
9th Neural Information Processing Systems ConferenceDenver, Colorado � December 1996Reinforcement Learning for MixedOpen-loop and Closed-loop ControlEric A. Hansen, Andrew G. Barto, and Shlomo ZilbersteinDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003fhansen,barto,shlomog@cs.umass.eduAbstractClosed-loop control relies on sensory feedback that is usually as-sumed to be free. But if sensing incurs a cost, it may be cost-e�ective to take sequences of actions in open-loop mode. We de-scribe a reinforcement learning algorithm that learns to combineopen-loop and closed-loop control when sensing incurs a cost. Al-though we assume reliable sensors, use of open-loop control meansthat actions must sometimes be taken when the current state ofthe controlled system is uncertain. This is a special case of thehidden-state problem in reinforcement learning, and to cope, ouralgorithm relies on short-term memory. The main result of the pa-per is a rule that signi�cantly limits exploration of possible memorystates by pruning memory states for which the estimated value ofinformation is greater than its cost. We prove that this rule allowsconvergence to an optimal policy.1 IntroductionReinforcement learning (RL) is widely-used for learning closed-loop control poli-cies. Closed-loop control works well if the sensory feedback on which it relies isaccurate, fast, and inexpensive. But this is not always the case. In this paper, weaddress problems in which sensing incurs a cost, either a direct cost for obtainingand processing sensory data or an indirect opportunity cost for dedicating limitedsensors to one control task rather than another. If the cost for sensing is signi�cant,exclusive reliance on closed-loop control may make it impossible to optimize a per-formance measure such as cumulative discounted reward. For such problems, wedescribe an RL algorithm that learns to combine open-loop and closed-loop control.By learning to take open-loop sequences of actions between sensing, it can optimizea tradeo� between the cost and value of sensing.

The problem we address is a special case of the problem of hidden state or partialobservability in RL (e.g., Whitehead & Lin, 1995; McCallum, 1995). Although weassume sensing provides perfect information (a signi�cant limiting assumption), useof open-loop control means that actions must sometimes be taken when the currentstate of the controlled system is uncertain. Previous work on RL for partiallyobservable environments has focused on coping with sensors that provide imperfector incomplete information, in contrast to deciding whether or when to sense. Tan(1991) addressed the problem of sensing costs by showing how to use RL to learn acost-e�ective sensing procedure for state identi�cation, but his work addressed thequestion of which sensors to use, not when to sense, and so still assumed closed-loopcontrol.In this paper, we formalize the problem of mixed open-loop and closed-loop controlas a Markov decision process and use RL in the form of Q-learning to learn an op-timal, state-dependent sensing interval. Because there is a combinatorial explosionof open-loop action sequences, we introduce a simple rule for pruning this largesearch space. Our most signi�cant result is a proof that Q-learning converges toan optimal policy even when a fraction of the space of possible open-loop actionsequences is explored.2 Q-learning with sensing costsQ-learning (Watkins, 1989) is a well-studied RL algorithm for learning to controla discrete-time, �nite state and action Markov decision process (MDP). At eachtime step, a controller observes the current state x, takes an action a, and receivesan immediate reward r with expected value r(x; a). With probability p(x; a; y)the process makes a transition to state y, which becomes the current state on thenext time step. A controller using Q-learning learns a state-action value function,Q̂(x; a), that estimates the expected total discounted reward for taking action ain state x and performing optimally thereafter. Each time step, Q̂ is updated forstate-action pair (x; a) after receiving reward r and observing resulting state y, asfollows: Q̂(x; a) Q̂(x; a) + � hr +
V̂ (y) � Q̂(x; a)i ;where � 2 (0; 1] is a learning rate parameter,
 2 [0; 1) is a discount factor, andV̂ (y) = maxb Q̂(y; b). Watkins and Dayan (1992) prove that Q̂ converges to anoptimal state-action value function Q (and V̂ converges to an optimal state valuefunction V) with probability one if all actions continue to be tried from all states,the state-action value function is represented by a lookup-table, and the learningrate is decreased in an appropriate manner.If there is a cost for sensing, acting optimally may require a mixed strategy of open-loop and closed-loop control that allows a controller to take open-loop sequencesof actions between sensing. This possibility can be modeled by an MDP with twokinds of actions: control actions that have an e�ect on the current state but do notprovide information, and a sensing action that reveals the current state but has noother e�ect. We let o (for observation) denote the sensing action and assume itprovides perfect information about the underlying state. Separating control actionsand the sensing action gives an agent control over when to receive sensory feedback,and hence, control over sensing costs.When one control action follows another without an intervening sensing action, thesecond control action is taken without knowing the underlying state. We modelthis by including \memory states" in the state set of the MDP. Each memorystate represents memory of the last observed state and the open-loop sequence ofcontrol actions taken since; because we assume sensing provides perfect information,

x

xa

xaa

xab

xba

xbb

xbFigure 1: A tree of memory states rooted at observed state x. The set of controlactions is fa,bg and the length bound is 2.remembering this much history provides a su�cient statistic for action selection(Monahan, 1982). Possible memory states can be represented using a tree likethe one shown in Figure 1, where the root represents the last observed state andthe other nodes represent memory states, one for each possible open-loop actionsequence. For example, let xa denote the memory state that results from takingcontrol action a in state x. Similarly, let xab denote the memory state that resultsfrom taking control action b in memory state xa. Note that a control action causesa deterministic transition to a subsequent memory state, while a sensing actioncauses a stochastic transition to an observed state { the root of some tree. Thereis a tree like the one in �gure 1 for each observable state.This problem is a special case of a partially observable MDP and can be formalizedin an analogous way (Monahan, 1982). Given a state-transition and reward modelfor a core MDP with a state set that consists only of the underlying states of asystem (which for this problem we also call observable states), we can de�ne a state-transition and reward model for an MDP that includes memory states in its stateset. As a convenient notation, let p(x; a1::ak; y) denote the probability that takingan open-loop action sequence a1::ak from state x results in state y, where both xand y are states of the underlying system. These probabilities can be computedrecursively from the single-step state-transition probabilities of the core MDP asfollows: p(x; a1::ak; y) =Xz p(x; a1::ak�1; z)p(z; ak; y):State-transition probabilities for the sensing action can then be de�ned asp(xa1::ak; o; y) = p(x; a1::ak; y);and a reward function for the generalized MDP can be similarly de�ned asr(xa1::ak�1; ak) =Xy p(x; a1::ak�1; y)r(y; ak);where the cost of sensing in state x of the core MDP is r(x; o).If we assume a bound on the number of control actions that can be taken betweensensing actions (i.e., a bound on the depth of each tree) and also assume a �nitenumber of underlying states, the number of possible memory states is �nite. Itfollows that the MDP we have constructed is a well-de�ned �nite state and actionMDP, and all of the theory developed for Q-learning continues to apply, includingits convergence proof. (This is not true of partially observable MDPs in general.)Therefore, Q-learning can in principle �nd an optimal policy for interleaving controlactions and sensing, assuming sensing provides perfect information.3 Limiting ExplorationA problem with including memory states in the state set of an MDP is that itincreases the size of the state set exponentially. The combinatorial explosion of

state-action values to be learned raises doubt about the computational feasibility ofthis generalization of RL.We present a solution in the form of a rule for pruning eachtree of memory states, thereby limiting the number of memory states that must beexplored. We prove that even if some memory states are never explored, Q-learningconverges to an optimal state-action value function. Because the state-action valuefunction is left unde�ned for unexplored memory states, we must carefully de�newhat we mean by an optimal state-action value function.De�nition: A state-action value function is optimal if it is su�cient for generat-ing optimal behavior and the values of the state-action pairs visited when behavingoptimally are optimal.A state-action value function that is unde�ned for some states is optimal, by thisde�nition, if a controller that follows it behaves identically to a controller with acomplete, optimal state-action value function. This is possible if the states for whichthe state-action value function is unde�ned are not encountered when an agent actsoptimally. Barto, Bradtke, and Singh (1995) invoke a similar idea for a di�erentclass of problems.Let g(xa1::ak) denote the expected reward for taking actions a1::ak in open-loopmode after observing state x:g(xa1::ak) = r(x; a1) + k�1Xi=1
ir(xa1::ai; ai+1):Let h(xa1::ak) denote the discounted expected value of perfect information afterreaching memory state xa1::ak, which is equal to the discounted Q-value for sensingin memory state xa1::ak minus the cost for sensing in this state:h(xa1::ak) =
kXy p(xa1::ak; o; y)V (y) =
k(Q(xa1::ak; o)� r(xa1::ak; o)):Both g and h are easily learned during Q-learning, and we refer to the learnedestimates as ĝ and ĥ. These are used in the pruning rule, as follows:Pruning rule: If ĝ(xa1::ak)+ ĥ(xa1::ak) � V̂ (x), then memory states that descendfrom xa1::ak do not need to be explored. A controller should immediately execute asensing action when it reaches one of these memory states.The intuition behind the pruning rule is that a branch of a tree of memory statescan be pruned after reaching a memory state for which the value of informationis greater than or equal to its cost. Because pruning is based on estimated values,memory states that are pruned at one point during learning may later be explored aslearned estimates change. The net e�ect of pruning, however, is to focus explorationon a subset of memory states, and as Q-learning converges, the subset of unprunedmemory states becomes stable. The following theorem is proved in an appendix.Theorem: Q-learning converges to an optimal state-action value function withprobability one if, in addition to the conditions for convergence given by Watkinsand Dayan (1992), exploration is limited by the pruning rule.This result is closely related to a similar result for solving this class of problemsusing dynamic programming (Hansen, 1997), where it is shown that pruning canassure convergence to an optimal policy even if no bound is placed on the lengthof open-loop action sequences { under the assumption that it is optimal to senseat �nite intervals. This additional result can be extended to Q-learning as well,although we do not present the extension in this paper. An arti�cial length boundcan be set as low or high as desired to ensure a �nite set of memory states.

Goal 1
2 3
4 5
6 7 8

9 10 11 12
13 15 16
17 18 20

14
19

Goal Stop 7 WNNNO 14 NWNO

 1 WO 8 WWNNNO 15 WWO

 2 NO 9 NWO 16 WWWO

 3 NWO 10 WNWO 17 NNNO

 4 NNO 11 WWO 18 WNNNO

 5 NNWO 12 WWWO 19 WWNO

 6 NNNO 13 NNO 20 WWWNO

(a) (b)Figure 2: (a) Grid world with numbered states (b) Optimal policyWe use the notation g and h in our statement of the pruning rule to emphasizeits relationship to pruning in heuristic search. If we regard the root of a tree ofmemory states as the start state and the memory state that corresponds to thebest open-loop action sequence as the goal state, then g can be regarded as thecost-to-arrive function and the value of perfect information h can be regarded as anupper bound on the cost-to-go function.4 ExampleWe describe a simple example to illustrate the extent of pruning possible using thisrule. Imagine that a \robot" must �nd its way to a goal location in the upperleft-hand corner of the grid shown in Figure 2a. Each cell of the grid correspondsto a state, with the states numbered for convenient reference. The robot has �vecontrol actions; it can move north, east, south, or west, one cell at a time, or itcan stop. The problem ends when the robot stops. If it stops in the goal state itreceives a reward of 100, otherwise it receives no reward. The robot must executea sequence of actions to reach the goal state, but its move actions are stochastic. Ifthe robot attempts to move in a particular direction, it succeeds with probability0.8. With probability 0.05 it moves in a direction 90 degrees o� to one side of itsintended direction, with probability 0.05 it moves in a direction 90 degrees o� to theother side, and with probability 0.1 it does not move at all. If the robot's movementwould take it outside the grid, it remains in the same cell. Because its progress isuncertain, the robot must interleave sensing and control actions to keep track of itslocation. The reward for sensing is �1 (i.e., a cost of 1) and for each move action itis �4. To optimize expected total reward, the robot must �nd its way to the goalwhile minimizing the combined cost of moving and sensing.Figure 2b shows the optimal open-loop sequence of actions for each observable state.If the bound on the length of an open-loop sequence of control actions is �ve, thenumber of possible memory states for this problem is over 64,000, a number thatgrows explosively as the length bound is increased (to over 16 million when thebound is nine). Using the pruning rule, Q-learning must explore just less than 1000memory states (and no deeper than nine levels in any tree) to converge to an optimalpolicy, even when there is no bound on the interval between sensing actions.5 ConclusionWe have described an extension of Q-learning for MDPs with sensing costs anda rule for limiting exploration that makes it possible for Q-learning to convergeto an optimal policy despite exploring a fraction of possible memory states. Asalready pointed out, the problem we have formalized is a partially observable MDP,

although one that is restricted by the assumption that sensing provides perfectinformation. An interesting direction in which to pursue this work would be toexplore its relationship to work on RL for partially observable MDPs, which has sofar focused on the problem of sensor uncertainty and hidden state. Because someof this work also makes use of tree representations of the state space and of learnedstate-action values (e.g., McCallum, 1995), it may be that a similar pruning rulecan constrain exploration for such problems.AcknowledgementsSupport for this work was provided in part by the National Science Foundation un-der grants ECS-9214866 and IRI-9409827 and in part by Rome Laboratory, USAF,under grant F30602-95-1-0012.ReferencesBarto, A.G.; Bradtke, S.J.; & Singh, S.P. (1995) Learning to act using real-timedynamic programming. Arti�cial Intelligence 72(1/2):81-138.Hansen, E.A. (1997) Markov decision processes with observation costs. Universityof Massachusetts at Amherst, Computer Science Technical Report 97-01.McCallum, R.A. (1995) Instance-based utile distinctions for reinforcement learningwith hidden state. In Proc. 12th Int. Machine Learning Conf. Morgan Kaufmann.Monahan, G.E. (1982) A survey of partially observable Markov decision processes:Theory, models, and algorithms. Management Science 28:1-16.Tan, M. (1991) Cost-sensitive reinforcement learning for adaptive classi�cation andcontrol. In Proc. 9th Nat. Conf. on Arti�cial Intelligence. AAAI Press/MIT Press.Watkins, C.J.C.H. (1989) Learning from delayed rewards. Ph.D. Thesis, Universityof Cambridge, England.Watkins, C.J.C.H. & Dayan, P. (1992) Technical note: Q-learning. Machine Learn-ing 8(3/4):279-292.Whitehad, S.D. & Lin, L.-J.(1995) Reinforcement learning of non-Markov decisionprocesses. Arti�cial Intelligence 73:271-306.AppendixProof of theorem: Consider an MDP with a state set that consists only of thememory states that are not pruned. We call it a \pruned MDP" to distinguishit from the original MDP for which the state set consists of all possible memorystates. Because the pruned MDP is a �nite state and action MDP, Q-learning withpruning converges with probability one. What we must show is that the state-actionvalues to which it converges include every state-action pair visited by an optimalcontroller for the original MDP, and that for each of these state-action pairs thelearned state-action value is equal to the optimal state-action value for the originalMDP.Let Q̂ and V̂ denote the values that are learned by Q-learning when its exploration islimited by the pruning rule, and let Q and V denote value functions that are optimalwhen the state set of the MDP includes all possible memory states. Because an MDPhas an optimal stationary policy and each control action causes a deterministictransition to a subsequent memory state, there is an optimal path through eachtree of memory states. The learned value of the root state of each tree is optimal ifand only if the learned value of each memory state along this path is also optimal.

Therefore to show that Q-learning with pruning converges to an optimal state-action value function, it is su�cient to show that V̂ = V for every observable statex. Our proof is by induction on the number of control actions that can be takenbetween one sensing action and the next. We use the fact that if Q-learning hasconverged, then ĝ(xa1::ai) = g(xa1::ai) and ĥ(xa1::ai) =Py p(x; a1::ai; y)V̂ (y) forevery memory state xa1::ai.First note that if ĝ(xa1) +
r(xa1; o) + ĥ(xa1) > V̂ (x), that is, if V̂ for someobservable state x can be improved by exploring a path of a single control actionfollowed by sensing, then it is contradictory to suppose Q-learning with pruning hasconverged because single-depth memory states in a tree are never pruned. Now,make the inductive hypothesis that Q-learning with pruning has not converged if V̂can be improved for some observable state by exploring a path of less than k controlactions before sensing. We show that it has not converged if V̂ can be improved forsome observable state by exploring a path of k control actions before sensing.Suppose V̂ for some observable state x can be improved by exploring a path thatconsists of taking the sequence of control actions a1::ak before sensing, that is,ĝ(xa1::ak) +
kr(xa1::ak; o) + ĥ(xa1::ak) > V̂ (x);Since only pruning can prevent improvement in this case, let xa1::ai be the memorystate at which application of the pruning rule prevents xa1::ak from being explored.Because the tree has been pruned at this node, V̂ (x) � ĝ(xa1::ai) + ĥ(xa1::ai), andso ĝ(xa1::ak) +
kr(xa1::ak; o) + ĥ(xa1::ak) > ĝ(xai::ai) + ĥ(xa1::ai):We can expand this inequality as follows:ĝ(xa1::ai) +
iXy p(x; a1::ai; y) hĝ(yai+1::ak) +
k�ir(yai+1::ak; o) + ĥ(yai+1::ak)i> ĝ(xa1::ai) + ĥ(xa1::ai):Simpli�cation and expansion of ĥ yieldsXy2S p(x; a1::ai; y)"ĝ(yai+1::ak) +
k�ir(yai+1::ak; o) +
k�iXz p(y; ai+1::ak; z)V̂ (z)#>Xy p(x; a1::ai; y)V̂ (y):Therefore, there is some observable state, y, such thatĝ(yai+1::ak) +
k�ir(yai+1::ak; o) +
k�iXz p(y; ai+1::ak; z)V̂ (z) > V̂ (y):Because the value of observable state y can be improved by taking less than kcontrol actions before sensing, by the inductive hypothesis Q-learning has not yetconverged. 2The proof provides insight into how pruning works. If a state-action pair alongsome optimal path is temporarily pruned, it must be possible to improve the valueof some observable state by exploring a shorter path of memory states that hasnot been pruned. The resulting improvement of the value function changes thethreshold for pruning and the state-action pair that was formerly pruned may nolonger be so, making further improvement of the learned value function possible.

