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ABSTRACT
Representing agent policies compactly is essential for improving
the scalability of multi-agent planning algorithms. In this paper,
we focus on developing a pruning technique that allows us to merge
certain observations within agent policies, while minimizing loss of
value. This is particularly important for solving finite-horizon de-
centralized POMDPs, where agent policies are represented as trees,
and where the size of policy trees grows exponentially with the
number of observations. We introduce a value-based observation
compression technique that prunes the least valuable observations
while maintaining an error bound on the value lost as a result of
pruning. We analyze the characteristics of this pruning strategy and
show empirically that it is effective. Thus, we use compact policies
to obtain significantly higher values compared with the best exist-
ing DEC-POMDP algorithm.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Experimentation, Performance

Keywords
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1. INTRODUCTION
Policy trees are often used to represent conditional plans for

agents operating in partially observable environments. Each node
of a policy tree determines the next action to be taken and a tran-
sition to a sub-tree that depends on the observation made by the
agent. This representation has proved useful in partially-observable
MDPs and their multi-agent counterparts (DEC-POMDPs) [5, 11,
14]. DEC-POMDPs offer a rich language to represent multi-agent
planning problems in stochastic domains, where each agent has
different partial information about the domain (determined by its
observations). They have been used to model multi-robot coordi-
nation problems, multi-agent communication, and distributed load-
balancing problems. A detailed survey of existing algorithms and
applications of DEC-POMDPs is available in [10]. We focus in this
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paper on one of the key bottlenecks in DEC-POMDP algorithms –
the extremely large space of joint policies. Even with small prob-
lems, it is not feasible to explore the entire space of joint policies
that agents may follow. The memory requirements of this represen-
tation have limited the scalability of solution techniques for decen-
tralized POMDPs.

Several pruning methods have been introduced to address this
difficulty. One approach involves pruning of dominated strategies
that are provably useless [5]. It allows a large number of policies to
be excluded from consideration without compromising optimality.
Despite the savings, this exact algorithm runs out of memory after
just a few iterations. More aggressive pruning could improve scal-
ability, but produces non-optimal plans. Amato et al. adapted an
epsilon-pruning technique that maintains an error bound on the loss
of value resulting from the pruning process for DEC-POMDPs [1].
But even with such pruning techniques, it is difficult to solve prob-
lems that involve a large number of possible observations, because
the number of joint policies grows exponentially with the number
of observations.

Some effective heuristic methods have been developed to select
a bounded set of policies in each step, and to use this selection pro-
cess to construct policies for the next step [14, 11]. Among these
approaches, the MBDP algorithm has been particularly success-
ful, making it possible to solve problems with very large planning
horizons for the first time [11]. We present a disciplined approach
for reducing the number of observations used in policy trees, and
demonstrate our approach on MBDP. The resulting planner extends
previous work by Seuken and Zilberstein, which introduced a tech-
nique for ignoring observations that are less probable [11]. Unlike
that heuristic method, our approach is guided by the value lost as a
result of merging certain sets of observations.

The rest of the paper is organized as follows. Section 2 defines
the decentralized POMDP model and describes the key existing so-
lution techniques. In Section 3 we describe our algorithm, which is
based on MBDP with the added observation compression method.
We show how to minimize the loss of value that results from merg-
ing observations. Section 4 analyzes the characteristics of the new
algorithm and establishes an error bound on the solution it returns.
In Section 5 we report the results of an empirical evaluation, show-
ing significant improvement in solution quality compared with the
best existing method. The value-driven approach and the associ-
ated error bound help improve the performance and robustness of
DEC-POMDP solution techniques. We conclude with a discussion
of the contributions of the work and future research directions that
can exploit value-based observation compression.



2. DECENTRALIZED POMDPS
We study the observation compression problem within the frame-

work of decentralized POMDPs [2]. While the results we present
are valid for any number of agents, for the sake of clarity, we for-
malize the problem for two agents. A two agent DEC-POMDP is
defined by the following tuple:

��� , the set of domain states�����	��
�� , the initial belief state (state distribution)���� and 	� , the sets of actions for each agent ( ��� �� � de-
notes an action of agent � )��� , the transition model: ��������� � � � �!� � �#" is the probability of
transitioning to state ��� given the previous state was � and
actions � � and � � were taken by agents $ and % respectively��& , the reward function: &'��� � � ��� � ��" is the immediate reward
for taking actions � � and � � in state �

��( � and ( � , the sets of observations for each agent��) , the observation probabilities: )��+*,���-*.� � ���/� � ��� � ��" , the
probability of agents $ and % seeing observations * � and * �
respectively when agent $ takes action � � and agent % takes
action � � , causing a state transition to ���

��0 , the horizon, or number of steps, in the problem

At each step, each agent chooses an action based on its own ac-
tion and observation history. The goal is to create joint plans that
maximize the cumulative reward over some finite horizon.

We refer to the mapping from an agent’s history to an action as a
policy, and use trees to represent such policies. For example, Figure
1(a) shows two policies, P � and P � . With policy P � , the agent first
takes action A � and then, depending on the observation, moves to
a subtree that determines the next action.

In the case of single-agent POMDPs, it is possible to adopt an
alternate view of a policy and represent it as a mapping from a
belief state to an action. Each agent can maintain a belief state
that can be revised after each action using standard Bayesian up-
dating, based on the action taken and observation that the agent
receives. The agent can then select the best action, given this be-
lief state. Maintaining belief states in the multi-agent case is much
more complicated, because each belief state depends on the history
of actions and observations as well as the agent’s beliefs regard-
ing the policies of the other agents. Gmytrasiewicz and Doshi have
developed a multi-agent planning approach that is based on main-
taining nested belief states [4]. Belief states are nested because
each agent’s beliefs include the beliefs of other agents, which in
turn include the belief of this agent.

Action policies that are based on histories of observations allow
us to avoid the complexity associated with nested beliefs. In our
case, an agent’s policy is expressed in the form of a tree. Each
node of the tree corresponds to an action, and each branch to an
observation. The root of the tree corresponds to the first action, and
the tree is traversed downwards. Note that the number of possible
policy trees is of the order )��1� '�32 452 67" per agent. This explains
why effective pruning is crucial in DEC-POMDP algorithms.

Certain types of pruning that have been developed for single-
agent POMDPs can be generalized to the multi-agent case. In
particular, there are a number of efficient point-based algorithms
for POMDPs that evaluate different policies at select points in the
belief space [8, 13, 15, 12]. In the DEC-POMDP case, the poli-
cies of the other agents determine both the value and the likeli-
hood of each belief point, a fact that complicates the generalization
of these POMDP algorithms. Other POMDP techniques involve

Figure 1: (a) Two policy trees. (b) The result of a full-backup of
the policy trees shown in part (a) is 24 new trees. Only the trees
rooted in  � are shown. (c) The result of running CompressObs
and then a partial backup. Here 89�;: )	���=< % and subpolicies
of * � and *.> are forced to be the same.

value-directed compression of the POMDP state space [9]. Hoey
and Poupart aggregate observations in a one-dimensional observa-
tion space, and extend their technique by sampling belief points in
a multi-dimensional observation space [6]. Although this technique
is applicable to POMDPs, it is not clear how to extend the technique
and how to sample belief points of DEC-POMDP problems.

Some useful pruning techniques for DEC-POMDPs have been
developed already. Hansen et al. have developed an optimal dy-
namic programming algorithm that prunes many useless policies [5].
During the planning process, each agent must choose policies that
have high value based on any policy the other agent may use. To
formalize this, they define a belief state, �.���.�-? " , for an agent as the
probability that the system state is � and the other agent will use
policy ? . The value of an agent’s belief is then:

@ �+�#"A<CBEDGFH
I
J1K L

@ �NMO�-?;�P�G"��.���.�Q? "

which represents the maximum the agent can achieve given its set
of policies weighted by the probability that the true state is � and the
other agent uses policy ? . Because the probability distribution of
the underlying state depends on the policies of the other agent and
we assume no prior knowledge about the other agent, all policies
that may contribute to this maximum must be retained. Policies
that do not contribute to the maximum may be removed, or pruned.
While this method guarantees that an optimal tree will be found, the
set of trees may be very large and many unnecessary trees may be
generated along the way. Because of this, it requires an intractable
amount of memory for any but the smallest problems.

Figure 1(b) shows the result of a full-backup where pruning did
not eliminate any policies. Policy Trees P � and P � are represented
within the squares. A full backup will generate every possible ac-



Algorithm 1: The MBDP-OC Algorithm (IMBDP [9] with
Value-Based Observation Compression)
beginRTS#UWV�XQY1Y!Z=[

max number of trees before backupRTS#U�\^]!Z_[
max number of observations for backup0 [

horizon of the DEC-POMDP` [
pre-compute heuristic policies for each a � `b � K � � bdc K � [ initialize all 1-step policy trees � �P c [ the set of actions available to each agent

for t=1 to T do
choose a � ` and generate belief state �
for each agent : dobfe K gih � [kj.l

for each action � �9 e dom [
CompressObs( : �1�n� � � b e K g � bpo e K g � RTS#U�\^]!Z

)b e K g+h � [ b e K g+h �Pq PartBackup(
b e K g � � � m )

�Ar#s � K g+h ���P�Ar#s c K g+h � [ empty
for k=1 to

RtS#UWV�X-Y1Y!Z
do

choose a � ` and generate belief state �
foreach ? � � b � K g+h ���-? c � b c K g+h � do

evaluate each pair �+? � �-? c " wrt �
add best policy trees to �ur#s � K g+h � and �ArGs c K g+h �
delete these policy trees from

b � K gih � and
b c K gih �b � K g+h �v� b c K g+h � [ �Ar#s � K g+h �!�v�Ar#s c K g+h �

select best joint policy tree w�x from
j b � K x � byc K x l

return w x
end

tion and observation sequence. Note that only the new policies
rooted in action �� are shown. In this case, with 3 possible obser-
vations, 3 actions, and two previous policies, a full backup would
generate �/z " % > or 24 new policies.

Amato et al. [1] prune additional policy trees through epsilon
pruning. At each step, a full backup is performed just as in [5].
Then a set of policies called the undominated set is iteratively con-
structed. A policy is added to the undominated set if there exists
a belief state as well as a policy for the other agents, such that the
new policy exceeds the value of the current undominated set by
more than epsilon. A linear program is used to implement this step.
The epsilon pruning technique thus produces solutions with an er-
ror bound of {5| 0 , where | is a user specified parameter and { is the
number of times that epsilon pruning is performed per horizon step.
This works well in domains with a small number of observations.
But in domains with a large number of observations, the number
of new policies generated before pruning will be exponential in the
number of observations. This motivates the development of addi-
tional pruning that specifically targets the number of observations.

3. THE MBDP-OC ALGORITHM
In this section we present our algorithm in detail. The overall so-

lution technique is based on modifying the IMBDP algorithm (Im-
proved Memory-Bounded Dynamic Programming) with the value-
based observation compression technique. Hence, the resulting al-
gorithm is called MBDP-OC (MBDP with Observation Compres-
sion). We first describe the MBDP-based algorithm and then the
value-based observation compression procedure.

3.1 The Modified MBDP Algorithm
MBDP and IMBDP have proved to be very effective in solv-

ing finite-horizon DEC-POMDPs [11]. They accomplish this by
limiting the number of trees retained at each step to a predefined
constant

RtS#UWV�X-Y1Y!Z
. At each step, a belief state is selected using a

heuristic. Then the best joint policy is selected and removed from
consideration. Then a new belief state (or the same one) is se-
lected, and then the process is repeated until each agent has savedRTS#UWV,X-Y1Y!Z

policies. Thus, at each step, a full backup produces
only � '� RTS#UWV�XQYPY!Z 2 452 new policies. Since MBDP is a bottom up
planner (that is, it starts with the last step and works its way back-
wards), the selected belief state can be the result of running some
reasonable joint policy (such as the underlying MDP) from the first
step to the current step. Noting that the result is still exponential in� (=� , the authors then limit the number of possible observations to
a constant that they term

RTS#U�\^]!Z
. IMBDP selects the most likely

observations from heuristically determined belief states, and it only
backs up policy trees with those observations. They term this pro-
cess a partial backup. Complete policies are then "filled up" with
the missing observations, by selecting the best available policies for
these observations. Thus, for instance, if a partial backup were run
for the policies shown in part A of Figure 1, and a }~�;: )	��� of two
were used, only 12 new policies would be generated, 4 for each root
action. Although this process is quick compared to a full backup,
the error is only bounded for the heuristically selected belief state.
The error is given by:

0 � � $���| "v�/&_��� e � &d� ��� "
where 0 is the horizon of the problem, | is the probability of receiv-
ing one of the remaining observations, and & is the reward func-
tion. In IMBDP, the probabilities of these observations are taken
into account, but not their values.

3.2 Value-Based Observation Compression
We now present the value-based observation compression method

(the CompressObs Algorithm), which reduces the complexity of
the backup process by merging pairs of observations in each iter-
ation. We present this observation compression method as a tool
that can be used by bottom-up planners. We use the MBDP plan-
ner as an example of a planner that can be augmented by using
this algorithm. The augmented DEC-POMDP solution method is
MBDP-OC described in the previous section.

During the backup process, MBDP-OC operates in a similar man-
ner to IMBDP in seeking to limit the number of observations and
policies considered for backup [11]. Recall that each branch of
a new policy tree corresponds to an observation. In contrast to
IMBDP, the partial backup in MBDP-OC seeks to reduce the expo-
nential generation of new policies by forcing different branches of
the new root policies to contain the same subtrees. The distinction
can be seen in Figure 1(c). IMBDP (not shown in the figure) se-
lects the

RTS#U�\^]!Z
most likely observations, finds all combinations

of subpolicies for those, and fills in all remaining observations with
a single policy. MBDP-OC, by contrast, finds

RTS�U�\^]!Z
groups of

policies, and in the backup process forces all observations in the
same group to have the same subpolicies. Thus, the key modifica-
tion to IMBDP (as shown in Algorithm 1) is just before the partial
backup. In MBDP-OC, the procedure CompressObs is called to
determine how to group the observations. The groupings are stored
in a set m , where m is a set of tuples ( �G� , |1� ). Each �G� is a set of ob-
servations, and each | is an error term associated with observation
group � � . We call the backup procedure that perform these calcu-
lations � �;�n�����;�!�,� M to distinguish it from the partial backup in
IMBDP.

Let
RtS#UWV�X-Y1Y!Z

be the number of distinct subtrees that the user
desires and

RtS#U�\^]!Z
be the limit on the number of observations.



Algorithm 2: CompressObs( : �-�n� � e � b � � byc � RTS�U�\^]!Z
)

input : Agent number : , belief state � , root action � e ,
subpolicies

b e
and

b�o e
, and observation limitRTS�U�\^]!Z

output: m , a set of tuples � �#� � |1� " , where each �G� is a set of
observations, and |P� is the error introduced by
merging the observations in �G�

beginm [�j � j * � l �1� "P�#� j * � l �1� "P�����3� l
for each observation * � , each policy ? e , and each? o e � b o e

and � o e �� o e do
Precompute @ �+? e � ? o e �Q�n� � e � � o e �1* � �-* o e "
Keep track of best policies ?��e

while � m ��� RTS#U�\^]!Z
do� � � � � � �� " [�;�G�;8��/{u�N�P� K � �1���3�-� K � ���/�� �¡p¢ � � b e � �G� � e � � �Oq � �#"| [ ¡p¢ � � bfe � �n� � � � � � q � �� "m [ md£ j � � � � � �� l q¤� � � � q � �� � | "

return m
end

We then have
RTS�UWV�X-Y1Y!Z

policies before backup and � '� actions, so
we generate � ¥� RTS#UWV�XQY1Y!Z.¦7§�¨P©�ª+«

new policy trees for each agent
at backup. The implementation then follows [11] by selecting theRtS#UWV�X-Y1Y!Z

best policies to retain for the next backup.
The question then becomes, which observations should be merged

together, such that forcing them to contain the same subtrees does
not produce a large error? In order to answer that, we need to in-
troduce the following notation and definitions. We need to express
how much value is lost by merging two observations (or two groups
of observations). Intuitively, the merged observation pair will pur-
sue the subpolicy that works best for its component observations.
The value lost will be a function of the value of the chosen subpol-
icy, the value of the optimal policy for the component observations,
and the likelihood of receiving the observations. For ease of expla-
nation, we begin our definitions with the single agent case, and then
generalize them to the multi-agent case:
��? �� �-? �� �3���3� . The policy trees for agent i. During the backup pro-

cess, these policy trees will become subpolicy subtrees. Through-
out this paper we will often refer to a generic single subpolicy for
agent � as ? � .��? �� �-? �� �3���;< b � . The set

b � has
RTS#UWV�XQYPY!Z

members.� @ �+? � � �n� � �-* " . The value of following subpolicy ? � after taking
action � and receiving observation * in belief state � .��? �� �+�n� � �-* "=< �;�#�;89�;: L�¬ �� ¬ @ �+? � � �G� � � �-* " . The best subpolicy
available, after taking action ��� and receiving observation * .��®^�+? � � �G� � �-* "_< @ �+? �� � �G� � �Q*�" � @ �+? � � �n� � �-* " . The value lost if
subpolicy ? � is taken instead of the best available subpolicy.� ¡p¢ �+? � � �n� � ��¯* "�<±°~²v³ �µ´²O)��+* � � �n� � "�®^�+? � � �n� � �-* � " . The loss of
following a single policy ? � for the group of policies in ¯* . Each
loss is weighted by the probability of the observation.� ¡p¢ �.� b � � �G� � �#¯* "T<¶Bp·3¸ L ¬ �  ¬ ¡E¢ �+? � � �n� � �#¯*�" . The Weighted
Loss of following the best available single policy for the group
of policies in ¯* .

Our notation is somewhat unique in that we always evaluate
given �+�G� � �-*�" . For a standard POMDP, one could have defined
a new belief state � � given that action � was taken and * was ob-
served from belief state � , but this notation would not scale to the

multiagent case. None of these terms value the immediate reward
achieved through action in belief state � , however, they all compute
the probabilities of new belief states once action � is taken and *
is observed, and they find subpolicy values in the new belief state.
This is necessary because our pruning process requires only the
value of subpolicies. When we backup, the root action is already
given, and the root reward can not be changed.

We use classic POMDP methods to evaluate @ �+? � � �n� � �Q* " . Since
we started at belief state � , took an action � and received an obser-
vation * , this defines a new belief state, which we will call �.�����+" .
We can then evaluate ? � :I

JQ¹
�.��� � " @ �+? � �P� � "

the probability of being in each state times the value of ? � for that
state. The value of ? � for state ��� is recursively computed.

&¥��� � � � � "5º I
J ¹ ¹ ��»

����� � � � � � � � � " I² ¹ � 4
)��+* � � � � � � � � " @ �+? �� �P� � � "

where � � is the root action in the policy, and @ �+? �� �1� � � " is the value
of continuing the policy in state ��� .

We use ? �� �+�G� � �-*�" to denote the subpolicy for agent � with the
highest value, given that action � was taken from belief state � and
then * was observed.

In the definition of ® , the difference
®^�+? � � �n� � �-* "A< @ �+? �� � �G� � �-*�" � @ �+? � � �n� � �-* "

is the value lost by choosing a single policy ? � (instead of the ideal? �� ) after receiving the observation * . We then weight by the proba-
bility of observing * and call the result our weighted loss, which we
abbreviate ¡p¢ . This weighted loss can be used to denote the sum
of the values lost by choosing one single policy for a whole group
of observations, rather than the best policy for each observation.

The value of the best single policy for the observations in ¯* is¼ ®7� . This is the cumulative value lost if we are to group all the
observations in ¯* together.

For the multiagent case, we change the actions to joint actions,
and policies to joint policies. The following notation uses the 2-
agent case for ease of explanation, but is easily extended to multiple
agents.

� @ �+? � � ? c �1�n� � � � � c �-* � �-* c " is the value of following joint policy�+? � �1? c " after taking joint action � ��� � � c " and after the agents re-
ceive observations * � and * c in belief state � .

��? �� �+? c �-�n� � � � � c �-* � �-* c "A<�;�G�;8��,: L ¬ �  ¬ @ �+? � � ? c �-�G� �,� � � c �1* � �Q* c "P� When the arguments to? �� are clear from context, as below, we may just refer to it as ? �� .
��® � �+? � � ? c �Q�n� �,� � � c �-* � �-* c "A<@ �+? �� � ? c �-�G� �,� � � c �-* � �-* c " � @ �+? � � ? c �-�G� �,� � � c �-* � �Q* c "
� ¡E¢ � �+? � � �G� � � �#¯*�"A<°C²!³ �µ´²½BED#F ��¾ �.¿ ¾ °C² ¾ � 4 ¾ BEDGF L ¾ �  ¾)��+* � �-* c � �n� �,� � � c "�® � �+? � � ? c �-�G� �,� � � c �-* � �-* c "
� ¡E¢ �� � b � � �G� � � �#¯* "A<CBp·�¸ LQ¬ �  ¬ ¼ ® � �+? � � �n� � � �#¯* "

As seen above, we must consider all possible observations, ac-
tions, and policies of the other agents. The loss term is modified to
be a loss for a fixed action, observation, and subpolicy of the other
agent. Similarly, weighted loss terms are modified to sum over the
observation probabilities of the other agent, and to find the worst-
case actions and subpolicies that the other agent may take based on
these observations.



The last definition means that our algorithm will consider all
other policies of the other agent when deciding which observations
to merge. This issue is discussed further in the conclusions.

The observation compression process itself is displayed in Algo-
rithm 2. As the figure shows, the process can be packaged into a
function call, and thus can be seamlessly integrated with IMBDP, or
indeed any policy tree based algorithm. Unlike Seuken and Zilber-
stein, we don’t force trees to follow a single policy after an observa-
tion; rather, we seek to consider which observations we can merge
with a minimum loss of value. To do this, we assume we are in
the backup process, and we are given the root action for some new
set of policies. We precompute the value of each of the existingRtS#UWV�X-Y1Y!Z

subpolicies, for each observation and possible policy of
the other. Possible policies of the other include the set of � '� root
actions as well as the set of

RTS#UWV�XQY1Y!Z
existing subpolicies from

the previous step. Now that we have the value for each subpolicy,
we identify the best subpolicy, as well as its value. We construct
a table of losses, which identifies the value lost by each subpolicy
if the agent should follow that one instead of the best, given the
observation and the policy of the other.

We weigh this loss of value by the probability of receiving the
observation. For each of the

RtS#UWV�X-Y1Y!Z
subpolicies of the current

agent, we find the weighted loss ( ¡E¢ ) introduced by using that one
subpolicy for the merging of two groups of observations, which is
the sum of the loss for each observation in the group, for all possible
policies of the other agent. Thus the ¡p¢ �� � b � � �n� � c �G¯* " of the set
of observations ¯* is the summation of the weighted losses for all
members of the combined set while using the best possible single
policy. The algorithm finds ¡p¢ � for each pair of groups in m , and
merges the two groups that introduce the smallest amount of loss.

Our compression algorithm iteratively compresses groups of ob-
servations. It starts with � ( � � observations, and selects two groups
of observations to compress together while minimizing the weighted
loss. In the first iteration, each observation in ( � is its own group.
In successive iterations, we continue to merge groups of observa-
tions, until there are only

RTS�U�\^]!Z
observations left. Note that

since we can compute a loss bound for each iteration, we can select
to iterate until a certain loss threshold is achieved.

4. ANALYSIS OF MBDP-OC
In this section we discuss the running time and space used by

MBDP-OC, as well as its error bounds. We show that in certain
special cases, the error introduced will be low. In the general case,
we will show a loose error bound that depends on the worst pos-
sible choice of the other agent. This error bound is computable so
any algorithm that uses the value functions presented in this paper
can be modified to terminate after its error reaches a predetermined
threshold. We first discuss running time and space for Compres-
sObs.

THEOREM 1. For the two agent case, the running time of Com-
pressObs is )�� RtS#UWV�X-Y1Y!Z � � ¥�3� (=� Àn" , and the space used is)�� RtS#UWV�X-Y1Y!Z � � '��� ( > � " .

PROOF. We examine each component of the algorithm. First,
all subpolicy values are computed and stored. This occurs for each
subpolicy of the current agent, for each subpolicy of the other,
for each initial action of the other, and for each observation vec-
tor. This takes )�� RTS#UWV�XQYPY!Z � � ¥�3� ( > � " time and space. Identify-
ing the best policies is just a matter of scanning this list. Loss
terms can be precomputed in a similar operation, and again re-
quires )�� RTS�UWV�X-Y1Y!Z � � ¥�3� ( > � " time and space. The algorithm then
enters a while loop where it iteratively shrinks � m � from � (=� down
to

RTS#U�\^]!Z
. There are �1� (=� � RTS#U�\�]!Z " iterations of this. Within

the while loop, weighted losses are found and stored for each pair
of groups of observations in m (that is, for each possible � � � � � � " ,
requiring )��1� (=� � " storage). Each merged group has at most � (=�
observations, and there are � m � � possible pairs, and we know � m ��Á� (=� . Thus there are an order of )��1� (=� Àn" computations of ¡E¢ . We
only keep track of the identities of the best groups to merge, so
no additional storage is required. The computation of ¡E¢ itself
merely looks up joint policy values previously stored in MBDP.
Since ¡p¢ is referenced for each possible action and subpolicy of
the other agent, and since this occurs in a while loop, the total
time spent finding ¡E¢ function values, including the while loop, is)�� RTS#UWV,X-Y1Y!Z � � ¥�3� (=� À ).

Although in this paper we analyze CompressObs as written in
Algorithm 2, in practice, depending on the domain requirements,
it may not be desirable to design the algorithm around the worst
case. In essence, CompressObs computes online error bounds by
considering the other agent as a limited adversary, so it computes
a strategy for such an adversary for each observation. In practice,
it may not be necessary to do this, and indeed an expectation over
each observation would be more accurate than merely bounding its
worst-case.

The rest of this section is devoted to an analysis of the joint value
lost by running MBDP-OC in comparison to the MBDP algorithm
that runs a full backup. For the MBDP class of algorithms, define
a belief state’s “best available policy” at a certain horizon as the
best possible policy tree whose subtrees consist of the policies that
MBDP saved on the previous horizon step. This is not necessarily
an optimal policy, because MBDP only saves

RTS#UWV�XQY1Y!Z
policies

per step.
Since MBDP-OC is an integration of Observation Compression

with the MBDP algorithm, we will see that it inherits its error
bounds from the MBDP approach. In particular, we prove no bounds
on the selection of the MaxTrees, we only prove the error that
observation compression introduces after that. At each step, this
serves as an error bound on the heuristically chosen belief state.
In addition, were observation compression to be merged with other
policy-tree based algorithms[1, 5], the methodology in the proofs
below could be adapted to those algorithms to produce an absolute
error bound for all belief states.

We start with a lemma that says that if MBDP-OC iteratively
merges an observation into larger and larger sets, one can find the
total error introduced for this observation by merely examining the
error on the last merge. That is, the error does not accumulate.

LEMMA 1. Suppose that the sets of observations ¯* � and ¯* � are
merged by the above algorithm. The total value lost due to the
merging of ¯* � and ¯* � only depends on the components of ¯* � and¯* � , not on the value lost during the formation of ¯* � and ¯* � .

PROOF. The base case is trivial as the observations have not
been previously merged. Note that the value lost due to the ob-
servation compression process is the difference between value of
the best available policy and the value of the best possible policy
once the observations are merged. This notion is captured in the
definition of the loss term:@ �+? �� � ? c �-�G� � � � � c �-*;�-* c " � @ �+? � � ? c �-�G� � � � � c �-*;�-* c "
For the inductive case, we find a best policy ? � that minimizes the
weighted sum of the loss of all observations * where *E�Â¯* � qÃ¯* � .
As the above value difference equation indicates, the value for each
observation only depends on the value of the best possible policy
and the value of the selected policy, and not on previous merges.
Therefore, the error does not accumulate with the value lost in any
previous compression.



We now develop the properties of a special case, where
RtS#U�\^]!Z

is greater than or equal to the number of
RTS�UWV�X-Y1Y!Z

. Since MBDP
is capable of running with

RTS#UWV,X-Y1Y!Z <Äz , this setting is certainly
possible and sometimes desirable.

PROPOSITION 1. If ¼ ® � �+? � � �n� � � �G¯* "Ã<Å� , then ? � is a best
available subpolicy for all of the observations in ¯* .

PROOF. The definition of ¼ ® � �+? � � �G� �,� �#¯*�"u<~� consists of sum-
mations and maximums of terms of form

)��+* � � �G� �,� � � c "�® � �+? � � ? c �-�n� �,� � � c �Q* � �-* c "A<Æ�;�
The loss ® � is always positive, since by definition of ?��� the value

of any policy given an observation can not exceed ? �� . Since the
observation probability is always positive as well, and the sum of
all the terms must be zero, then each individual term must be zero
for the theorem conditions to hold. Thus we do not need to consider
the nonzero observation probabilities. Unrolling the summation,
we are left with the sum of several terms of the form:

@ �+? �� � ? c �-�G� �,� � � c �-* � �-* c " � @ �+? � � ? c �Q�n� �,� � � c �-* � �Q* c "
where ? � is the selected policy that makes the theorem precondi-
tions hold, and * � is the observation in that term. Thus ? � must
equal ? �� in value, given this belief state, these actions, and this
observation. Since ? � has the same value as the best available sub-
policy for all the observations in belief state � , for all actions of the
other, then ? � is a best available subpolicy for policies rooted in � � ,
for all of the observations in ¯* while in belief state � .

PROPOSITION 2. When we apply the MBDP-OC algorithm to
a POMDP problem, if

RTS#U�\�]!Z�ÇÈRTS�UWV�X-Y1Y!Z
, then MBDP-OC

constructs the same best available policy tree as MBDP.

PROOF. Note that the algorithm can be run on a POMDP by
considering the problem to be a DEC-POMDP where the second
agent is restricted to one policy, action, and observation. MBDP
chooses a belief state � and generates the best policy tree for that
belief state. We prove that with MBDP-OC, the resulting value
lost in the observation compression process is zero for belief state� . Note that a policy consists of a root action, and each subtree
corresponds to an observation. There are � (=� subtrees. However,
since only

RTS#UWV,X-Y1Y!Z
policies have been saved from the previous

step, only
RTS#UWV�XQYPY!Z

of these subtrees are unique.
The policy for each subtree of the best available tree contains the

best available subpolicy. Since there are only
RTS#UWV,X-Y1Y!Z

unique
subtrees, this means �1� (=� � RTS#UWV�XQYPY!Z " of the subtrees are a dupli-
cate of some other subtree. Take a subtree under policy branch *�� ,
and suppose it is a duplicate of the subtree under policy branch *,� .
Clearly ? �� �+�n� � �-* � " and ? �� �+�G� � �-* � " are the same policy. Thus we
choose this policy for ? � in computing ¼ ®É�.� b � � �n� �,� ���+*;�Êq9* ��"-" ,
for any choice of � � .

Since ®^�+? �� � �n� � �-*;�!"Ë<È®^�+? �� � �n� � �-*.�#"E<Ì� and weighted loss
can not be less than zero, the MBDP-OC algorithm selects * � and*.� (or some other pair of observations whose weighted loss is also
zero) for compression.

Let m � ¬ be the set containing the sets of compressed observa-
tions on the policy tree rooted in action ��� found by MBDP-OC. Let@ÎÍ�ÏµÐÎÑ �+�n� ��� " represent the expected reward of the best joint policy
for belief state � after MBDP performs a full backup and produces
policy trees rooted in �,� for agent � . Likewise, let @ÒÍ7Ï�ÐÎÑ oÎÓ½Ô �+�n� ��� "
be the expected value of the best joint policy for belief state � and
trees rooted in ��� after MBDP-OC performs a partial backup using
the compressed observations in m � ¬ .

THEOREM 2. Let � ��� � �n�3�3� � ¦É§�¨P©�ª+« be the groups of observa-
tions in m � ¬ . Let

r �n� * � �+�G� m � ¬ "A< @ÎÍ�ÏµÐÎÑ �+�n� ��� " � @ÎÍ�ÏµÐÎÑ oÒÓ5Ô �+�G� �,� "P�
Then there exists a corresponding policy tree produced by MBDP-
OC, which is rooted in �,� and contains sub-policies ? �� �3� ? ¦7§�¨v©�ªi«�
such that

Õ!Ö�Ö!×�Ö.ØÚÙ!ÛQÜ � ¬1ÝßÞ
¦É§�¨P©�ªi«à
��á ��â'ã Ø�ä ��Îå Ù!Û�æ � Û�ç � Ý

PROOF. Each ? �� is the subpolicy that MBDP-OC assigns to the
observation branch � � in order to minimize the error. The par-
tial backup in MBDP-OC produces all combinations of assign-
ments of subpolicies for � �!���3��� �Gè � e#é½ê J , thus we can be assured
that ? �� �3� ? è � e#é½ê J� must exist if any combination of the

RTS#UWV,X-Y1Y!Z
subpolicies retained from the previous MBDP step satisfies the in-
equality.

For the error term, we perform induction on the number of poli-
cies and actions available to the other agent. For the base case,
when the other agent has just one policy and action available, we
have seen from Lemma 1 that the error introduced when Compres-
sObs creates each �G� is a function of the error introduced when
it performed the last merge that created �G� , and not on previous
merges. Examining this error, for each *¥� �G� , fixing the policy of
the other agent makes the error introduced by choosing ? �� simply
the difference between the best policy it could choose versus the
policy it does choose for each �G� ,

@ �+? �� �N�+? c �-�n� � � � � c �Q*,�-* c "-" � @ �+? �� �N�+? c �1�n� � � � � c �-*,�Q* c "-"P�
The contribution of each o to the total error must be weighted by
its probability, and thus the contribution of ? �� to total error is

¼ ®^�+? �� � �n� �,� � �#� "P�
and since no observation is in two different sets, the total error,r �n� * � �+�G� m � ¬ " , is the sum of the contributions of its components.
For the inductive case, assuming that the theorem holds when the
other agent’s policy is limited to � ¥� �f$ root actions, adding another
root action choice for the other agent means that there is one more
possible joint action at the root (only one, since ��� is fixed), and
one more belief state must be considered when analyzing the value
of joint subpolicies. The possible loss of value from MBDP must
be analyzed separately for this belief state. If ¡E¢ �+? �� � �G� �,� � �G� " is
larger for this belief state than for others, then it is the new error
bound and the theorem holds. If not, then by the inductive hypoth-
esis the theorem holds.

The inductive case on the number of subpolicies of the other
agent is similar. Adding another subpolicy ? �c to the other agent
means ¡p¢ �+? �� � �n� �,� � �#� " may or may not be larger than the weighted
losses of existing subpolicies. If it is larger, it contributes to the
maximum weighted loss and the theorem holds. If not, the induc-
tive hypothesis says that the theorem holds.

COROLLARY 1. Given a belief state � , in the worst case, MBDP-
OC loses BEDGF � ¬ �.¿ j r �G� * � �+�G� m � ¬ " l per iteration in comparison to
MBDP.

PROOF. The previous theorem bounds the loss by MBDP-OC
in comparison to MBDP for policy trees rooted in a single action.
There is a best joint policy produced by MBDP-OC, and that joint
policy is rooted in an action ��� , and the joint expected reward lost
by MBDP-OC versus MBDP for that action is r �G� * � �+�n� m � ¬ " .



Figure 2: Box Pushing Domain.

MaxObs=2 MaxObs=3
horizon IMBDP MBDP-OC IMBDP MBDP-OC

1 -.2 -.2 -.2 -.2
5 51.6 69.1 79.1 72.3

10 71.3 88.6 90.9 103.9
20 55.2 127.2 96.0 149.8
50 47.8 221.7 80.8 278.7
100 38.2 350.4 72.8 503.8

Table 1: Comparison of IMBDP and MBDP-OC on the Re-
peated Box Pushing Domain with various horizons. The al-
gorithms were run with MaxTrees = 3. Results are shown for
MaxObs = 2 and MaxObs = 3.

5. EXPERIMENTS
Many of the common DEC-POMDP benchmark problems, such

as the multi-agent broadcast channel (MABC) and multi-agent tiger,
have 2 observations. In order to test the MBDP-OC algorithm, it
was necessary to use more complex domains with more than 2 ob-
servations. Obviously, with 2 observations, the MBDP-OC algo-
rithm does not do any compression and it devolves into the MBDP
algorithm.

The first larger problem that we selected was the Cooperative
Box Pushing domain [7], presented in Figure 2. In this domain,
agents are required to push boxes into a goal area. The variant we
used involves 2 agents, each of which can be located on 4 squares of
the bottom row of a 3x4 matrix, and each agent can have 4 possible
orientations (facing up, down, left or right). There are walls below
and to the left of the matrix. In front of the leftmost and rightmost
location are 2 small boxes. A large, 2-square box is in front of the
middle two locations. The agents have 4 available actions, turn left,
turn right, move forward, or stay. Each action has a .9 probability
of success. They can receive 5 possible observations of what is in
front of them: empty, wall, other agent, small box, or large box. If
an agent moves forward, and a small box is in front of it, the box
will be pushed into the top row. If both agents push the large box
at the same time, it is pushed into the top row. A reward of 10 is
received for pushing a small box into the top row, and a cooperative
reward of 100 (50 per agent) is received when both agents push the
large box into the top row at the same time. A penalty of 5 is
received for bumping into a wall or trying to push the large box
alone, and a penalty of 6 is received each time it bumps into the
other agent.

Each time a box is pushed forward, the goal state is entered,
and the problem resets. The initial state of the problem is with the
agents at coordinates (3,1) and (3,4), facing upwards. In order to
make the problem more challenging, and to enhance the role of ob-
servations, we would have the agents transition to a random state
when the problem resets itself. Thus, for instance, agent 1 could

Algorithm MaxObs Time (s)
IMBDP 2 29.9
MBDP-OC 2 31.7
IMBDP 3 459.0
MBDP-OC 3 469.9

Table 2: Running time per horizon step for the IMBDP and
MBDP-OC algorithms on the Box Pushing problem. Results
are in seconds.

find itself facing the back wall and need to turn around. There are
96 reachable non-goal states since the domain forces agent 1 to be
left of agent 2. There are 4 possible goal states which reset the prob-
lem. We ran the experiments with parameters

RTS#UWV�XQY1Y!Z <ëz and
tried

RTS#U�\�]!Z < % as well as
RtS#U�\^]!Z <~z . Results are displayed

in Table 1. We ran IMBDP with the same parameters, and report re-
sults for comparison. Besides IMBDP, we know of no other solver
in the literature that can produce a solution for DEC-POMDP prob-
lems this large. The results show that the value function computed
by MBDP-OC produces improved policies, for both }Æ�;: )	���d< %
as well as }Æ�;: )	���d<~z . Runtimes are shown in Table 2. There is
a small time penalty for running MBDP-OC. However, the program
still spends the majority of its time in the classic MBDP portion of
the algorithm, where it must evaluate all possible combinations of
generated joint policies in all possible states, in order to pick out
the }~�,: 0 � r#rG� policies to retain for the next step.

We next chose a domain that should be more favorable to IMBDP
than BoxPushing. We ran on a zEìtz instance of the Meeting in a
Grid problem introduced by Bernstein et al. [3]. In our implementa-
tion of this problem, agents start in opposite corners of a z^ìfz grid.
Each agent can move either up, down, left, or right. We chose for
the chance of a successful action to be 60%, with a 15% chance of
moving in each perpendicular direction, a 5% chance of not mov-
ing at all, and a 5% chance of moving in the opposite direction.
There is an obstacle in the center square, and the agents cannot
move there. Each agent receives observations as to whether the
squares to the left, right, above, or below each agent are blocked.
With the obstacle in the middle, and the grid being blocked at the
borders, there are 6 legal combinations of observations. Thus the
domain has 6 observations. Observations are 100 percent reliable.
When the agents reach the same square, a reward of 1 is received,
and the problem repeats itself. This domain should be more fa-
vorable to IMBDP, since its weakness, the fact that it chooses a
single action and does not explore the policy space for improbable
observations, is largely irrelevant in this domain. In this domain,
the MBDP planners typically pick a square to meet at (they pick
this implicitly, through the policies they choose to retain), and once
this is done, there is a clear single choice of action for each ob-
servation in the domain. MBDP-OC, by contrast, has its weakness
exposed, in that it may not be correct to consider the same policies
for groups of observations. It can only be saved by using its value
function, to assure that its merge operations will be as harmless as
possible given the likely state. If it can do this successfully, it may
be able to outperform IMBDP because it can more fully explore
the policy space. Experiments were run with }Æ�;: 0 � r#rn�p<íz
and }~�,: )	����< % . Results are shown in Table 3. Indeed we see
that under this domain, IMBDP was able to attain more comparable
results. Still we find MBDP-OC to have a small but persistent ad-
vantage. Runtime for IMBDP was 76.4 seconds per horizon step,
and for MBDP-OC it was 83.36.



horizon IMBDP MBDP-OC
1 0.0 0.0
5 .41 .47

10 1.01 1.04
20 2.01 2.38
50 5.30 6.38

100 11.6 13.0

Table 3: Comparison of IMBDP and MBDP-OC on the zEìTz
Meeting in a Grid problem.

6. CONCLUSION
We present a value-based observation compression technique that

helps reduce the space and running time of finite-horizon DEC-
POMDP algorithms. One key contribution is the development of
a precise measure of the value lost when different observations are
grouped together. This allows us to merge observations that lead
to minimal loss of value and assign all the members of the group
the same policy. One can think of this as an abstraction technique
that creates categories of indistinguishable observations. Once the
categories are generated, the agent no longer distinguishes between
different observations within each category. This in turn helps to
simplify the policy construction process.

The actual benefits of this observation compression technique are
evaluated by integrating it into MBDP, a leading solution technique
for DEC-POMDPs. We perform a rigorous theoretical analysis of
the resulting algorithm and provide error bounds on the approxi-
mation. Empirically, the resulting algorithm, MBDP-OC, performs
well. It is able to generate better joint policies than any existing
planner for finite-horizon DEC-POMDPs on domains with several
observations.

Value-based observation compression is applicable to any policy-
tree based algorithm, not just MBDP. For instance, optimal plan-
ners that produce a bounded error, such as epsilon pruning [1],
could benefit from compressing observations until a certain loss
threshold is exceeded. In this paper, the compression process was
run on a particular belief state, and the resulting analysis bounded
the value lost for that belief state. This can be extended to a global
error bound for any belief state by computing the error bound for
each underlying system state and then taking the maximum value.

Another future direction for this work will include a more careful
consideration of the likely policy of the other agent. In this paper,
the policy generation process considered all possible policies for
the other agent equally. In fact, it is more important to consider
policies of the other agent that are likely to generate high value.
Future work will include sampling or otherwise predicting the pol-
icy of the other agent, so that each agent can use this knowledge to
guide its own policy generation process. Now that the policy gen-
eration process is not exponential in the number of observations in
the domain, the largest source of computational complexity is the
mere fact that each agent needs to consider each possible combina-
tion of policies for all of the other agents. If this last large source of
complexity were mitigated, future planners would be able to pro-
duce good solutions for much larger DEC-POMDP domains.
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