
Symbolic Generalization for On-line Planning

Zhengzhu Feng
Computer Science Department

University of Massachusetts
Amherst, MA 01003
fengzz@cs.umass.edu

Eric A. Hansen
Department of Computer Science

and Engineering
Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Shlomo Zilberstein
Computer Science Department

University of Massachusetts
Amherst, MA 01003

shlomo@cs.umass.edu

Abstract

Symbolic representations have been used suc-
cessfully in off-line planning algorithms for
Markov decision processes. We show that
they can also improve the performance of on-
line planners. In addition to reducing compu-
tation time, symbolic generalization can re-
duce the amount of costly real-world inter-
actions required for convergence. We intro-
duce Symbolic Real-Time Dynamic Program-
ming (or sRTDP), an extension of RTDP. Af-
ter each step of on-line interaction with an
environment, sRTDP uses symbolic model-
checking techniques to generalizes its expe-
rience by updating a group of states rather
than a single state. We examine two heuris-
tic approaches to dynamic grouping of states
and show that they accelerate the planning
process significantly in terms of both CPU
time and the number of steps of interaction
with the environment.

1 Introduction

Markov decision processes (MDPs) have been adopted
as a framework for research in decision-theoretic plan-
ning. Classic dynamic programming algorithms solve
MDPs in time polynomial in the size of the state space.
However, the size of the state space grows exponen-
tially with the number of features describing the prob-
lem. This “state explosion” problem limits use of the
MDP framework, and overcoming it has become an
important topic of research.

Over the past several years, symbolic representa-
tions have been used successfully to improve the per-
formance of off-line planning algorithms for MDPs.
For example, Dearden & Boutilier (1997) proposed
a feature-based (or factored) representation of MDPs
that uses decision trees as a compact representation.

The SPUDD algorithm (Hoey et al. 1999) achieved
improved performance using a decision diagram based
representation, adapted from the symbolic model-
checking community. Feng & Hansen (2002) com-
bined SPUDD with the LAO* algorithm, as a way
of integrating state abstraction with heuristic search.
These approaches focus on how to perform off-line
planning (via dynamic programming) more efficiently.
In this paper, we introduce a symbolic generalization
of Real-Time Dynamic Programming (RTDP) (Barto,
Bradtke, & Singh 1995), an on-line planner for MDPs.
We call this algorithm symbolic RTDP, or sRTDP.
Whereas RTDP uses an on-line state trajectory to fo-
cus computation and determine what individual states
to backup, sRTDP uses an on-line state trajectory to
determine what abstract states to backup. That is,
sRTDP generalizes experience using state abstraction.

The ability to generalize experience is crucial for on-
line algorithms such as RTDP, both when the state
space is large and when obtaining experience is rel-
atively expensive compared to the cost of computa-
tion. The key issue in generalization is the identifi-
cation of “similar” states. Previous work has focused
on generalization based on input similarity, as mea-
sured by some distance metric defined over the repre-
sentation space of the states. However, as pointed out
by Yee (1992), input similarity does not necessarily
lead to similarity in the underlying value function of
the MDP, limiting the effectiveness of this approach.
In this paper, we propose to generalize experience
based on structural similarity, capturing better the un-
derlying value function. States are considered similar
if they have similar value estimates, or similar reach-
ability structures. We argue that structural similarity
is a more effective approach to generalization because
the value estimates and the reachability structure are
directly related to the underlying value function of the
MDP. Symbolic model-checking techniques are partic-
ularly useful in this approach to generalization, be-
cause they enable us to efficiently identify structural
similarity without enumerating the state space.

2 Background

We begin with a brief review of MDPs and algorithms
for solving MDPs, including value iteration, LAO* and
RTDP. Then we review factored MDPs and methods
of state abstraction that use decision diagrams.

2.1 Markov Decision Processes

A Markov decision process (MDP) is defined as a tuple
M = (S,A, P,R) where: S is a set of states; A is a set
of actions; P is a set of transition models of the form
P a : S×S → [0, 1], where P a(s, s′) is the probability of
making a transition from state s to state s′ if action a is
taken in state s; and R is a set of reward models of the
form Ra : S → <, where Ra(s) is the expected reward
for taking action a in state s. We consider MDPs for
which the objective is to find a policy π : S → A that
maximizes total discounted reward over an infinite (or
indefinite) horizon, where γ ∈ [0, 1] is the discount
factor. (We allow a discount factor of 1 only for MDPs
that reach a terminal state, i.e., zero-reward absorbing
state, with probability 1.)

Starting with an arbitrary state evaluation function
V 0 : S → <, the standard dynamic programming (DP)
algorithm updates the value function at every state s
as follows:

V t+1(s)← max
a∈A

{
Ra(s) + γ

∑

s′∈S
P a(s, s′)V t(s′)

}
.

(1)

Value Iteration(VI) solves an MDP by successively
applying this DP update, and the sequence of value
functions converges to the optimal value function V ∗

in the limit (Puterman 1994). The optimal policy
π∗ : S → A can be obtained from V ∗ by setting each
π∗(s) equal to the action that maximizes the right-
hand side of Equation (1) when V t = V ∗.

Note that the standard DP update is performed on ev-
ery state in the state space. This is not necessary if the
agent is given some starting state(s) and only a part of
the state space is reachable from there. The algorithms
LAO* (Hansen & Zilberstein 2001) and RTDP (Barto,
Bradtke, & Singh 1995) exploit this fact by limiting the
DP update to a subset of the state space. They differ
mainly in the way this subset is determined. LAO* is
an off-line algorithm that performs best-first search in
the state space. It interleaves a forward step that ex-
pands the current policy to find reachable states, and
a backward step that performs a DP update on the
found states. RTDP is an on-line algorithm that in-
teracts directly with the environment (or a simulation
of it), and performs updates on states that are actu-
ally visited in the course of interaction. Both algo-

rithms can solve an MDP without necessarily visiting
the whole state space, and converge to a solution that
is optimal for all relevant states.

2.2 Factored MDPs and Decision Diagrams

In a factored MDP, the set of states is described by
a set of random variables X = {X1, . . . , Xn}. With-
out loss of generality, we assume these are Boolean
variables. Using xi to denote an instantiation of a
state variable Xi, a particular instantiation of the
variables corresponds to a unique state, denoted s =
{x1, . . . , xn}. Because the size of the state space grows
exponentially with the number of variables, it is im-
practical to represent the transition and reward mod-
els explicitly as matrices when the number of states
variables is large.

To achieve a compact representation, we use decision
diagrams (Bryant 1986; Bahar et al. 1993). Algebraic
decision diagrams (ADDs) are a generalization of bi-
nary decision diagrams (BDDs), a compact data struc-
ture for Boolean functions that is used in symbolic
model checking. A decision diagram is a data struc-
ture (corresponding to an acyclic directed graph) that
compactly represents a mapping from a set of Boolean
state variables to a set of values. A BDD represents
a mapping to the values 0 or 1. An ADD represents
a mapping to any finite set of values. To represent
these mappings compactly, decision diagrams exploit
the fact that many instantiations of the state variables
map to the same value. In other words, decision di-
agrams exploit state abstraction. BDDs are typically
used to represent the characteristic functions of sets
of states and the transition functions of finite-state
automata. ADDs can represent weighted finite-state
automata, where the weights correspond to transition
probabilities or rewards, and thus are an ideal repre-
sentation for MDPs.

The SPUDD algorithm (Hoey et al. 1999) was the
first to use the above representation in solving MDPs.
Let X = {X1, . . . , Xn} represent the state variables
at the current time and let X′ = {X ′1, . . . , X ′n} rep-
resent the state variables at the next step. For each
action a and each post-action variable X ′, an ADD
P a(X, X ′) represents the probability that X ′ becomes
true after action a is taken. The complete action ADD
P a(X,X′) can be computed by multiplying the ADDs
for each variable (Hoey et al. 1999). Similarly, the
reward model Ra(X) for each action a is represented
by an ADD. The advantage of using ADDs to repre-
sent mappings from states (and state transitions) to
values is that the complexity of operators on ADDs
depends on the size of the diagrams, not the size of
the state space. If there is sufficient regularity in the
model, ADDs can be very compact, allowing problems

with large state spaces to be represented and solved
efficiently.

SPUDD implements the standard DP update as follow:

V t+1(X)← max
a∈A

{
Ra(X) + γ∃X′P a(X,X′) · V t(X′)

}
.

Note that the value functions V t and V t+1 are rep-
resented using ADDs, and all operators involved in
the DP update are applied to ADDs. In particular,
∃ denotes the existential abstraction operator, which
sums over all post-action states. We refer to (Hoey
et al. 1999) for detailed discussion and related refer-
ences. Compared to traditional DP using a tabular
representation, SPUDD exploits state abstraction by
implicitly grouping states with the same value into an
abstract state, and performing computation on the ab-
stract state space. We say “implicitly” because these
abstract states are never singled out during the com-
putation. Instead, the symbolic operators automati-
cally take advantage of abstraction found in the ADD
representation.

Symbolic LAO* (Feng & Hansen 2002) is an extension
of LAO* that uses the same representation as SPUDD.
Like LAO*, it interleaves a forward search step that
expands the current policy and constructs the set of
reachable states, denoted E, with a DP step that up-
dates the values of states in E. The forward step is
implemented as a form of symbolic reachability analy-
sis, a common operation in symbolic model checking.
The set E is represented by its characteristic function
χE using an ADD. The DP update is a modified ver-
sion of the SPUDD algorithm that uses the following
masked update to focus computation on the relevant
part of the state space:

V t+1
E (X)←max

a∈A

{
RaE(X)+γ∃E′P aE∪E′(X,X′)·V tE′(X′)

}

(2)

Here E′ is the set of states reachable from E. The no-
tation fE(·) stands for the “masked” version of ADD
f , which is the product of f and the characteristic
function of E: fE = f × χE . The operation of mask-
ing constrains the DP update to a subset of the state
space, and is primarily responsible for the performance
improvement of symbolic LAO* over SPUDD. Sym-
bolic LAO* also performs better than LAO* because
it exploits state abstraction in both the forward search
and DP steps.

3 Symbolic RTDP

Recall that RTDP performs a DP update while inter-
acting with the environment. At each time step t, the
agent observes the current state st and performs a DP

backup to update its value, as follows:

V t+1(st)← max
a∈A

{
Ra(st) + γ

∑

s′∈S
P a(st, s

′)V t(s′)

}
.

(3)

The values of all other states are kept unchanged, that
is, for all s 6= st:

V t+1(s) = V t(s).

If the initial value function is an admissible heuristic
estimate of the optimal value function, then always
taking the action that maximizes Equation (3) results
in convergence to an optimal value function. Other-
wise some exploration scheme must be used in choos-
ing actions, in order to ensure convergence. After an
action is taken, the agent observes the resulting state
and the cycle repeats.

An advantage of RTDP over standard DP is that it
uses an on-line trajectory of states, beginning from the
start state, to determine which states to update, and
as a result, unreachable states are not updated. How-
ever, the enumerative nature of the trajectory sam-
pling makes it difficult to scale up to large state spaces.
When the state space is very large, a state-by-state
update becomes inefficient, especially if the sampling
involves carrying out physical actions.

We now describe symbolic RTDP, or sRTDP, a sym-
bolic version of RTDP that helps overcome this ineffi-
ciency by generalizing the update from a single state
to an abstract state. Figure 1 shows the pseudo-code
of a trial-based version of sRTDP. It takes as input an
admissible initial value function V0, a starting state s0,
the number of trials to run, and the number of steps to
run in each trial. It returns an updated value function,
from which a policy can be extracted.

We extend the idea of masking from symbolic LAO*
to sRTDP by performing DP on the abstract state E
that the current state s belongs to. Symbolic model-
checking provides us with convenient and efficient tech-
niques to group states as abstract states and to ma-
nipulate these abstract states. There are many ways
to group states into abstract states. In this paper,
we examine two heuristic approaches that are moti-
vated by the idea of generalization by structural sim-
ilarity. A value-based abstract state consists of states
whose value estimates are close to that of the cur-
rent state. A reachability-based abstract state consists
of states that share with the current state a similar
set of successor states. Unlike SPUDD, we explic-
itly construct this abstract state at each time step of
sRTDP, using standard operations on ADDs. We use
the function Generalize(s) for this operation in Fig-
ure 1. The two heuristic approaches to implementing
Generalize() are described below:

sRTDP(V0, s0, nTrials, nSteps)
1. V ← V0;
2. Repeat nTrials times
3. s← s0;
4. Repeat nSteps times
5. E ← Generalize(s)
6. E′ ← States reachable in one step from E
7. V copy ← V
8. For all a ∈ A:
9. Qa ← RaE(X) + γ∃E′P aE∪E′(X,X′) · VE′(X′)
10. VE ← maxa∈AQa
11. a← arg maxa∈AQa(s)
12. V ← VE + V copy

Ē
13. s← Execute(s, a)
14. Return V

Figure 1: Trial-based sRTDP algorithm

Generalization by Value With a value-based ab-
stract state, the experience is generalized to states that
have similar value estimates as the current state. Gen-
eralizing updates to states with the same or similar
estimated values helps the agent in two ways. First,
if some of these states indeed have a similar optimal
value as the current state, the update strengthens this
similarity and the agent is better informed in the fu-
ture when these states are visited again. On the other
hand, if some of the states have very different optimal
values than the current state, the generalization helps
to distinguish them and their values are not recom-
puted when the current state is visited again.

Let s be the current state and let V be the cur-
rent value function. The characteristic function of the
value-based abstract state E can be constructed by
setting leaf nodes in V with values close to V (s) to
1, and all other leaf nodes to 0. The change at the
leaf nodes then propagates up to the root. This op-
eration is standard in most ADD packages, including
CUDD (Somenzi 1998), the one we use for our imple-
mentation.

Generalization by Reachability With a
reachability-based abstract state, experience is
generalized to states that are similar to the current
state in terms of the set of one-step reachable states.
The intuition is that if the agent is going to visit
some states, say C, from the current state s, then
any information about C is useful not only to s but
also to other states that can reach C. By generalizing
the update to these other states, the agent is better
informed in the future about whether to aim at C or
to avoid it.

To compute the abstract state based on reachability,
we introduce two operators from the model-checking

literature. The Img(C) operator computes the set
of one-step reachable states from states in C, and
the PreImg(C) operator computes the set of states
that can reach some state in C in one step. The
reachability-based abstract state E can then be com-
puted as:

E = PreImg(Img({s}))− PreImg(S − Img({s})).

Once the abstract state E is identified, we use Equa-
tion (2) to update its value. Since all elements on the
right-hand side of the equation are masked, the result-
ing ADD on the left hand side is effectively masked by
E also (hence the VE notation on the left hand side
of Equation (2) and line 10 of the algorithm). In line
12, we merge this masked value function back to the
whole state space in order to obtain an updated value
function. The Ē notation stands for the complement
of E. After the update, an action is chosen that maxi-
mizes the DP update at state s. The agent then carries
out the action, denoted Execute(s, a), and the process
repeats.

Although both symbolic LAO* and sRTDP use a
masked DP update, the masks they use are different
and serve different purposes. The mask in symbolic
LAO* contains all states visited so far by the forward
search step. The purpose of masking is to restrict
computation to relevant states. The mask in sRTDP
contains states that share structural similarity. The
purpose of masking is to generalize the update of a
single state to an abstract state. This generalization
has two consequences. First, it introduces some over-
head for identifying the abstract state, and for per-
forming masked DP instead of single-state DP. On the
other hand, it updates the value of a group of states
in a single step, at a cost that can be significantly less
than updating the states individually. For problems
that have a large state space but regular structure,
the benefit of masking can be much greater than its
overhead.

Convergence If we implement the function
Generalize(s) so that it only returns the set {s},
then sRTDP becomes RTDP. On a state-by-state
level, the only difference between RTDP and sRTDP
is that RTDP updates the current state only, while
sRTDP updates the current state and some other
states. Thus, if the convergence conditions for RTDP
are met, sRTDP will also converge as long as the
current state is always updated.

Theorem 1 sRTDP converges to the optimal value
function under the same conditions that RTDP con-
verges if for every state s, s ∈ Generalizes(s).

4 Adaptive sRTDP

Barto, Bradtke, & Singh (1995) describe an adap-
tive version of RTDP where the model parameters
are not known and have to be estimated on-line
while the agent is acting. It is straightforward to
extend sRTDP to this setting. We call this algo-
rithm adaptive sRTDP, or AsRTDP. Learning algo-
rithms developed for Bayesian networks can be ap-
plied to learn the model parameters of a factored
MDP, for example (Friedman & Goldszmidt 1999;
Saul & Jordan 1999). To create an adaptive version
of sRTDP, we modify the algorithm in Figure 1 to use
the learned model in Equation (2). The identification
of the abstract state remains the same. To satisfy the
convergence conditions for adaptive RTDP, we use a
simple ε-greedy exploration scheme to replace the ac-
tion selection step at line 11 of the algorithm. Finally,
since there is no model to begin with, it is generally not
possible to compute an admissible heuristic (although
a good initial estimate of the value function can still
speed up convergence).

5 Experimental Results

In this section, we consider the empirical performance
of sRTDP and AsRTDP, and the performance of the
two methods of generalization. We compare their per-
formance to symbolic LAO*, RTDP and an adaptive
version of RTDP. In our comparison, all algorithms
use the same symbolic representation of the problem.
Non-symbolic RTDP uses a symbolic representation
because our test problems are too large for a tradi-
tional table-based representation of the transition ma-
trix to fit in memory. However, non-symbolic RTDP
performs single-state DP backups using Equation (3)
in our comparison, and does not exploit the symbolic
representation in solving the MDP.

We tested the various algorithms on the same test
problems used in (Feng & Hansen 2002), especially the
most difficult of these problems, numbered a1 through
a4. These four problems are adapted from the widget-
processing problem used in (Hoey et al. 1999), with
the modification that every state variable is affected
by at least one action, and actions have different, ran-
dom rewards. The results for these problems are very
similar and we only report results for problem a1 here.
It has 20 Boolean state variables and 25 actions.

5.1 Symbolic RTDP

We first compare the performance of sRTDP, using
generalization by value and by reachability, with sym-
bolic LAO* and non-symbolic RTDP. The on-line
planning algorithms performed 100 trials, each con-

 828

 829

 830

 831

 832

 833

 834

 835

 0 100 200 300 400 500 600 700 800

V
al

ue
 o

f s
ta

rt
st

at
e

CPU seconds

RTDP
sRTDP-reach
sRTDP-value

Symbolic LAO*

Figure 2: Performance comparison of non-adaptive al-
gorithms in terms of CPU time.

sisting of 20 steps from the starting state. The off-
line planner, symbolic LAO*, ran until convergence.
All used the same admissible heuristic function as an
initial value function. (We used the easily-computed

heuristic function rmaxγ
1−γ , where rmax denotes the max-

imum one-step reward.)

The result is shown in Figure 2. The x-axis shows
CPU time measured in seconds. The y-axis shows the
value of the start state, which all algorithms attempt
to optimize. Each point on the symbolic LAO* curve
represents an iteration of forward search, followed by
a DP update. Each point on the three RTDP curves
represents a trial of 20 steps. As we can see, the two
sRTDP algorithms perform much better than RTDP.
This is because sRTDP generalizes experience and ex-
ploits state abstraction, while RTDP does not. sRTDP
also compares favorably with symbolic LAO*. In par-
ticular, sRTDP with generalization by value quickly
reaches a near-optimal value in the early stage of com-
putation, while symbolic LAO* gradually catches up
after about 100 seconds. Symbolic LAO* converges af-
ter running about 8 minutes, while sRTDP continues
without reaching the same value even at the end of the
100 trials. This behavior – in which sRTDP improves
a solution more quickly at first, and symbolic LAO*
achieves eventual convergence faster – is similar to be-
havior observed in comparing non-symbolic versions of
LAO* and RTDP (Hansen & Zilberstein 2001). The
explanation is that RTDP focuses on high-probability
paths, which results in early improvement, whereas
LAO* considers all reachable states equally.

From Figure 2, we can also see that sRTDP takes
longer to finish each trial than RTDP. In fact, RTDP
finishes 100 trials in about 500 seconds, while the two
sRTDP algorithms only finish from 20 to 40 trials in
the same time. However, in each trial sRTDP improves

 828

 829

 830

 831

 832

 833

 834

 835

 0 10 20 30 40 50 60 70 80 90 100

V
al

ue
 o

f s
ta

rt
st

at
e

Number of trials

RTDP
sRTDP-reach
sRTDP-value

Figure 3: Performance comparison of non-adaptive
versions of RTDP in terms of number of trials.

the value function more than RTDP. If we plot the
RTDP curves against the number of trials, shown in
Figure 3, the difference becomes more obvious. After
about 20 trials, sRTDP reaches a value that is within
0.1 of the value that symbolic LAO* converges to. For
RTDP, the difference in value is larger than 2.1 after
100 trials. Since RTDP updates a single state only
at each step, it takes less time to finish a trial than
sRTDP, which performs the extra work of identifying
and updating the abstract state at each step. How-
ever, the extra work by sRTDP leads to improved per-
formance due to state abstraction and generalization.

From Figures 2 and 3, we can see that the two notions
of generalization work similarly well for this problem,
with generalization by value slightly better than gen-
eralization by reachability. We expect that the rela-
tive performance of the two methods will depend on
the characteristics of a problem. In particular, if the
current value estimation is close to the underlying op-
timal value function, as is the case when an admissi-
ble heuristic is used, value-based generalization should
work better. Otherwise reachability-based generaliza-
tion can be more effective, as we will see next.

5.2 Adaptive sRTDP

We next compare adaptive versions of sRTDP that use
the two generalization approaches, with an adaptive
version of non-symbolic RTDP. Since model learning
is not the focus of this paper, we introduce two as-
sumptions for this task to simplify the implementa-
tion: (1) the reward function is given; and (2) the
structure of the transition ADD P a(X, X ′) is given
for all actions a and state variables X ′. Given these
assumptions, we use a simple maximum-likelihood al-
gorithm to estimate the missing probabilities. Since
an admissible heuristic cannot be computed without

 940

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 1140

 0 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

ed
 re

w
ar

d
pe

r t
ria

l

Number of trials

AsRTDP-reach
AsRTDP-value

ARTDP

Figure 4: Performance comparison of adaptive ver-
sions of RTDP, averaged over 100 runs and smoothed.

an accurate model, we set the initial value function to
0 for our experiments.

Figure 4 shows the results. Each curve represents the
accumulated reward in each trial, and is averaged over
100 runs and smoothed. Each run contains 200 tri-
als with 20 steps per trial. As we can see, the two
AsRTDP algorithms consistently outperform adaptive
RTDP (or ARTDP). Moreover, while we see a clear
trend that the AsRTDP curves are improving, the
ARTDP curve seems to show no improvement over
time. This is because AsRTDP generalizes its on-line
experience, while ARTDP does not. Recall that the
problem has 20 state variables, or 1,048,576 states.
Each run performs 200 × 20 = 4, 000 times of sam-
pling, which is less than 0.4% of the state space. (Since
some states may be sampled more than once, the ac-
tual sample coverage is likely to be smaller.) Since
ARTDP does not generalize, sample coverage at this
magnitude is far from enough. AsRTDP, on the other
hand, generalizes beyond the actual samples, and is
able to improve its performance based on the same
amount of experience available to ARTDP.

By comparing the two sRTDP curves, we can see that
generalization by reachability performs better than
generalization by value. In fact, generalization by
value has the worst on-line performance among the
three algorithms over the first 60 trials. This is be-
cause in the early stage, the value estimates are very
inaccurate, so the computation performed by general-
ization by value is mainly geared toward distinguish-
ing states that have similar estimates but indeed have
different optimal values. As experience accumulates,
the value estimates become more accurate and gener-
alization by value can better exploit it to gather more
reward. This suggests a mixed strategy that applies
different forms of generalization at different stages of
the trials. We leave this to future work.

6 Related Work

Like RTDP, prioritized sweeping (PS) (Moore & Atke-
son 1993) interleaves planning (and learning) with
on-line interaction with an MDP. After performing a
backup of the current state, PS performs additional
backups of other states before taking its next action.
It uses a priority queue to select additional states to
backup in an order that reflects the likelihood of im-
provement, based on propagating changed values of
states to predecessor states. Because it updates mul-
tiple states after each action, PS accelerates conver-
gence and can reduce the amount of on-line interac-
tion needed. In this respect, PS is similar to sRTDP,
although the two algorithms choose additional states
to backup in different ways.

The original PS algorithm performs value and priority
updates on a state-by-state basis, without exploiting
problem structure, and this can cause significant over-
head. As a result, PS has been generalized to use sym-
bolic representations. Andre, Friedman, & Parr (1998)
describe generalized prioritized sweeping, which uses
a parametric representation of an MDP to generalize
model updates to similar states and adjust priorities
accordingly. Dearden (2001) describes structured pri-
oritized sweeping, which uses a compact, decision-tree
representation of the value function and exploits state
abstraction in value updates by using a local decision-
theoretic regression operator that is closely related to
the masking operator described in this paper. Struc-
tured PS differs from sRTDP in that it generalizes a
backup to states with similar priority, whereas sRTDP
generalizes a backup to states with similar value or
reachability structure. Use of a priority queue also
implies multiple updates after each action, whereas
sRTDP performs a single symbolic update. (Other
differences between PS and RTDP may affect the se-
lection of states to update. In particular, RTDP fo-
cuses computation on states that are reachable from a
specific starting state.)

The idea of extending the backup of a single state
to an abstract state is closely related to function ap-
proximation methods for solving MDPs. Neural net-
works, for example, are often used to represent a value
function compactly using a relatively small number
of parameters (Bertsekas & Tsitsiklis 1996). Because
a DP update improves the value function by adjust-
ing these parameters, a small change can affect the
values of a group of states or even the whole state
space. As a result, some states may get updated
as a result of the approximation mechanism instead
of from dynamic programming. This makes it dif-
ficult to analyze the convergence properties of such
algorithms. In fact, it has been shown that func-

tion approximation methods can sometimes diverge,
or converge to a value function that is arbitrary bad
in quality (Boyan & Moore 1995). In contrast, sRTDP
guarantees convergence to optimality because the sym-
bolic representation we use is an exact representation.
But it is also worth mentioning that our representa-
tion does not exclude the possibility of approximation.
By grouping similar but not identical state values to-
gether, we can reduce the size of the ADDs and the
DP update can be computed more efficiently. This
form of approximation has been studied for standard
DP algorithms (St-Aubin, Hoey, & Boutilier 2001;
Feng & Hansen 2001) and shown to converge with
bounded error. A similar approach to approximation
may also be adapted for use with sRTDP.

Our work is also related to the idea of model min-
imization for MDPs, presented in (Dean & Givan
1997). Their model minimization algorithm constructs
a stochastic bisimulation (Larsen & Skou 1991) for a
factored MDP. The bisimulation consists of abstract
states that are equivalent in terms of optimal value
and optimal policy. A potentially smaller MDP is con-
structed over this abstract state space and the optimal
solution for it is also optimal for the original MDP. Our
algorithm can be roughly viewed as an on-line version
of model minimization (Yannakakis & Lee 1993), in-
terleaved with an update of the value function using
dynamic programming. The benefit of on-line model
minimization is that unreachable states are not distin-
guished, so that a potentially much smaller abstract
state space is traversed than in full MDP model min-
imization. By interleaving DP updates with model
minimization, we also don’t have to wait until the min-
imal model is created before performing value updates.

7 Conclusion

Generalization has long been recognized as a crucial
component of efficient planning and learning. It ac-
celerates the learning process and reduces the amount
of interaction with the environment needed to reach
a desired level of competence. We have described
sRTDP, an extension of RTDP that uses symbolic
model-checking techniques as an approach to gener-
alizing experience in solving factored MDPs. By iden-
tifying and updating abstract states instead of single
states, sRTDP improves a state evaluation function
faster than RTDP not only in terms of CPU time, but
also in terms of the number of steps of interaction with
the environment. This is particularly desirable when
performing real-world actions is more expensive than
performing computation, which is the case in many
applications. The result is a novel generalization tech-
nique for on-line planning that accelerates convergence
without compromising optimality.

Acknowledgements

We thank the anonymous reviewers for helpful com-
ments. Support for this work was provided in part
by the National Science Foundation under grants IIS-
0219606 and IIS-9984952 and by NASA under Coop-
erative Agreement NCC-2-1311. Zhengzhu Feng was
supported by a UMass Graduate School Fellowship.

References

Andre, D.; Friedman, N.; and Parr, R. 1998. Gen-
eralized prioritized sweeping. In Advances in Neural
Information Processing Systems 10, 1001–1007. MIT
Press: Cambridge, MA.

Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii,
E.; Pardo, A.; and Somenzi, F. 1993. Algebraic de-
cision diagrams and their applications. In Interna-
tional Conference on Computer-Aided Design, 188–
191. IEEE.

Barto, A. G.; Bradtke, S. J.; and Singh, S. 1995.
Learning to act using real-time dynamic program-
ming. Artificial Intelligence 72(1):81–138.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-
Dynamic Programming. Athena Scientific, Belmont,
Massachusetts.

Boyan, J. A., and Moore, A. W. 1995. Generalization
in reinforcement learning: Safely approximating the
value function. In Tesauro, G.; Touretzky, D. S.; and
Leen, T. K., eds., Advances in Neural Information
Processing Systems 7, 369–376. MIT Press: Cam-
bridge, MA.

Bryant, R. E. 1986. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions
on Computers C-35(8):677–691.

Dean, T., and Givan, R. 1997. Model minimization
in Markov decision processes. In Proceedings of the
14th National Conference on Artificial Intelligence,
106–111.

Dearden, R., and Boutilier, C. 1997. Abstraction
and approximate decision-theoretic planning. Artifi-
cial Intelligence 89:219–283.

Dearden, R. 2001. Structured prioritised sweeping.
In Proceedings of the 18th International Conference
on Machine Learning, 82–89.

Feng, Z., and Hansen, E. 2001. Approximate plan-
ning for factored POMDPs. In Proceedings of the 6th
European Conference on Planning (ECP-01).

Feng, Z., and Hansen, E. A. 2002. Symbolic heuris-
tic search for factored Markov decision processes. In
Proceedings of the 18th National Conference on Arti-
ficial Intelligence (AAAI-02), 455–460.

Friedman, N., and Goldszmidt, M. 1999. Learning
Bayesian networks with local structure. In Jordan,
M. I., ed., Learning in Graphical Models. MIT Press.
421–460.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: A
heuristic search algorithm that finds solutions with
loops. Artificial Intelligence 129(1-2):35–62.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C.
1999. SPUDD: Stochastic planning using decision di-
agrams. In Proceedings of the 15th Conference on
Uncertainty in Articial Intelligence, 279–288.

Larsen, K., and Skou, A. 1991. Bisimulation through
probabilistic testing. Information and Computation
94(1):1–28.

Moore, A. W., and Atkeson, C. G. 1993. Prioritized
sweeping: Reinforcement learning with less data and
less time. Machine Learning 13:103–130.

Puterman, M. 1994. Markov Decision Processes. New
York: Wiley.

Saul, L., and Jordan, M. 1999. Mixed memory
Markov models: Decomposing complex stochastic
processes as mixture of simpler ones. Machine Learn-
ing 37:75–87.

Somenzi, F. 1998. CUDD: Colorado univer-
sity decision diagram package. Available from
ftp://vlsi.colorado.edu/pub.

St-Aubin, R.; Hoey, J.; and Boutilier, C. 2001. APRI-
CODD: Approximate policy construction using deci-
sion diagrams. In Advances in Neural Information
Processing 13, 1089–1095. MIT Press: Cambridge,
MA.

Yannakakis, M., and Lee, D. 1993. An efficient algo-
rithm for minimizing real-time transition systems. In
5th International Conference Computer Aided Verifi-
cation (CAV 93), 210–224.

Yee, R. 1992. Abstraction in control learning. Techni-
cal Report 92-16, Department of Computer Science,
University of Massachusetts.

