ai)R(s,!a) +

γ
∑

s′,"o,"q ′,c′

x(c, ai, oi, q
′
i)P (q′−i|c, q−i, a−i, o−i)P (s′,!o|s,!a)P (c′|c)V (s′, !q ′, c′)]

Probability constraints:
∀c

∑

ai

x(c, ai) = 1, ∀c, ai, oi

∑

q′
i

x(c, ai, oi, q
′
i) = x(c, ai)

∀c, ai x(c, ai) ≥ 0, ∀c, ai, oi, q
′
i x(c, ai, oi, q

′
i) ≥ 0

Table 1: The linear program used to find new parameters for agent i’s node qi. The variable x(c, ai) represents P (ai|qi, c), and
the variable x(c, ai, oi, q′i) represents P (ai, q′i|c, qi, oi).

extra signals to the agents at each time step. The device op-
erates independently of the DEC-POMDP process, and thus
does not provide the agents with information about the other
agents’ observations. In fact, the random numbers necessary
for its operation could be determined prior to execution time.
Formally, a correlation device is a tuple 〈C,ψ〉, where C

is a set of states and ψ : C → ∆C is a state transition func-
tion. At each step, the device undergoes a transition, and each
agent observes its state.
We must modify the definition of a local controller to

take the state of the correlation device as input. Now, a
local controller for agent i is a conditional distribution of
the form P (ai, q′i|c, qi, oi). The correlation device together
with the local controllers form a joint conditional distribu-
tion P (c′,!a, !q ′|c, !q,!o). We will refer to this as a correlated
joint controller. Note that a correlated joint controller with
|C| = 1 is effectively an independent joint controller.
The value function for a correlated joint controller can be

computed by solving the following system of linear equa-
tions, one for each s ∈ S, !q ∈ !Q, and c ∈ C:

V (s, !q, c) =
∑

"a

P (!a|c, !q)[R(s,!a) +

γ
∑

s′,"o,"q ′,c′

P (s′,!o|s,!a)P (!q ′|c, !q,!a,!o)

· P (c′|c)V (s′, !q ′, c′)].

We sometimes refer to the value of the controller for an initial
state distribution. For a distribution δ, this is defined as

V (δ) = max
"q,c

∑

s

δ(s)V (s, !q, c).

It is assumed that, given an initial state distribution, the con-
troller is started in the joint node which maximizes value from
that distribution.

4 Bounded Policy Iteration
We now describe our bounded policy iteration algorithm for
improving correlated joint controllers. To improve a corre-

lated joint controller, we can either change the correlation de-
vice or one of the local controllers. Both improvements can
be done via a bounded backup, which involves solving a lin-
ear program. Following an improvement, the controller can
be reevaluated through the solution of a set of linear equa-
tions. Below, we describe how a bounded backup works, and
prove that it always produces a new controller with value at
least as high for all initial state distributions.

4.1 Improving a Local Controller
We first describe how to improve a local controller. To do
this, we choose an agent i, along with a node qi. Then,
we search for new parameters for the conditional distribution
P (ai, q′i|c, qi, oi).
The search for new parameters works as follows. We as-

sume that the original controller will be used from the second
step on, and try to replace the parameters for qi with better
ones for just the first step. In other words, we look for the
best parameters satisfying the following inequality:

V (s, !q, c) ≤
∑

"a

P (!a|c, !q)[R(s, a) +

γ
∑

s′,"o,"q ′,c′

P (!q ′|c, !q,!a,!o)P (s′,!o|s,!a)

· P (c′|c)V (s′, !q ′, c)]

for all s ∈ S, q−i ∈ Q−i, and c ∈ C. Note that the inequality
is always satisfied by the original parameters. However, it is
often possible to get an improvement.
Finding new parameters can be done using linear program-

ming, as shown in Table 1. We note that this linear program is
the same as that of Poupart and Boutilier [2003] for POMDPs,
with the nodes of the other local controllers and correlation
device considered part of the hidden state. Its size is polyno-
mial in the sizes of the DEC-POMDP and the joint controller,
but exponential in the number of agents.

4.2 Improving the Correlation Device
The procedure for improving the correlation device is very
similar to the procedure for improving a local controller. We

Variables: ε, x(c′)
Objective: Maximize ε
Improvement constraints:

∀s, !q V (s, !q, c) + ε ≤
∑

"a

P (!a|c, !q)[R(s,!a) + γ
∑

s′,"o,"q ′,c′

P (!q ′|c, !q,!a,!o)P (s′,!o|s,!a)x(c′)V (s′, !q ′, c′)]

Probability constraints:
∀c′

∑

c′

x(c′) = 1, ∀c′ x(c′) ≥ 0

Table 2: The linear program used to find new parameters for the correlation device node c. The variable x(c′) represents
P (c′|c).

first choose a device node c, and consider changing its param-
eters for just the first step. We look for the best parameters
satisfying the following inequality:

V (s, !q, c) ≤
∑

"a

P (!a|c, !q)[R(s, a) +

γ
∑

s′,"o,"q ′,c

P (!q ′|c, !q,!a,!o)P (s′,!o|s,!a)

· P (c′|c)V (s′, !q ′, c′)]

for all s ∈ S and !q ∈ !Q.
As in the previous case, the search for parameters can

be formulated as a linear program. This is shown in Table
2. This linear program is also polynomial in the sizes of
the DEC-POMDP and joint controller, but exponential in the
number of agents.

4.3 Monotonic Improvement
We have the following theorem, which says that performing
either of the two updates cannot lead to a decrease in value
for any initial state distribution.
Theorem 1 Performing a bounded backup on a local con-
troller or the correlation device produces a correlated joint
controller with value at least as high for every initial state
distribution.
Proof. Consider the case in which some node qi of agent
i’s local controller is changed. Let Vo be the value function
for the original controller, and let Vn be the value function
for the new controller. Recall that the new parameters for
P (ai, q′i|c, qi, oi) must satisfy the following inequality for all
s ∈ S, q−i ∈ Q−i, and c ∈ C:

Vo(s, !q, c) ≤
∑

"a

P (!a|c, !q)[R(s, a) +

γ
∑

s′,"o,"q ′,c′

P (!q ′|c, !q,!a,!o)P (s′,!o|s,!a)

· P (c′|c)Vo(s′, !q ′, c)]

Notice that the formula on the right is the Bellman opera-
tor for the new controller, applied to the old value function.
Denoting this operator Tn, the system of inequalities implies
that TnVo ≥ Vo. By monotonicity, we have that for all k ≥ 0,

T k+1
n (Vo) ≥ T k

n (Vo). Since Vn = limk→∞ T k
n (Vo), we have

that Vn ≥ Vo. Thus, the value of the new controller is higher
than that of the original controller for all possible initial state
distributions.
The argument for changing nodes of the correlation device

is almost identical to the one given above. !

4.4 Local Optima
Although bounded backups give nondecreasing values for all
initial state distributions, convergence to optimality is not
guaranteed. There are a couple of factors contributing to this.
First is the fact that only one local controller, or the corre-
lation device, is improved at once. Thus, it is possible for
the algorithm to get stuck in a suboptimal Nash equilibrium
in which each of the controllers and the correlation device
is optimal with the others held fixed. It is an open problem
whether there is a linear program for updating more than one
controller at a time.
Of course, a bounded backup does not find the optimal pa-

rameters for one controller with the others held fixed. Thus,
a sequence of such updates may converge to a local optimum
without even reaching a Nash equilibrium. For POMDPs,
Poupart and Boutilier [2003] provide a characterization of
these local optima, and a heuristic for escaping from them.
This could be applied in our case, but it would not address
the suboptimal Nash equilibrium problem.

5 Experiments
We implemented bounded policy iteration and tested it on two
different problems, an idealized networking scenario and a
problem of navigating on a grid. Below, we describe our ex-
perimental methodology, the specifics of the problems, and
our results.

5.1 Experimental Setup
Although our algorithm guarantees nondecreasing value for
all initial state distributions, we chose a specific distribution
to focus on for each problem. Experiments with different dis-
tributions yielded qualitatively similar results.
We define a trial run of the algorithm as follows. At the

start of a trial run, a size is chosen for each of the local con-
trollers and the correlation device. The action selection and
transition functions are initialized to be deterministic, with

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7

Size of Local Controllers

V
a
lu

e

Independent

Correlated

(a) (b)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7

Size of Local Controllers

V
a
lu

e

Independent

Correlated

Figure 2: Average value per trial run plotted against the size of the local controllers, for (a) the multi-access broadcast channel
problem, and (b) the robot navigation problem. The solid line represents independent controllers (a correlation device with one
node), and the dotted line represents a joint controller including a two-node correlation device.

the outcomes drawn according to a uniform distribution. A
step consists of choosing a node uniformly at random from
the correlation device or one of the local controllers, and per-
forming a bounded backup on that node. After 50 steps, the
run is considered over. In practice, we found that values usu-
ally stabilized within 15 steps.
We varied the sizes of the local controllers from 1 to 7 (the

agents’ controllers were always the same sizes as each other),
and we varied the size of the correlation device from 1 to 2.
Thus, the number of joint nodes ranged from 1 to 98. Memory
limitations prevented us from using larger controllers. For
each combination of sizes, we performed 20 trial runs. We
recorded the highest value obtained across all runs, as well as
the average value over all runs.

5.2 Multi-Access Broadcast Channel
Our first domain is an idealized model of control of a multi-
access broadcast channel [Ooi and Wornell, 1996]. In this
problem, nodes need to broadcast messages to each other over
a channel. Only one node may broadcast at a time, otherwise
a collision occurs. The nodes share the common goal of max-
imizing the throughput of the channel.
At the start of each time step, each node decides whether or

not to send a message. The nodes receive a reward of 1 when
a message is successfully broadcast and a reward of 0 other-
wise. At the end of the time step, each node observes its own
buffer, and whether the previous step contained a collision, a
successful broadcast, or nothing attempted.
The message buffer for each agent has space for only one

message. If a node is unable to broadcast a message, the mes-
sage remains in the buffer for the next time step. If a node i
is able to send its message, the probability that its buffer will
fill up on the next step is pi. Our problem has two nodes,
with p1 = 0.9 and p2 = 0.1. There are 4 states, 2 actions
per agent, and 5 observations per agent. The discount fac-
tor is 0.9. The start state distribution is deterministic, with

the buffer for agent 1 containing a message and the buffer for
agent 2 being empty.

5.3 Meeting on a Grid
In this problem, we have two robots navigating on a two-
by-two grid with no obstacles. Each robot can only sense
whether there are walls to its left or right, and the goal is
for the robots to spend as much time as possible on the same
square. The actions are to move up, down, left, or right, or
to stay on the same square. When a robot attempts to move
to an open square, it only goes in the intended direction with
probability 0.6, otherwise it either goes in another direction
or stays in the same square. Any move into a wall results in
staying in the same square. The robots do not interfere with
each other and cannot sense each other.
This problem has 16 states, since each robot can be in any

of 4 squares at any time. Each robot has 4 observations, since
it has a bit for sensing a wall to its left or right. The total
number of actions for each agent is 5. The reward is 1 when
the agents share a square, and 0 otherwise, and the discount
factor is 0.9. The initial state distribution is deterministic,
placing both robots in the upper left corner of the grid.

5.4 Results
For each combination of controller sizes, we looked at the
best solutions found across all trial runs. The values for these
solutions were the same for all controller sizes except for the
few smallest.
It was more instructive to compare average values over all

trial runs. Figure 2 shows graphs of average values plotted
against controller size. We found that, for the most part, the
average value increases when we increase the size of the cor-
relation device from one node to two nodes (essentially mov-
ing from independent to correlated).
For small controllers, the average value tends to increase

with controller size. However, as the controllers get larger,

there is no clear trend. This behavior is somewhat intuitive,
given the way the algorithm works. For new node param-
eters to be acceptable, they must not decrease the value for
any combination of states, nodes for the other controllers, and
nodes for the correlation device. This becomes more difficult
as controllers get larger, and thus it is easier to get stuck in a
local optimum.
Improving multiple controllers at once would help to alle-

viate the aforementioned problem. As mentioned earlier, we
do not currently have a way to do this using linear program-
ming, and it thus remains an interesting topic for future work.

6 Conclusion and Future Work
We have presented a bounded policy iteration algorithm for
DEC-POMDPs. Besides the fact that it uses finite memory,
the algorithm has a number of other appealing theoretical
guarantees. First, by using correlated joint controllers, we can
achieve higher value than with independent joint controllers
of the same size. Second, assuming a constant number of
agents, each iteration of the algorithm completes in polyno-
mial time. Finally, monotonic value improvement is guaran-
teed for all states on each iteration.
Our empirical results are encouraging. By bounding the

size of the controller, we are able to achieve a tradeoff be-
tween computational complexity and the quality of the ap-
proximation. Up to a point, increasing the sizes of the local
controllers leads to higher values on average. After this point,
average values tend to level off or decrease. Increasing the
size of the correlation device leads to higher value, which is
consistent with our theoretical results.
For future work, there are many more experiments that can

be done with bounded policy iteration. For instance, in mov-
ing to a larger controller, we could use the previous controller
as a starting point, rather than starting over with a random
controller. Poupart and Boutilier’s [2003] escape technique
could be useful here. Also, rather than choosing nodes uni-
formly at random for updating, we could develop a principled
way to order the nodes.
We are also looking into ways of extending the algorithm

to handle problems with large numbers of agents. In many
problems, each agent interacts with only a small subset of the
other agents. This additional structure can be exploited to
reduce the size of the problem representation, and it should
be possible to extend our algorithm to take advantage of these
local interactions.
Finally, it would be interesting to extend bounded policy

iteration to the noncooperative setting, where each agent has
a separate reward function. One approach is to require that
a change in parameters does not lead to a decrease in value
for any agent. Another approach is to consider just the value
function for the agent whose node is being updated. This
should move the joint controller towards a Nash equilibrium.

7 Acknowledgments
We thank Martin Allen and Özgür Şimşek for helpful discus-
sions of this work. This work was supported in part by the
National Science Foundation under grants IIS-0219606 and
IIS-9984952, by NASA under cooperative agreement NCC

2-1311, and by the Air Force Office of Scientific Research
under grant F49620-03-1-0090.

References
[Aumann, 1974] Robert J. Aumann. Subjectivity and correlation
in randomized strategies. Journal of Mathematical Economics,
1:67–96, 1974.

[Bernstein et al., 2002] Daniel S. Bernstein, Robert Givan, Neil Im-
merman, and Shlomo Zilberstein. The complexity of decentral-
ized control of Markov decision processes. Mathematics of Op-
erations Research, 27(4):819–840, 2002.

[Cassandra et al., 1997] Anthony Cassandra, Michael L. Littman,
and Nevin L. Zhang. Incremental pruning: A simple, fast, exact
method for partially observable Markov decision processes. In
Proceedings of UAI, pages 54–61, 1997.

[Emery-Montemerlo et al., 2004] Rosemary Emery-Montemerlo,
Geoff Gordon, Jeff Schnieder, and Sebastian Thrun. Approx-
imate solutions for partially observable stochastic games with
common payoffs. In Proceedings of AAMAS, 2004.

[Feng and Zilberstein, 2004] Zhengzhu Feng and Shlomo Zilber-
stein. Region-Based incremental pruning for POMDPs. In Pro-
ceedings of UAI, pages 146–153, 2004.

[Hansen et al., 2004] Eric A. Hansen, Daniel S. Bernstein, and
Shlomo Zilberstein. Dynamic programming for partially observ-
able stochastic games. In Proceedings of AAAI, pages 709–715,
2004.

[Hansen, 1998] Eric Hansen. Solving POMDPs by searching in
policy space. In Proceedings of UAI, pages 211–219, 1998.

[Meuleau et al., 1999] Nicolas Meuleau, Kee-Eung Kim, Leslie
Kaelbling, and Anthony R. Cassandra. Solving POMDPs by
searching the space of finite policies. In Proceedings of UAI,
pages 417–426, 1999.

[Nair et al., 2003] Ranjit Nair, David Pynadath, Makoto Yokoo,
Milind Tambe, and Stacy Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for multiagent
settings. In Proceedings of IJCAI, 2003.

[Ooi and Wornell, 1996] James M. Ooi and Gregory W. Wornell.
Decentralized control of a multiple access broadcast channel:
Performance bounds. In Proceedings of the 35th Conference on
Decision and Control, pages 293–298, 1996.

[Peshkin et al., 2000] Leonid Peshkin, Kee-Eung Kim, Nicolas
Meuleau, and Leslie Pack Kaelbling. Learning to cooperate via
policy search. In Proceedings of UAI, pages 489–496, 2000.

[Platzman, 1980] Loren K. Platzman. A feasible computational
approach to infinite-horizon partially-observed Markov decision
processes. Technical report, Georgia Institute of Technology,
1980. Reprinted inWorking Notes of the 1998 AAAI Fall Sympo-
sium on Planning Using Partially Observable Markov Decision
Processes.

[Poupart and Boutilier, 2003] Pascal Poupart and Craig Boutilier.
Bounded finite state controllers. In Proceedings of NIPS, 2003.

[Singh et al., 1994] Satinder P. Singh, Tommi Jaakkola, and
Michael I. Jordan. Learning without state-estimation in par-
tially observable markovian decision processes. In Proceedings
of ICML, 1994.

[Smallwood and Sondik, 1973] Richard D. Smallwood and Ed-
ward J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research,
21(5):1071–1088, 1973.

[Witsenhausen, 1971] Hans S. Witsenhausen. Separation of esti-
mation and control for discrete time systems. Proceedings of the
IEEE, 59(11):1557–1566, 1971.

