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Abstract

We present a major improvement to the incre-
mental pruning algorithm for solving partially
observable Markov decision processes. Our tech-
nigue targets the cross-sum step of the dynamic
programming (DP) update, a key source of com-
plexity in POMDP algorithms. Instead of reason-
ing about the whole belief space when pruning
the cross-sums, our algorithm divides the belief
space into smaller regions and performs indepen-
dent pruning in each region. We evaluate the ben-
efits of the new technique both analytically and
experimentally, and show that it produces very
significant performance gains. The results con-
tribute to the scalability of POMDP algorithms to
domains that cannot be handled by the best exist-
ing techniques.
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Solving the resulting large number of linear programs is
therefore the main computation in the DP update.

Consequently, many research efforts have focused on im-
proving the efficiency of pruning useless vectors. Among
the state-of-the-art technigues, incremental pruning (IP)
(Zzhang & Liu 1996; Cassandra, Littman, & Zhang 1997,
Cassandra 1998) has proved to be particularly efficient.
Since its introduction, it has been used as a basic compo-
nent of several new POMDP algorithms including an im-
proved policy iteration (PI) algorithm (Hansen 1998), sym-
bolic dynamic programming (Hansen & Feng 2000), and a
symbolic approximation algorithm (Feng & Hansen 2001),
just to name a few. These algorithms use IP as a compo-
nent and exploit various structures in a typical POMDP for
performance gains. For many of these algorithms, the DP
update, and hence IP, remains a dominant factor that affects
their performance.

We introduce a major improvement to the basic incremen-
tal pruning technique, originally proposed by Cassamdra

al (Cassandra, Littman, & Zhang 1997; Cassandra 1998).
In particular, our work can be seen as a generalization of the

A partially observable Markov decision process (POMDP)restricted region(RR) variant of incremental pruning. The
models an agent acting in an uncertain environmentRR algorithm exploits the special structure in the cross-sum
equipped with imperfect actuators and noisy sensors. 10f two setsof vectors to reduce the number of constraints
provides an elegant and expressive framework for modelin the LPs. Because of the two-set restriction, the effective-
ing a wide range of problems in decision making under un+ess of the RR algorithm diminishes as more sets are cross-
certainty. However, this expressiveness in modeling comesummed in the incremental pruning process. We show how
with a prohibitive computational cost when it comes toto overcome this restriction so that the kind of structure
solving a POMDP and obtaining an optimal policy. Im- exploited by RR can be extended to the whole cross-sum
proving the scalability of solution methods for POMDPs is process. The resulting algorithm preserves the simplicity
thus a critical research topic. of the original IP technique. Yet, it delivers superb perfor-

. mance improvements. It also preserves the generality of
Standard sol_ut|on methocjs for POMDPs rely on perfo.rm—the originaﬁ IP algorithm, and czn thus be em%edded i):]to
ing a dynamic programming update of the value functlon,the more advanced algorithms cited above.
represented by a finite set of linear vectors over the state
space. A key source of complexity is the size of the valueThe rest of the paper is organized as follows. In the next
function representation, which grows exponentially with section, we briefly review the POMDP model and the stan-
the number of observations. Fortunately, a large numbedlard dynamic programming algorithm for solving it. Sec-
of vectors in this representation can be pruned away withtion 3 reviews IP. Section 4 reviews the RR variant, but
out affecting the values. There is a standard linear profrom a slightly different perspective than the original work
gramming (LP) method for detecting these useless vector$o facilitate the discussion of our algorithms. Section 5



presents and analyzes our main algorithms. We present eja this form, a POMDP can be solved by iteration alya
perimental results in section 6, and conclude the paper inamic programming updatiat improves a value function

section 7. V : B — R. For all belief states € B:
2 PARTIALLY OBSERVABLE MARKOV V'(b) = meajc {Rg(b) + 4 Z P“(z|b)V(T(b))} . @
DECISION PROCESSES ¢ z€Z

We consider a discrete time POMDP defined by the tup|é3erforming the DP update is challenging because the space
(S,A, P,R, Z,0), where of belief states is continuous. However, Smallwood and

Sondik (Smallwood & Sondik 1973) proved that the DP
backup preserves the piecewise linearity and convexity of

e Sis afinite set of states; ; . .
the value function, leading the way to designing POMDP

e Ais afinite set of actions. algorithms. A piecewise linear and convex value function
. . ] - V can be represented by a finite set$fdimensional vec-
e P is the transition modelP“(s’|s) is the probability  torg of real numbersy = {v°,v',...,v*}, such that the
of reaching state’ if actiona is taken in state; value of each belief stateis defined by
e Ris the reward modelR?(s) is the expected imme- V(b) = maxb - v’
diate reward for taking actiomin states; vieV ’

e Z is a finite set of observations that the agent can acwhereb-v := ¢ b(s)v(s) is the “dot product” between
tually sense; a belief state and a vector. Moreover, a piecewise linear and
) _ _ ) convex value function has a unique minimal-size set of vec-
e O'is the observation model)(z|s’) is the probabil- o5 that represents it. This representation of the value func-
ity that observatior: is seen if actioru is taken and o allows the DP update to be computed exactly. Among
resulted in state’. several algorithms that have been developed to perform this
DP step, incremental pruning (IP) is considered the most
We are interested in maximizing the infinite horizon total efficient.
discounted reward, wherg € [0, 1) is the discount factor.
The standard approach to solving a POMDP is to conver;
it to a belief-stateMDP. A belief stateb is a probability 13 INCREMENTAL PRUNING
distribution over the state spate S — [0, 1], such that
> .cgb(s) = 1.0. Given a belief staté, representing the
agent’s current estimate of the underlying states, the ne>§1
belief statel’ is the revised estimate as a result of taking
actiona and receiving observation It can be computed

In their description of incremental pruning, Cassanelra

I. (Cassandra, Littman, & Zhang 1997) note that the up-
ated value functiofY” of Equation (1) can be defined as a
combination of simpler value functions:

using Bayesian conditioning as follows: Vi) = maxVeE)
acA
V() = B "Gl X P b0 vew) = S vere
= Pa(z|b) “~ ) =
Va,Z(b) — RB(b) +ﬂpa(2|b)V(T(b))

whereP*(z|b) is a normalizing factor: |Z|

) ) Each of these value functions is piecewise linear and con-

Pe(zp) = > |0%zls") Y PU(s/|s)b(s) vex, and can be represented by a unigque minimum-size set
s'eS s€S of vectors. We use the symbals, V*, andV** to refer to

We usel’ = T'(b) to refer to belief update. It has be shown these minimum-size sets.

that a belief state updated this way is a sufficient statistidJsing the script letter& and)V to denote sets of vectors,
that summarizes the entire history of the process. It is theve adopt the following notation to refer to operations on
only information needed to perform optimally. An equiva- sets of vectors. Theross sunof two sets of vectorsl/
lent, completely observable MDP, can be defined over thigndW, is defined by/ & W = {u + wju € U, w € W}.
belief state space as the tugle, A, T, Riz), whereB isthe  An operator that takes a set of vectédfsand reduces it
infinite space of all belief states}, is the action set as be- to its uniqgue minimum form is denoteflR(¢/). We also
fore, T is the belief transition function as defined above, usePR(l{) to denote the resulting minimum set. Formally,
andRj is the reward model, constructed from the POMDPw € PR(Y) if and only if u € U, and3b € B such that for

model: R (b) = > . b(s)R*(s). Vo' £Fuel,u-b>u b



Table 1: Algorithm for pruning a set of vectors.

procedure POINTWISE-DOMINATE W, i)
1. foreachu e U
2. if w(s) <wu(s), Vs € Sthenreturn true
3. return false
procedure LP-DOMINATE (w, i)
4. solve the following linear program
variables:d, b(s) Vs € S
maximized
subject to the constraints
b-(w—u)>d, Yueld
ZSES b(S) =1
5. if d > 0then returrb
6. else return nil
procedure BEST(, i)
7. mar «— —o©
8. foreachu e U
9. if (b-u>maz)or (b -u=maz)and @ <jex w))
10. W — U
11. max «— b-u
12. returnw
procedure PR(W)
13.D 0
14. whilew # 0
15.  w < any elementiny
16.  if POINTWISE-DOMINATE, D) = true
17. W —W —{w}

18. else

19. b < LP-DOMINATE(w, D)
20. if b = nil then

21. We—W—{w}

22. else

23. w «— BESTH, W)

24. D— DU {w}

25. We—W—{w}

26. returnD

POINTWISE-DOMINATE in Table 1 performs this opera-
tion. Although this method of detecting dominated vectors
is fast, it cannot detect all dominated vectors.

There is a linear programming method that can detect all
dominated vectors. Given a vecterand a set of vectors

U that does not include, the linear program in procedure
LP-DOMINATE of Table 1 determines whether adding

to U improves the value function represented/bjor any
belief stateb. If it does, the variablel optimized by the
linear program is the maximum amount by which the value
function is improved, andis the belief state that optimizes
d. If it does not, that is, il < 0, thenw is dominated by

Uu.

The algorithm summarized in Table 1 uses these two tests
for dominated vectors to prune a set of vectors to its min-
imum size. The symbok,., in the pseudo-code denotes
lexicographic ordering. Its significance in implementing
this algorithm was elucidated by Littman (1994).

Among the three pruning steps, Equations (2) and (4) can
be carried out relatively efficiently with respect to their
input size. Equation (3) presents a major bottle-neck be-
cause the size of the cross-sum is the product of the inputs:
U @&W| = |U| x |W|. As aresult, it is necessary to pro-
cess][, [V*#| vectors in computing’®. This translates
into solving] [, |[V*#| LPs. Incremental pruning addresses
this problem by exploiting the fact that tfR&R and® oper-
ators can be interleaved:

PRUDVEW)=PRUGPRVDOW)). (5
Thus Equation (3) can be computed as follows:

VI=PR(V**@PR(V**2G-PR(V» - 1g V%)), (6)

Using this notation, the minimum-size sets of vectors de-

fined earlier can be computed as follows:

V' = PR(UgeaV?) 2)
vt = PR(®:e2V") ®3)
Vs = PR ({v"*v’ € V}), @)

wherev®** is the vector computed by

R%(s)
2]

Ua,z,i(s) _ +8 Z O“(z‘S’)Pﬂ(5/|s)vi(s’).

s’es

which is what the IP algorithm does. The benefit of
IP is the reduction of the number of LPs needed to be
solved. This can best be understood when Equation (6) is
viewed as a recursive process: Instead of pruning the cross-
sume, V= directly, IP breaks it down by recursively
computingPR(@5_, V=) first, and then prun@** @
PR(dk_,V%). Because the size oPR(@F ,V®*)

can potentially be much smaller thd?[f=2 |[Vye-#i, the
number of LPs needed to prure,cz V%~ is reduced
from ], [V*#| to [V»*1| x |PR(®F_,V**)|. Note
that this argument applies equally to the recursive step
PR(®k_,V*=). In general, the total number of LPs used

Table 1 summarizes an algorithm, due to White andby IP and its variants in computing Equation (3) is asymp-
Lark (White 1991), that reduces a set of vectors to a uniquetotically [V*| Y, V=]

minimal-size set by removing “dominated” vectors, that is,

vectors that can be removed without affecting the value of4 PRUNING OF (Z/I & W)

any belief state.

There are two tests for dominated vectors. The simplesto prune a single cross-sum of two vector gétand W,
method of removing dominated vectors is to remove anyincremental pruning first constructs the wholelget WV,
vector u that is pointwise dominated by another vector and then uses thBR procedure (Table 1) to prune it. This

w. That is,u(s) < w(s) for all s € S. The procedure

requiresi/| x |[W| LPs; each LP has a number of constraints



Table 2: Pruning of/ & WV via region intersection. Table 3: Restricted region pruning.

procedure LP-INTERSECTE;;, Byy) procedure LP-DOMINATE(B;;, w, W)
1. construct the following linear program: 1. solve the following linear program
variablesb(s) Vs € S variables:d, b(s) Vs € S
maximize 0 maximize d
subject to the constraints subject to the constraints
b (u—u') >0, Vu' el — {u} b (u—u') >0, Vu' el — {u}
b (w—w") >0, Vw € W — {w} b (w—w')>d, Vw e W
Zsesb( )_1 Esesb( ):1
2. ifthe linear program is feasible, retufiRUE 2. ifd > 0returnb
3. else returiFALSE 3. else return nil
procedure PR* (U & W) procedure PR(B;, W)
4, K—¢ 4. D0
5. foreachlu+w) e ®W 5. whileWw #
6. if LP-INTERSECT B, By4) 6. w «— any element iny
7. K—KuU{(u+w)} 7. b « LP-DOMINATE(BY, w, D)
8. returniC 8. if b = nil then
9. W—W —{w}
10. else
ranging from 1 toPR(Z & W)|, which in the worst case |11- w «— BESTP, W)
1 . 12. D —DU{w}
can beft/| x [W|*. Cassandrat. al (Cassandra, Littman, |73 W e W — {w}
& Zhang 1997; Cassandra 1998) noticed that thé/setV 14. returnD

has a special structure, and developedréistricted region
(RR) algorithm to take advantage of this structures to re-

duce the number of constraints in the LPs. In this secThe RR algorithm exploits a special structure in the cross-
tion we review thelr RR algorlthm but from two different sym sets & W, captured in the fo||0W|ng theorem. (For

rithms. We note that these two views build on the origi- stand for the empty set.

nal intuitions behind the RR algorithm; they have been de-
scribed less formally in the original paper. Theorem 1 Letu € Y andw € W. Then(u + w) €
PR(U @ W) if and only if B, N B33, # ¢.
4.1 PRUNING BY REGION INTERSECTION
Therefore, computin@R (U & W) is equivalent to finding
Assume botli/ andW are minimal, in other wordg/ =  all uw andw such thaB3y; N Bj;, # ¢. GivenB;; andBy;,, the
PR(U) andWW = PR(W). In addition, assume that all vec- linear program in the procedure LP-INTERSECT listed in
tor sets involved in a cross-sum contain at least 2 vectorsjable 2 can be used to determine if they intersect. We call
since the cross-sum with a single vector does not introducthis LP theintersectionLP. The procedur@®R* then uses
any new dominated vector. Each vectore I/ defines a this linear program to construct the minimum B& (U ©
witness region3;, over whichu dominates all other vec- V). We callPR" theintersection-base@runing operator.

tors in¢{ (Littman, Cassandra, & Kaelbling 1996): Compared to using the origin&®R operator (Table 1) to

By ={bb-(u—u')>0,Vu' el —{u}}. (7) directly prunel/ & W, the intersection-based pruning re-

L . i quires the same number of LPs to be solved, but each LP
Fprsmphcny of notation, we usBy, to refertoa.b.ellef re-  has a fixed number of constraintd/| + [W|. On one
gion defined by some vector &, when the specific vector hand, thePR procedure requires at worSER(U @ W)|
s irrelevant or under_stood from the context. We alsoBse o,ngraints, On the other hand, there are also some LPs in
to refer to some region when the vector and vector set argp 4 - require less thapy| + || constraints. Because of
irrelevant or understood from the context. this, Cassandrat. al (Cassandra, Littman, & Zhang 1997;
Note that each inequality in Equation (7) can be represente@assandra 1998) developed a clever way of exploiting the
by a vector,(u — u’), over the state space. We call the above structure without relying on tfi&R" procedure, but
inequality associated with such a vectoegion constraint ~ a dual view of it that can further reduce the number of con-
and use the notatioh(BY) := {(u — v/)|u’ € U — {u}}  straints. We describe this dual view next.
to represent the set of region constraints defirfifjg Note

that for any two regiong;; andB;;,, 4.2 RESTRICTED REGION PRUNING

L(By N Byy) = L(By) UL(BY). (8) Just as a vector can be dominated over the whole belief

The exact number of constraints or LPs here and throughousPaces, a vectoru ¢ U is dominated by/ over some be-
the paper may vary slightly from the asymptotic figures we use. lief sub region3if Vb € B, 3u’ € U, such thab-u < b-/.



If a vector is dominated over the full belief space, then it5 REGION-BASED IP

must also be dominated over every belief sub region. How-

ever the reverse is not true. We can testif aveetgf Wis  In this section, we show that by explicitly constructing
dominated by/V over a belief sub regioi}, by solvingthe  region-based LPs for the pruning, combined with its dual
linear program in the procedure LP-DOMINAFEs listed  view of intersecting belief sub regions, we are able to ex-
in Table 3. We call this LP @egion-based_P. (Note the tend their benefit across multiple cross-sums. To simplify
similarity between the region-based LP and the intersecthe notation, we drop the andz superscripts in Equation
tion LP). Using this LP, aegion-basedoruning operator, (3), and refer to the computation as

PR(B;, W), removes vectors that are dominated over the

region By, from the sedV, in a similar way to White and Y =PR(®E, V). (10)
Lark’s technique (White 1991). The benefit of the region-

based LP comes from the fact that: Furthermore, we omit specifying the rangeiofvhen the

range is from 1 tc.
PRU W) = | {{u} oPR(BE,W)}.  (9)
ueU 5.1 INTERSECTION-BASED INCREMENTAL

) ) _ . PRUNING (IBIP)
We call this computation theegion-basedruning oft/ &

W. Compared to the previous intersection-based prunrirst, we note that the intersection view captured by Theo-
ing, which tests arbitrary pairs of regiof; andB3;,, the  rem 1 can be extended to multiple cross-sums:
region-based pruning fixes one regiBfj, and find all re-

gions defined by that intersect with it. The benefitis Theorem2 Letv;, € V;, i = 1,...,k, then) . v; €
that the pruning now builds LPs that have constraints rangPR(®;V;) if and only if N; By, # ¢.

ing from |U/] to |U| + |W)|, instead of fixed af/| + |[WV).

) . ) _ Thus, the problem of computifgR(&;V;) is equivalent to
Therestricted region(RR) algorithm captures exactly this finging all intersecting regions. The linear program listed
property (and hence the name), but it was implemented in &, the procedure LP-INTERSECT (Table 2) can be easily
smart way that does not require actually setting up a differuytended to handle multiple regions, by adding additional
ent LP. Instead, by careful bookl_<eeping of the source fromegion constraints to it. From now on we allow the LP-
which a vector(u + w) € U & W is constructed from, the |NTERSECT procedure to accept arbitrary number of re-
RR algorithm is able to perform the pruning with an LP thatgions as parameters. We introduce the oper&tpy; })
is equivalent to a region-based LP, by simply modifying thethat takes as input a set of vector sets and produces a list of

D setused in step 16 of Table 1. In particular, when testingntersecting regions defined by those vector sets:
if a vector(u + w) is dominated, one can choose from

IVi,...,. V) = Ul,..., vt t vj_
D' = ({u}®W)U{u +uwlu +w e D},or (iaree Vi) = {(BY, oo B I s B, 70
D" = U {w})U{utw|ut+w €D}, Pruning of the cross-sums can then be expressed as

to replaceD. Choosing either one resulted in the RR al-
gorithm, while choosing the smallest amaRgD’ andD”’ PR(®:Vi)=¢> v;
is called thegeneralized incremental pruningIP) algo- @

rithm (Cassandra, Littman, & Zhang 1997). A naive approach to compui&{V;}) is to enumerate all
However, by doing so the RR algorithm also limits the sav-possible combinations ofBy, }, and test them for inter-
ings in the number of constraints to a single cross-sumsection using the intersection LP. This requires a total of
When embedded in IP, where more than two sets are cros$]; [Vi| LPs, but each LP has only’; |V;| constraints. A
summed, the savings begin to diminish when measuretietter approach would be to use an incremental process

(B@ll,...,B@’Z)EH(Vl,...,Vk)} (11)

against the size of the input. To see this, consider pruningimilar to IP: To computé(V1, Vs, ..., V), we test if LP-
UDVOW asPRUSPR(VEW)). ForveW, RRisable  INTERSECTBy,, By,, ..., By, ) is true for all combina-
to achieve a worst case number of constraintd/ofi- V|  tions of By, and(By,, ..., By, ), where(By,, ..., By, ) €
in each LP. But when pruning & PR(V & W), the worst ~ 1(Vz, ..., Vi), andI(Vs, ..., V) is computed recursively
case number of constraints beconiigs+ [PR(V @ W)|.  in the same manner. The recursion stopd(&% -1, Vi),

In general, as IP progresses, the number of constraints apt which point the naive approach is used to compute
proachegV?|, which in the worst case is on the order of the results. We call this algorithm for computifigand
IL [v*=|. subsequentlyP’R(;V;) the intersection-based incremen-

- tal pruning (IBIP).

To avoid adding more symbols, we use the same names for .
the procedures LP-DOMINATE arBR as in Table 1, and letthe Surprisingly, IBIP solves the exact same number of LPs
number of parameters distinguish them. as IP (and the RR variants). To see this, consider the top



level of the recursion. The total number of combinations
betweenBy, and (By,,...,By,), and hence the number

of LPs needed, is prpcedure T* (B, {Vili € [1,t]})
1. K—2¢
Vi X [I(Va, ..., Vi) = V1| x [PR(®E_,V))], Cift=1

2
. 13, K —{B},|lvePR(B,W)}
which is also the number of LPs needed at the top recursiony. else

Table 4: Region-based pruning for computing

of IP (see end of Section 3). Similarly the same numbers5.  for eachw € V,
of LPs are solved at all recursive steps. It follows that the 6. Vi —PR(BNBY,,Vi),i € [1,t 1]
total numbers of LPs of the two approaches are the same? if 3i € [1,¢ — 1] such that; = ¢
V| Z Vil 8. continue ‘
9.  D—TI"BnBY,{Vie[lt-1]})

However, all the LPs used in computifighave at most |10. K —KU{(Bv,,..., Bv, ,,B%,)|(Bv,, ..., Bv,_,)e D}
S>F_|V;| constraints. In particular, when computing | 11 returmk

1= . procedure I(Vi, Vs, ..., Vi)
I(Vt,...,Vk), the number of constraints ranges from|7, returnl(B, {(Vii € (1, k]})
Zf:tﬂ |V;| to Zf:t [V;]. Thus, to computéPR(&;V;),
the IBIP algorithm requires the same number of LPs but
with possibly an exponential reduction in the number ofpgp ranges betweeEfzz V¥ andezl |V, whereVr

constraints compared to IP. The number of constraints dogg V; pruned multiple times previously at line 6. Because of

not depend on the size of the output set, as with IP. the region-based pruning/?| could be much smaller than
|V;| and this is where the savings come from. The analysis
5.2 REGION-BASED INCREMENTAL PRUNING of the pruning at line 6 follows similarly.
(RBIP)

In theory, it is possible that the region-based pruning at line
In this section, we show how the number of constraints i may not prune any vector at all. In this case there is no
IBIP can be further reduced, in a way similar to how RRsaving in the number of constraints as compared to IBIP.
reduces the number of constraints from the intersectionFurther, in this worst case scenario, the number of LPs
based pruning in the single cross-sum case (Section 4.230lved by RBIP i§Z||V|>_ Vi, or |Z| times that of IBIP.
To make a direct comparison with the recursion in IBIP, welt remains an open question whether this happens in real-

will start from V;,: To computel(V;, Vs, ..., Vi), we first  istic POMDPs. In all the experiments we have performed

fix a region inVy, call it By, , and find all the elements in SO far, we observed substential savings in terms of both the
I(V, ..., Vs_1) that intersect witt3y,, . We repeat this for number of LPs and the number of constraints using RBIP.

all the regions inV. We present these results next.

To find all the regionsifi(Vy, . . ., Vx—1) that intersect with

By, , we first find all regions in each;(1 < i < k—1) 6 EXPERIMENTAL RESULTS

that intersect wittBy,, . Recall that each such region corre-

sponds to a vector in the vector set, and the set of intersectn this section, we present experimental results compar-
ing regions corresponds to some subset of vedtpis V. ing the performance of IBIP, RBIP, and the GIP algorithms
V! can be precisely computed by the region-based pruningSection 4). GIP performs uniformally better than RR in alll
V! = PR(By,,V;). Once allV! are computed, we then our tests. We used the POMDP code by Cassandra (1999)
recursively computd(Vy,...,V;_,), by fixing aBy, | as the basis of our implementation, and used his implemen-
and find all the elements iK(V},...,V,_,) that intersect tation of the GIP algorithm for comparison.

By, N By, . Note that thd operator serves only as a con-

ceptual place-holder in this process; all computations arg.1 PROBLEMS FROM THE LITERATURES

carried out using the region-based pruning operator.

We first tested the algorithms on a set of problems from

Table 4 shows the algorithm that finds the set of mtersectihe literature that are publicly available from (Cassandra

ing regions using this Process. We call the "’?'90“”“"” that1999). These problems are listed in Table 5. Note that
computesPR(4;V;) using Table 4 and Equation (11) the laorithm add th tial blow- iated
region-based incremental prunif®BIP) algorithm. ouralgorithm addresses the exponentia’ biow-up associate
with the number of observations. With 2 observations, our
The main motivation for RBIP is to further reduce the num-algorithms are essentially the same as the GIP algorithm.
ber of constraints. As Table 4 shows, all pruning in RBIPThus we chose problems that have more than 2 observa-
is of the formIE”]R(&Vt). In line 3, the pruning corre- tions. In many such problems, the number of observations
sponds to testing sont,, with some(By,,...,By,) for  in the problem description is usually larger than the num-
intersection in IBIP. The number of constraints in IBIP is ber ofactual observations — observations that are possible
from Zf:2 [V;| to Zle |V;|. The number of constraints in in any given state. Thigctualnumber is the number of vec-



Table 5:Test results on problems from the literature. Times areTable 6: Results on problem set, 10). Fork > 6 only data

shown in seconds except when otherwise noted. for IBIP and RBIP is available.
bi T 7T T . 3 = [ k] VI ] time | LP ]| C]
[problem[ Z [ Z" [ T ]  time] | | 2 671 002| 00800011
19.50 14.38 0.78 67 0.01 0.10 | 0.0014
4x3 6 2|10 11.91 14.38 0.78 67 0.02 0.10 | 0.0014
1111] 1438 0.78 3 365 0.37 0.71| 0.2
9.86 10.07 0.59 367 0.17 0.77 0.01
shuttle 5 3|10 7.58 10.07 0.56 367 0.17 0.71 0.01
7.65| 1041 0.56 4 1740 | 10.63 444 040
>10hr na na 1740 1.37 4.44 0.11
Maze20| 8| 4| 3| 30649.68| 3545.58| 1559.97 1740 1.22 3771 0.09
6540.66| 914.09| 238.43 5| 57/88| 209.32| 21.84| 587
_ >10hr na na 5788 720| 21.84| 0.65
iff 221 20| 2 400.11| 608.41| 22.00 5788 541 | 14.33| 041
329.07| 759.32| 1245 6 | 21884 3665.81| 79.72| 7158

21883 31.72 79.72 2.74
21653 25.66 54.90 1.87
7| 60845| 127.42| 298.55| 11.83
59886 92.39 | 171.32 6.61

tor sets whose cross-sum needs to be pruned. We show the
number of observations in the problem in colunii;'and

the maximal number of actual observations for all actions 8 1 119780 393.62| 907.00| 39.45
in column “Z*”. Column “T” is the number of iterations 117596| 231.72| 399.62| 16.74
of DP ran to collect the data. Only data for the pruning of 9 | 318583| 1043.15| 2104.89| 97.29
the cross-sums are shown, because that is the only part af- 310737| 716.22| 1117.77] 51.22

10 | 720501 | 2738.04| 5290.72| 263.87

fected by our algorithms. The column under “time” is the 703278 | 180265 2590 10| 12678

time spent on the pruning of the cross-sums, in CPU sec-
onds. The column under “LP” is the total number of linear
programs solved during the pruning,lié®, and the column ~ as fast as IBIP, and in many cases a lot faster.
under “C” is the total number of constraints in those linear

programs, inl0%. A limit of 10 hours was set for all the 6.2 ARTIEICIAL PROBLEMS

algorithms in these tests, after which they were terminated.

. ... Because of the lack of data collected for GIP on the
For each problem, we list the results for the GIP algorithm . .
larger problems from the literature, we present a special

in the top row, followed by IBIP and then RBIP. As we can . .
experiment to better demonstrate the scalability of our
see, for the 4x3 problem, where only 2 sets of vectors are

) . ; algorithms.  We construct a set of random vector sets
cross-summed, there is no difference in the number of LP e X
. : Vi, ..., Vi } and feed it directly to the algorithms to com-
and the number of constraints. Even so, the time used b utePR(&_, V). This way, we can easily vary the num-
GIP is slightly longer. We conjecture that this is due to the =1 Y, yvary

different LP formations used by the different algorithms. tc)r?c:szf-ssjrfﬂ and the size of the input sets involved in the

For the problem "shuttle”, where there are 3 actual ObserValfiandom vector sets, all with 10 states, are created as fol-
tions, our algorithms begin to show their advantage interm?oWs The setV; is, initialized with a,random vector
. 3 L]

of the number of constraints. For the two larger problemsWhich is generated by drawing 10 numbers uniformal
“Maze20” and “iff”, GIP cannot finish the cross-sum prun- 9 y 9 y

. X I o ; » from[—100.0,100.0]. Then, additional random vectors are
ing for all actions within the 10 hour limit. On “Maze20", h . hat th
GIP did not finish the pruning of a single set of the Cross_generated and added to the set provided that they are not

sums involving 4 vector sets. On “iff”, GIP did finish the dominated. The procedure LPDOMINATE V) is used

pruning of 2 of the 4 sets of cross-sums at the end of théo determine if a new vectar is dominated. This process

10-hour period (36572.52 seconds). Thus RBIP is at lea: P repea;:ed u_ntllhthe num_t?_erdo; vehctorsﬁnreachem. A

110 times faster than GIP on this problem. For the 2 setsest problem is thus specified by the pelirn).

processed, GIP solvetl.14 x 103 LPs, with a total con- It is hard to to determine whether vector sets created this

straints 0f28.96 x 10°, which is already more than twice way represent vector sets encountered in typical POMDPs.

the total number of constraints by RBIP on all 4 sets. However we do note that it is easy to “reverse-engineer”

On the two larger problems, RBIP uses significantly fewera POMDP given an arbitrary set of vectors such that after
. . . one step of DP the exact same vectors are created.

constraints than IBIP. This is due to the region-based prun-

ing. In “shuttle” and “iff", RBIP needs to solve slightly Table 6 lists detailed results comparing the three algorithms

more LPs than IBIP, while in “Maze20”, RBIP solves sig- with respect to a problem sét, 10), wherek ranges from

nificantly fewer LPs than IBIP. In all cases, RBIP is at least2 to 10. Column {V|" is the size of the resulting set af-



the whole DP process. We are working on other exponen-

Table 7:Speed-up factors compared to GIP on a range of probya) components and hope to further improve the scalability

lems(k,n).
(. m) of the DP step.
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