
Region-Based Incremental Pruning for POMDPs

Zhengzhu Feng
Computer Science Department
University of Massachusetts

Amherst, MA 01003
fengzz@cs.umass.edu

Shlomo Zilberstein
Computer Science Department
University of Massachusetts

Amherst, MA 01003
shlomo@cs.umass.edu

Abstract

We present a major improvement to the incre-
mental pruning algorithm for solving partially
observable Markov decision processes. Our tech-
nique targets the cross-sum step of the dynamic
programming (DP) update, a key source of com-
plexity in POMDP algorithms. Instead of reason-
ing about the whole belief space when pruning
the cross-sums, our algorithm divides the belief
space into smaller regions and performs indepen-
dent pruning in each region. We evaluate the ben-
efits of the new technique both analytically and
experimentally, and show that it produces very
significant performance gains. The results con-
tribute to the scalability of POMDP algorithms to
domains that cannot be handled by the best exist-
ing techniques.

1 INTRODUCTION

A partially observable Markov decision process (POMDP)
models an agent acting in an uncertain environment,
equipped with imperfect actuators and noisy sensors. It
provides an elegant and expressive framework for model-
ing a wide range of problems in decision making under un-
certainty. However, this expressiveness in modeling comes
with a prohibitive computational cost when it comes to
solving a POMDP and obtaining an optimal policy. Im-
proving the scalability of solution methods for POMDPs is
thus a critical research topic.

Standard solution methods for POMDPs rely on perform-
ing a dynamic programming update of the value function,
represented by a finite set of linear vectors over the state
space. A key source of complexity is the size of the value
function representation, which grows exponentially with
the number of observations. Fortunately, a large number
of vectors in this representation can be pruned away with-
out affecting the values. There is a standard linear pro-
gramming (LP) method for detecting these useless vectors.

Solving the resulting large number of linear programs is
therefore the main computation in the DP update.

Consequently, many research efforts have focused on im-
proving the efficiency of pruning useless vectors. Among
the state-of-the-art techniques, incremental pruning (IP)
(Zhang & Liu 1996; Cassandra, Littman, & Zhang 1997;
Cassandra 1998) has proved to be particularly efficient.
Since its introduction, it has been used as a basic compo-
nent of several new POMDP algorithms including an im-
proved policy iteration (PI) algorithm (Hansen 1998), sym-
bolic dynamic programming (Hansen & Feng 2000), and a
symbolic approximation algorithm (Feng & Hansen 2001),
just to name a few. These algorithms use IP as a compo-
nent and exploit various structures in a typical POMDP for
performance gains. For many of these algorithms, the DP
update, and hence IP, remains a dominant factor that affects
their performance.

We introduce a major improvement to the basic incremen-
tal pruning technique, originally proposed by Cassandraet.
al (Cassandra, Littman, & Zhang 1997; Cassandra 1998).
In particular, our work can be seen as a generalization of the
restricted region(RR) variant of incremental pruning. The
RR algorithm exploits the special structure in the cross-sum
of two setsof vectors to reduce the number of constraints
in the LPs. Because of the two-set restriction, the effective-
ness of the RR algorithm diminishes as more sets are cross-
summed in the incremental pruning process. We show how
to overcome this restriction so that the kind of structure
exploited by RR can be extended to the whole cross-sum
process. The resulting algorithm preserves the simplicity
of the original IP technique. Yet, it delivers superb perfor-
mance improvements. It also preserves the generality of
the original IP algorithm, and can thus be embedded into
the more advanced algorithms cited above.

The rest of the paper is organized as follows. In the next
section, we briefly review the POMDP model and the stan-
dard dynamic programming algorithm for solving it. Sec-
tion 3 reviews IP. Section 4 reviews the RR variant, but
from a slightly different perspective than the original work
to facilitate the discussion of our algorithms. Section 5

presents and analyzes our main algorithms. We present ex-
perimental results in section 6, and conclude the paper in
section 7.

2 PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES

We consider a discrete time POMDP defined by the tuple
(S, A, P,R, Z, O), where

• S is a finite set of states;

• A is a finite set of actions.

• P is the transition model,P a(s′|s) is the probability
of reaching states′ if actiona is taken in states;

• R is the reward model,Ra(s) is the expected imme-
diate reward for taking actiona in states;

• Z is a finite set of observations that the agent can ac-
tually sense;

• O is the observation model,Oa(z|s′) is the probabil-
ity that observationz is seen if actiona is taken and
resulted in states′.

We are interested in maximizing the infinite horizon total
discounted reward, whereβ ∈ [0, 1) is the discount factor.
The standard approach to solving a POMDP is to convert
it to a belief-stateMDP. A belief stateb is a probability
distribution over the state spaceb : S → [0, 1], such that∑

s∈S b(s) = 1.0. Given a belief stateb, representing the
agent’s current estimate of the underlying states, the next
belief stateb′ is the revised estimate as a result of taking
actiona and receiving observationz. It can be computed
using Bayesian conditioning as follows:

b′(s′) =
1

P a(z|b)
Oa(z|s′)

∑
s∈S

P a(s′|s)b(s),

whereP a(z|b) is a normalizing factor:

P a(z|b) =
∑
s′∈S

[
Oa(z|s′)

∑
s∈S

P a(s′|s)b(s)

]

We useb′ = T (b) to refer to belief update. It has be shown
that a belief state updated this way is a sufficient statistic
that summarizes the entire history of the process. It is the
only information needed to perform optimally. An equiva-
lent, completely observable MDP, can be defined over this
belief state space as the tuple(B, A, T,RB), whereB is the
infinite space of all belief states,A is the action set as be-
fore, T is the belief transition function as defined above,
andRB is the reward model, constructed from the POMDP
model:Ra

B(b) =
∑

s∈S b(s)Ra(s).

In this form, a POMDP can be solved by iteration of ady-
namic programming updatethat improves a value function
V : B → <. For all belief statesb ∈ B:

V ′(b) = max
a∈A

{
Ra
B(b) + β

∑
z∈Z

P a(z|b)V (T (b))

}
. (1)

Performing the DP update is challenging because the space
of belief states is continuous. However, Smallwood and
Sondik (Smallwood & Sondik 1973) proved that the DP
backup preserves the piecewise linearity and convexity of
the value function, leading the way to designing POMDP
algorithms. A piecewise linear and convex value function
V can be represented by a finite set of|S|-dimensional vec-
tors of real numbers,V = {v0, v1, . . . , vk}, such that the
value of each belief stateb is defined by

V (b) = max
vi∈V

b · vi,

whereb ·v :=
∑

s∈S b(s)v(s) is the “dot product” between
a belief state and a vector. Moreover, a piecewise linear and
convex value function has a unique minimal-size set of vec-
tors that represents it. This representation of the value func-
tion allows the DP update to be computed exactly. Among
several algorithms that have been developed to perform this
DP step, incremental pruning (IP) is considered the most
efficient.

3 INCREMENTAL PRUNING

In their description of incremental pruning, Cassandraet
al. (Cassandra, Littman, & Zhang 1997) note that the up-
dated value functionV ′ of Equation (1) can be defined as a
combination of simpler value functions:

V ′(b) = max
a∈A

V a(b)

V a(b) =
∑
z∈Z

V a,z(b)

V a,z(b) =
Ra
B(b)
|Z|

+ βP a(z|b)V (T (b))

Each of these value functions is piecewise linear and con-
vex, and can be represented by a unique minimum-size set
of vectors. We use the symbolsV ′, Va, andVa,z to refer to
these minimum-size sets.

Using the script lettersU andW to denote sets of vectors,
we adopt the following notation to refer to operations on
sets of vectors. Thecross sumof two sets of vectors,U
andW, is defined byU ⊕W = {u + w|u ∈ U , w ∈ W}.
An operator that takes a set of vectorsU and reduces it
to its unique minimum form is denotedPR(U). We also
usePR(U) to denote the resulting minimum set. Formally,
u ∈ PR(U) if and only if u ∈ U , and∃b ∈ B such that for
∀u′ 6= u ∈ U , u · b > u′ · b.

Table 1: Algorithm for pruning a set of vectorsW.

procedurePOINTWISE-DOMINATE(w,U)
1. for eachu ∈ U
2. if w(s) ≤ u(s), ∀s ∈ S then return true
3. return false
procedureLP-DOMINATE(w,U)
4. solve the following linear program

variables:d, b(s) ∀s ∈ S
maximized
subject to the constraints

b · (w − u) ≥ d, ∀u ∈ UP
s∈S b(s) = 1

5. if d ≥ 0 then returnb
6. else return nil
procedureBEST(b,U)
7. max← −∞
8. for eachu ∈ U
9. if (b · u > max) or ((b · u = max) and (u <lex w))
10. w ← u
11. max← b · u
12. returnw
procedurePR(W)
13.D ← ∅
14. whileW 6= ∅
15. w ← any element inW
16. if POINTWISE-DOMINATE(w,D) = true
17. W ←W − {w}
18. else
19. b← LP-DOMINATE(w,D)
20. if b = nil then
21. W ←W − {w}
22. else
23. w ← BEST(b,W)
24. D ← D ∪ {w}
25. W ←W − {w}
26. returnD

Using this notation, the minimum-size sets of vectors de-
fined earlier can be computed as follows:

V ′ = PR (∪a∈AVa) (2)

Va = PR (⊕z∈ZVa,z) (3)

Va,z = PR
(
{va,z,i|vi ∈ V}

)
, (4)

whereva,z,i is the vector computed by

va,z,i(s) =
Ra(s)
|Z|

+ β
∑
s′∈S

Oa(z|s′)P a(s′|s)vi(s′).

Table 1 summarizes an algorithm, due to White and
Lark (White 1991), that reduces a set of vectors to a unique,
minimal-size set by removing “dominated” vectors, that is,
vectors that can be removed without affecting the value of
any belief state.

There are two tests for dominated vectors. The simplest
method of removing dominated vectors is to remove any
vector u that is pointwise dominated by another vector
w. That is,u(s) ≤ w(s) for all s ∈ S. The procedure

POINTWISE-DOMINATE in Table 1 performs this opera-
tion. Although this method of detecting dominated vectors
is fast, it cannot detect all dominated vectors.

There is a linear programming method that can detect all
dominated vectors. Given a vectorw and a set of vectors
U that does not includev, the linear program in procedure
LP-DOMINATE of Table 1 determines whether addingw
to U improves the value function represented byU for any
belief stateb. If it does, the variabled optimized by the
linear program is the maximum amount by which the value
function is improved, andb is the belief state that optimizes
d. If it does not, that is, ifd ≤ 0, thenw is dominated by
U .

The algorithm summarized in Table 1 uses these two tests
for dominated vectors to prune a set of vectors to its min-
imum size. The symbol<lex in the pseudo-code denotes
lexicographic ordering. Its significance in implementing
this algorithm was elucidated by Littman (1994).

Among the three pruning steps, Equations (2) and (4) can
be carried out relatively efficiently with respect to their
input size. Equation (3) presents a major bottle-neck be-
cause the size of the cross-sum is the product of the inputs:
|U ⊕ W| = |U| × |W|. As a result, it is necessary to pro-
cess

∏
z |Va,z| vectors in computingVa. This translates

into solving
∏

z |Va,z| LPs. Incremental pruning addresses
this problem by exploiting the fact that thePR and⊕ oper-
ators can be interleaved:

PR(U ⊕ V ⊕W) = PR(U ⊕ PR(V ⊕W)). (5)

Thus Equation (3) can be computed as follows:

Va=PR(Va,z1⊕PR(Va,z2⊕···PR(Va,zk−1⊕Va,zk)···)), (6)

which is what the IP algorithm does. The benefit of
IP is the reduction of the number of LPs needed to be
solved. This can best be understood when Equation (6) is
viewed as a recursive process: Instead of pruning the cross-
sum⊕z∈ZVa,z directly, IP breaks it down by recursively
computingPR(⊕k

i=2Va,zi) first, and then pruneVa,z1 ⊕
PR(⊕k

i=2Va,zi). Because the size ofPR(⊕k
i=2Va,zi)

can potentially be much smaller than
∏k

i=2 |Va,zi |, the
number of LPs needed to prune⊕z∈ZVa,z is reduced
from

∏
z |Va,z| to |Va,z1 | × |PR(⊕k

i=2Va,zk)|. Note
that this argument applies equally to the recursive step
PR(⊕k

i=2Va,zi). In general, the total number of LPs used
by IP and its variants in computing Equation (3) is asymp-
totically |Va|

∑
z |Va,z|.

4 PRUNING OF (U ⊕W)

To prune a single cross-sum of two vector setsU andW,
incremental pruning first constructs the whole setU ⊕W,
and then uses thePR procedure (Table 1) to prune it. This
requires|U|×|W| LPs; each LP has a number of constraints

Table 2: Pruning ofU ⊕W via region intersection.

procedureLP-INTERSECT(Bu
U ,Bw

W)
1. construct the following linear program:

variables:b(s) ∀s ∈ S
maximize 0
subject to the constraints

b · (u− u′) > 0, ∀u′ ∈ U − {u}
b · (w − w′) > 0, ∀w′ ∈ W − {w}P

s∈S b(s) = 1
2. if the linear program is feasible, returnTRUE
3. else returnFALSE
procedurePR∗(U ⊕W)
4. K ← φ
5. for each(u + w) ∈ U ⊕W
6. if LP-INTERSECT(Bu

U ,Bw
W)

7. K ← K ∪ {(u + w)}
8. returnK

ranging from 1 to|PR(U ⊕ W)|, which in the worst case
can be|U| × |W|1. Cassandraet. al (Cassandra, Littman,
& Zhang 1997; Cassandra 1998) noticed that the setU⊕W
has a special structure, and developed therestricted region
(RR) algorithm to take advantage of this structures to re-
duce the number of constraints in the LPs. In this sec-
tion we review their RR algorithm, but from two different
angles that will facilitate the discussion of our new algo-
rithms. We note that these two views build on the origi-
nal intuitions behind the RR algorithm; they have been de-
scribed less formally in the original paper.

4.1 PRUNING BY REGION INTERSECTION

Assume bothU andW are minimal, in other words,U =
PR(U) andW = PR(W). In addition, assume that all vec-
tor sets involved in a cross-sum contain at least 2 vectors,
since the cross-sum with a single vector does not introduce
any new dominated vector. Each vectoru ∈ U defines a
witness regionBu

U over whichu dominates all other vec-
tors inU (Littman, Cassandra, & Kaelbling 1996):

Bu
U = {b|b · (u− u′) > 0,∀u′ ∈ U − {u}}. (7)

For simplicity of notation, we useBU to refer to a belief re-
gion defined by some vector inU , when the specific vector
is irrelevant or understood from the context. We also useB̃
to refer to some region when the vector and vector set are
irrelevant or understood from the context.

Note that each inequality in Equation (7) can be represented
by a vector,(u − u′), over the state space. We call the
inequality associated with such a vector aregion constraint,
and use the notationL(Bu

U) := {(u − u′)|u′ ∈ U − {u}}
to represent the set of region constraints definingBu

U . Note
that for any two regionsBu

U andBw
W ,

L(Bu
U ∩ Bw

W) = L(Bu
U) ∪ L(Bw

W). (8)

1The exact number of constraints or LPs here and throughout
the paper may vary slightly from the asymptotic figures we use.

Table 3: Restricted region pruning.

procedureLP-DOMINATE(Bu
U , w,W)

1. solve the following linear program
variables:d, b(s) ∀s ∈ S
maximize d
subject to the constraints

b · (u− u′) > 0, ∀u′ ∈ U − {u}
b · (w − w′) > d, ∀w′ ∈ WP

s∈S b(s) = 1
2. if d > 0 returnb
3. else return nil
procedurePR(Bu

U ,W)
4. D ← ∅
5. whileW 6= ∅
6. w ← any element inW
7. b← LP-DOMINATE(Bu

U , w,D)
8. if b = nil then
9. W ←W − {w}
10. else
11. w ← BEST(b,W)
12. D ← D ∪ {w}
13. W ←W − {w}
14. returnD

The RR algorithm exploits a special structure in the cross-
sum setU ⊕ W, captured in the following theorem. (For
space reason, all theorems are stated without proof). Letφ
stand for the empty set.

Theorem 1 Let u ∈ U and w ∈ W. Then(u + w) ∈
PR(U ⊕W) if and only ifBu

U ∩ Bw
W 6= φ.

Therefore, computingPR(U ⊕W) is equivalent to finding
all u andw such thatBu

U∩Bw
W 6= φ. GivenBu

U andBw
W , the

linear program in the procedure LP-INTERSECT listed in
Table 2 can be used to determine if they intersect. We call
this LP theintersectionLP. The procedurePR∗ then uses
this linear program to construct the minimum setPR(U ⊕
W). We callPR∗ the intersection-basedpruning operator.

Compared to using the originalPR operator (Table 1) to
directly pruneU ⊕ W, the intersection-based pruning re-
quires the same number of LPs to be solved, but each LP
has a fixed number of constraints,|U| + |W|. On one
hand, thePR procedure requires at worst|PR(U ⊕ W)|
constraints. On the other hand, there are also some LPs in
PR that require less than|U|+ |W| constraints. Because of
this, Cassandraet. al (Cassandra, Littman, & Zhang 1997;
Cassandra 1998) developed a clever way of exploiting the
above structure without relying on thePR∗ procedure, but
a dual view of it that can further reduce the number of con-
straints. We describe this dual view next.

4.2 RESTRICTED REGION PRUNING

Just as a vector can be dominated over the whole belief
spaceB, a vectoru 6∈ U is dominated byU over some be-
lief sub regionB̃ if ∀b ∈ B̃,∃u′ ∈ U , such thatb ·u ≤ b ·u′.

If a vector is dominated over the full belief space, then it
must also be dominated over every belief sub region. How-
ever the reverse is not true. We can test if a vectorw 6∈ W is
dominated byW over a belief sub regionBu

U , by solving the
linear program in the procedure LP-DOMINATE2 as listed
in Table 3. We call this LP aregion-basedLP. (Note the
similarity between the region-based LP and the intersec-
tion LP). Using this LP, aregion-basedpruning operator,
PR(Bu

U ,W), removes vectors that are dominated over the
regionBu

U from the setW, in a similar way to White and
Lark’s technique (White 1991). The benefit of the region-
based LP comes from the fact that:

PR(U ⊕W) =
⋃

u∈U
{{u} ⊕ PR(Bu

U ,W)} . (9)

We call this computation theregion-basedpruning ofU ⊕
W. Compared to the previous intersection-based prun-
ing, which tests arbitrary pairs of regionsBu

U andBw
W , the

region-based pruning fixes one regionBu
U , and find all re-

gions defined byW that intersect with it. The benefit is
that the pruning now builds LPs that have constraints rang-
ing from |U| to |U|+ |W|, instead of fixed at|U|+ |W|.

The restricted region(RR) algorithm captures exactly this
property (and hence the name), but it was implemented in a
smart way that does not require actually setting up a differ-
ent LP. Instead, by careful bookkeeping of the source from
which a vector(u + w) ∈ U ⊕W is constructed from, the
RR algorithm is able to perform the pruning with an LP that
is equivalent to a region-based LP, by simply modifying the
D set used in step 16 of Table 1. In particular, when testing
if a vector(u + w) is dominated, one can choose from

D′ := ({u} ⊕W) ∪ {u′ + w|u′ + w ∈ D}, or

D′′ := (U ⊕ {w}) ∪ {u + w′|u + w′ ∈ D},

to replaceD. Choosing either one resulted in the RR al-
gorithm, while choosing the smallest amongD,D′ andD′′
is called thegeneralized incremental pruning(GIP) algo-
rithm (Cassandra, Littman, & Zhang 1997).

However, by doing so the RR algorithm also limits the sav-
ings in the number of constraints to a single cross-sum.
When embedded in IP, where more than two sets are cross-
summed, the savings begin to diminish when measured
against the size of the input. To see this, consider pruning
U⊕V⊕W asPR(U⊕PR(V⊕W)). ForV⊕W, RR is able
to achieve a worst case number of constraints of|V|+ |W|
in each LP. But when pruningU ⊕ PR(V ⊕W), the worst
case number of constraints becomes|U| + |PR(V ⊕ W)|.
In general, as IP progresses, the number of constraints ap-
proaches|Va|, which in the worst case is on the order of∏

z |Va,z|.
2To avoid adding more symbols, we use the same names for

the procedures LP-DOMINATE andPR as in Table 1, and let the
number of parameters distinguish them.

5 REGION-BASED IP

In this section, we show that by explicitly constructing
region-based LPs for the pruning, combined with its dual
view of intersecting belief sub regions, we are able to ex-
tend their benefit across multiple cross-sums. To simplify
the notation, we drop thea andz superscripts in Equation
(3), and refer to the computation as

V = PR(⊕k
i=1Vi). (10)

Furthermore, we omit specifying the range ofi when the
range is from 1 tok.

5.1 INTERSECTION-BASED INCREMENTAL
PRUNING (IBIP)

First, we note that the intersection view captured by Theo-
rem 1 can be extended to multiple cross-sums:

Theorem 2 Let vi ∈ Vi, i = 1, . . . , k, then
∑

i vi ∈
PR(⊕iVi) if and only if ∩iBvi

Vi
6= φ.

Thus, the problem of computingPR(⊕iVi) is equivalent to
finding all intersecting regions. The linear program listed
in the procedure LP-INTERSECT (Table 2) can be easily
extended to handle multiple regions, by adding additional
region constraints to it. From now on we allow the LP-
INTERSECT procedure to accept arbitrary number of re-
gions as parameters. We introduce the operatorI({Vi})
that takes as input a set of vector sets and produces a list of
intersecting regions defined by those vector sets:

I(Vi1 , . . . ,Vit) =
{

(Bv1
Vi1

, . . . ,Bvt

Vit
)| ∩t

j=1 B
vj

Vij
6= φ

}
Pruning of the cross-sums can then be expressed as

PR(⊕iVi)=

{∑
i

vi

∣∣∣∣∣(Bv1
V1

, ...,Bvk

Vk
)∈I(V1, ...,Vk)

}
(11)

A naive approach to computeI({Vi}) is to enumerate all
possible combinations of{BVi

}, and test them for inter-
section using the intersection LP. This requires a total of∏

i |Vi| LPs, but each LP has only
∑

i |Vi| constraints. A
better approach would be to use an incremental process
similar to IP: To computeI(V1,V2, . . . ,Vk), we test if LP-
INTERSECT(BV1 ,BV2 , . . . ,BVk

) is true for all combina-
tions ofBV1 and(BV2 , . . . ,BVk

), where(BV2 , . . . ,BVk
) ∈

I(V2, . . . ,Vk), andI(V2, . . . ,Vk) is computed recursively
in the same manner. The recursion stops atI(Vk−1,Vk),
at which point the naive approach is used to compute
the results. We call this algorithm for computingI and
subsequentlyPR(⊕iVi) the intersection-based incremen-
tal pruning(IBIP).

Surprisingly, IBIP solves the exact same number of LPs
as IP (and the RR variants). To see this, consider the top

level of the recursion. The total number of combinations
betweenBV1 and (BV2 , . . . ,BVk

), and hence the number
of LPs needed, is

|V1| × |I(V2, . . . ,Vk)| = |V1| × |PR(⊕k
i=2Vi)|,

which is also the number of LPs needed at the top recursion
of IP (see end of Section 3). Similarly the same numbers
of LPs are solved at all recursive steps. It follows that the
total numbers of LPs of the two approaches are the same:
|V|

∑
|Vi|.

However, all the LPs used in computingI have at most∑k
i=1 |Vi| constraints. In particular, when computing

I(Vt, . . . ,Vk), the number of constraints ranges from∑k
i=t+1 |Vi| to

∑k
i=t |Vi|. Thus, to computePR(⊕iVi),

the IBIP algorithm requires the same number of LPs but
with possibly an exponential reduction in the number of
constraints compared to IP. The number of constraints does
not depend on the size of the output set, as with IP.

5.2 REGION-BASED INCREMENTAL PRUNING
(RBIP)

In this section, we show how the number of constraints in
IBIP can be further reduced, in a way similar to how RR
reduces the number of constraints from the intersection-
based pruning in the single cross-sum case (Section 4.2).
To make a direct comparison with the recursion in IBIP, we
will start fromVk: To computeI(V1,V2, . . . ,Vk), we first
fix a region inVk, call it BVk

, and find all the elements in
I(V1, . . . ,Vk−1) that intersect withBVk

. We repeat this for
all the regions inVk.

To find all the regions inI(V1, . . . ,Vk−1) that intersect with
BVk

, we first find all regions in eachVi(1 ≤ i ≤ k − 1)
that intersect withBVk

. Recall that each such region corre-
sponds to a vector in the vector set, and the set of intersect-
ing regions corresponds to some subset of vectorsV ′i ⊆ Vi.
V ′i can be precisely computed by the region-based pruning,
V ′i = PR(BVk

,Vi). Once allV ′i are computed, we then
recursively computeI(V ′1, . . . ,V ′k−1), by fixing a BV′k−1

and find all the elements inI(V ′1, . . . ,V ′k−2) that intersect
BVk

∩BV′k−1
. Note that theI operator serves only as a con-

ceptual place-holder in this process; all computations are
carried out using the region-based pruning operator.

Table 4 shows the algorithm that finds the set of intersect-
ing regions using this process. We call the algorithm that
computesPR(⊕iVi) using Table 4 and Equation (11) the
region-based incremental pruning(RBIP) algorithm.

The main motivation for RBIP is to further reduce the num-
ber of constraints. As Table 4 shows, all pruning in RBIP
is of the formPR(B̃,Vt). In line 3, the pruning corre-
sponds to testing someBV1 with some(BV2 , . . . ,BVk

) for
intersection in IBIP. The number of constraints in IBIP is
from

∑k
i=2 |Vi| to

∑k
i=1 |Vi|. The number of constraints in

Table 4: Region-based pruning for computingI.

prpcedure I∗(B̃, {Vi|i ∈ [1, t]})
1. K ← φ
2. if t = 1

3. K ← {Bv
V1 |v ∈ PR(B̃,V1)}

4. else
5. for eachv ∈ Vt

6. V ′i ← PR(B̃ ∩ Bv
Vt

,Vi), i ∈ [1, t− 1]
7. if ∃i ∈ [1, t− 1] such thatV ′i = φ
8. continue
9. D ← I∗(B̃ ∩ Bv

Vt
, {V ′i|i ∈ [1, t− 1]})

10. K ←K ∪ {(BV1 , ...,BVt−1 ,Bv
Vt

)|(BV1 , ...,BVt−1)∈ D}
11. returnK
procedure I(V1,V2, . . . ,Vk)
12. returnI(B, {Vi|i ∈ [1, k]})

RBIP ranges between
∑k

i=2 |V∗i | and
∑k

i=1 |V∗i |, whereV∗i
isVi pruned multiple times previously at line 6. Because of
the region-based pruning,|V∗i | could be much smaller than
|Vi| and this is where the savings come from. The analysis
of the pruning at line 6 follows similarly.

In theory, it is possible that the region-based pruning at line
6 may not prune any vector at all. In this case there is no
saving in the number of constraints as compared to IBIP.
Further, in this worst case scenario, the number of LPs
solved by RBIP is|Z||V|

∑
|Vi|, or |Z| times that of IBIP.

It remains an open question whether this happens in real-
istic POMDPs. In all the experiments we have performed
so far, we observed substential savings in terms of both the
number of LPs and the number of constraints using RBIP.
We present these results next.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results compar-
ing the performance of IBIP, RBIP, and the GIP algorithms
(Section 4). GIP performs uniformally better than RR in all
our tests. We used the POMDP code by Cassandra (1999)
as the basis of our implementation, and used his implemen-
tation of the GIP algorithm for comparison.

6.1 PROBLEMS FROM THE LITERATURES

We first tested the algorithms on a set of problems from
the literature that are publicly available from (Cassandra
1999). These problems are listed in Table 5. Note that
our algorithm addresses the exponential blow-up associated
with the number of observations. With 2 observations, our
algorithms are essentially the same as the GIP algorithm.
Thus we chose problems that have more than 2 observa-
tions. In many such problems, the number of observations
in the problem description is usually larger than the num-
ber ofactualobservations – observations that are possible
in any given state. Thisactualnumber is the number of vec-

Table 5:Test results on problems from the literature. Times are
shown in seconds except when otherwise noted.

problem Z Z∗ T time LP C
19.50 14.38 0.78

4x3 6 2 10 11.91 14.38 0.78
11.11 14.38 0.78
9.86 10.07 0.59

shuttle 5 3 10 7.58 10.07 0.56
7.65 10.41 0.56

>10hr na na
Maze20 8 4 3 30649.68 3545.58 1559.97

6540.66 914.09 238.43
>10hr na na

iff 22 20 2 400.11 608.41 22.00
329.07 759.32 12.45

tor sets whose cross-sum needs to be pruned. We show the
number of observations in the problem in column “Z”, and
the maximal number of actual observations for all actions
in column “Z∗”. Column “T” is the number of iterations
of DP ran to collect the data. Only data for the pruning of
the cross-sums are shown, because that is the only part af-
fected by our algorithms. The column under “time” is the
time spent on the pruning of the cross-sums, in CPU sec-
onds. The column under “LP” is the total number of linear
programs solved during the pruning, in103, and the column
under “C” is the total number of constraints in those linear
programs, in106. A limit of 10 hours was set for all the
algorithms in these tests, after which they were terminated.

For each problem, we list the results for the GIP algorithm
in the top row, followed by IBIP and then RBIP. As we can
see, for the 4x3 problem, where only 2 sets of vectors are
cross-summed, there is no difference in the number of LPs
and the number of constraints. Even so, the time used by
GIP is slightly longer. We conjecture that this is due to the
different LP formations used by the different algorithms.

For the problem “shuttle”, where there are 3 actual observa-
tions, our algorithms begin to show their advantage in terms
of the number of constraints. For the two larger problems
“Maze20” and “iff”, GIP cannot finish the cross-sum prun-
ing for all actions within the 10 hour limit. On “Maze20”,
GIP did not finish the pruning of a single set of the cross-
sums involving 4 vector sets. On “iff”, GIP did finish the
pruning of 2 of the 4 sets of cross-sums at the end of the
10-hour period (36572.52 seconds). Thus RBIP is at least
110 times faster than GIP on this problem. For the 2 sets
processed, GIP solved61.14 × 103 LPs, with a total con-
straints of28.96 × 106, which is already more than twice
the total number of constraints by RBIP on all 4 sets.

On the two larger problems, RBIP uses significantly fewer
constraints than IBIP. This is due to the region-based prun-
ing. In “shuttle” and “iff”, RBIP needs to solve slightly
more LPs than IBIP, while in “Maze20”, RBIP solves sig-
nificantly fewer LPs than IBIP. In all cases, RBIP is at least

Table 6: Results on problem sets(k, 10). For k > 6 only data
for IBIP and RBIP is available.

k |V| time LP C
2 67 0.02 0.08 0.0011

67 0.01 0.10 0.0014
67 0.02 0.10 0.0014

3 365 0.37 0.71 0.02
367 0.17 0.77 0.01
367 0.17 0.71 0.01

4 1740 10.63 4.44 0.40
1740 1.37 4.44 0.11
1740 1.22 3.77 0.09

5 5788 209.32 21.84 5.87
5788 7.20 21.84 0.65
5788 5.41 14.33 0.41

6 21884 3665.81 79.72 71.58
21883 31.72 79.72 2.74
21653 25.66 54.90 1.87

7 60845 127.42 298.55 11.83
59886 92.39 171.32 6.61

8 119789 393.62 907.00 39.45
117596 231.72 399.62 16.74

9 318583 1043.15 2104.89 97.29
310737 716.22 1117.77 51.22

10 720501 2738.04 5290.72 263.87
703278 1802.65 2590.10 126.78

as fast as IBIP, and in many cases a lot faster.

6.2 ARTIFICIAL PROBLEMS

Because of the lack of data collected for GIP on the
larger problems from the literature, we present a special
experiment to better demonstrate the scalability of our
algorithms. We construct a set of random vector sets
{V1, . . . ,Vk} and feed it directly to the algorithms to com-
putePR(⊕k

i=1Vi). This way, we can easily vary the num-
ber of setsk and the size of the input sets involved in the
cross-sum.

Random vector sets, all with 10 states, are created as fol-
lows. The setVi is initialized with a random vector,
which is generated by drawing 10 numbers uniformaly
from [−100.0, 100.0]. Then, additional random vectors are
generated and added to the set provided that they are not
dominated. The procedure LPDOMINATE(v,Vi) is used
to determine if a new vectorv is dominated. This process
is repeated until the number of vectors inVi reachesn. A
test problem is thus specified by the pair(k, n).

It is hard to to determine whether vector sets created this
way represent vector sets encountered in typical POMDPs.
However we do note that it is easy to “reverse-engineer”
a POMDP given an arbitrary set of vectors such that after
one step of DP the exact same vectors are created.

Table 6 lists detailed results comparing the three algorithms
with respect to a problem set(k, 10), wherek ranges from
2 to 10. Column “|V|” is the size of the resulting set af-

Table 7:Speed-up factors compared to GIP on a range of prob-
lems(k, n).

n
k 15 20 25 30 35
2 1.17 1.21 1.10 1.23 1.14

1.17 1.21 1.14 1.23 1.13
3 2.98 4.08 4.53 4.78 4.22

3.28 4.83 5.96 7.02 8.46
4 18.23 18.99 23.48 17.72 11.50

23.35 30.78 31.98 53.85 39.27
5 78.28 81.77 [216.39] [476.60] [680.51]

131.49 123.27 [83.21] [111.63] [171.11]
6 [200.53] [456.26] [669.45] [2009.74] [3696.99]

[143.10] [176.36] [238.38] [433.55] [655.01]

ter the pruning. As we can see clearly from the table, our
two algorithms greatly outperform the GIP algorithm, es-
pecially for largerk values. Fork = 6, IBIP is about 120
faster, and RBIP more than 140 times faster than GIP. The
GIP algorithm can not finish within 10 hours for any of the
problems withk > 6.

We note that for some test problems, the different algo-
rithms give slightly different results as indicated by the|V|
column. This is due to accumulated numerical errors in
solving the LPs, and is more noticeable for larger problems.

Finally, Table 7 presents data showing the speed-up factor
compared to GIP on a range of problems(k, n). The num-
bers in the table show the ratio between the time used by
GIP for the pruning, and the time used by IBIP and RBIP.
For each problem, data for IBIP is shown on the top row,
and data for RBIP is shown on the bottom row. Numbers
in brackets are actual running times (in CPU seconds) for
the algorithms; no data is available from GIP to compute
the speed-up factor on these problems, because GIP did not
finish after 10 hours on those problems. From this table, we
can see that the performance gain is much more dramatic
alongk, the number of vector sets, than alongn, the size of
each set.

7 CONCLUSIONS

We have presented two new algorithms, IBIP and RBIP, for
the pruning of cross-sums in the dynamic programming up-
date for POMDPs. Our algorithms build upon the original
IP algorithm and its RR variants. While IP and RR need
to solve an exponential number of LPs with exponentially
many constraints, our algorithms solve roughly the same
amount of LPs, but with only a polynomial number of con-
straints. Our algorithms demonstrated over 100 times per-
formance speed-up on some problems from the literature,
as well as a set of artificial test problems.

POMDPs are extremely difficult to solve, and the cross-
sum is only one of the several exponential components in

the whole DP process. We are working on other exponen-
tial components and hope to further improve the scalability
of the DP step.

Acknowledgment This work was supported in part by the
National Science Foundation under grant IIS-0219606, and by the
Air Force Office of Scientific Research under grant F49620-03-1-
0090. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
reflect the views of the NSF or AFOSR.

References

Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental pruning: A simple, fast, exact method for partially
observable markov decision processes. InProceedings of
the 13th Annual Conf. on Uncertainty in Artificial Intelli-
gence (UAI-97), 54–61.

Cassandra, A. R. 1998.Exact and Approximate Algo-
rithms for Partially Observable Markov Decision Pro-
cesses. Ph.D. Dissertation, Brown University.

Cassandra, A. R. 1999. Tony’s POMDP page.
http://www.cs.brown.edu/research/ai/pomdp/.

Feng, Z., and Hansen, E. 2001. Approximate planning for
factored POMDPs. InProceedings of the 6th European
Conference on Planning.

Hansen, E. A., and Feng, Z. 2000. Dynamic programming
for POMDPs using a factored state representation. InPro-
ceedings of the 5th international conference on Artificial
Intelligence Planning & Scheduling.

Hansen, E. A. 1998. An improved policy iteration al-
gorithm for partially observable MDPs. InProceedings
of the 14th conference on uncertainty in Artificial Intelli-
gence (UAI-98).

Littman, M.; Cassandra, A.; and Kaelbling, L. 1996. Ef-
ficient dynamic-programming updates in partially observ-
able markov decision processes. Technical Report CS-95-
19, Brown University, Providence, RI.

Littman, M. 1994. The witness algorithm: Solving par-
tially observable markov decision processes. Technical
Report CS-94-40, Brown University Department of Com-
puter Science.

Smallwood, R., and Sondik, E. 1973. The optimal con-
trol of partially observable Markov processes over a finite
horizon.Operations Research21:1071–1088.

White, C. 1991. A survey of solution techniques for
the partially observed markov decision process.Annals
of Operations Research32:215–230.

Zhang, N. L., and Liu, W. 1996. Planning in stochas-
tic domains: Problem characteristics and approximation.
Technical Report HKUST-CS96-31, Hong Kong Univer-
sity of Science and Technology.

