
Monitoring the Progress of Anytime Problem-Solving

Eric A. Hansen and Shlomo Zilberstein
Computer Science Department

University of Massachusetts
Amherst, MA 01003

{hansen,shlomo}@cs.umass.edu

Abstract

Anytime algorithms offer a tradeoff between solution qual-
ity and computation time that has proved useful in applying
artificial intelligence techniques to time-critical problems.
To exploit this tradeoff, a system must be able to determine
the best time to stop deliberation and act on the currently
available solution. When the rate of improvement of so-
lution quality is uncertain, monitoring the progress of the
algorithm can improve the utility of the system. This paper
introduces a technique for run-time monitoring of anytime
algorithms that is sensitive to the variance of the algorithm’s
performance, the time-dependent utility of a solution, the
ability of the run-time monitor to estimate the quality of the
currently available solution, and the cost of monitoring. The
paper examines the conditions under which the technique is
optimal and demonstrates its applicability.

Introduction

Anytime algorithms are being used increasingly for time-
critical problem-solving in domains such as planning and
scheduling (Boddy & Dean 1994; Zilberstein 1996), belief
network evaluation (Horvitz, Suermondt, & Cooper 1989;
Wellman & Liu 1994), database query processing (Shekhar
& Dutta 1989; Smith & Liu 1989), and others. The defining
property of an anytime algorithm is that it can be stopped at
any time to provide a solution, such that the quality of the
solution increases with computation time. This property
allows a tradeoff between computation time and solution
quality, making it possible to compute approximate solu-
tions to complex problems under time constraints. It also
introduces a problem of meta-level control: making an opti-
mal time/quality tradeoff requires determining how long to
run the algorithm, and when to stop and act on the currently
available solution.

Meta-level control of an anytime algorithm can be ap-
proached in two different ways. One approach is to al-
locate the algorithm’s running time before it starts and
to let the algorithm run for the predetermined length of
time no matter what (Boddy & Dean 1994). If there is
little or no uncertainty about the rate of improvement of
solution quality, or about how the urgency for a solution

might change after the start of the algorithm, then this ap-
proach can determine an optimal stopping time. Very often,
however, there is uncertainty about one or both. For AI
problem-solving in particular, variance in solution quality
is common (Paul et al. 1991). Because the best stop-
ping time will vary with fluctuations in the algorithm’s per-
formance, a second approach to meta-level control is to
monitor the progress of the algorithm and to determine at
run-time when to stop deliberation and act on the currently
available solution (Breese & Horvitz 1991; Horvitz 1990;
Zilberstein & Russell 1995).

Monitoring the progress of anytime problem-solving in-
volves assessing the quality of the currently available so-
lution, making revised predictions of the likelihood of fur-
ther improvement, and engaging in metareasoning about
whether to continue deliberation. Previous schemes for
run-time monitoring of anytime algorithms have assumed
continuous monitoring, but the computational overhead this
incurs can take resources away from problem-solving itself.
This paper introduces a framework in which the run-time
overhead for monitoring can be included in the problem of
optimizing the stopping time of anytime problem-solving.
It describes a framework for determining not only when to
stop an anytime algorithm, but at what intervals to monitor
its progress and re-assess whether to continue or stop. This
framework makes it possible to answer such questions as:

� How much variance in the performance of an anytime
algorithm justifies adopting a run-time monitoring strat-
egy rather than determining a fixed running time ahead
of time?

� How should the variance of an algorithm’s performance
affect the frequency of monitoring?

� Is it better to monitor periodically or to monitor more fre-
quently toward the algorithm’s expected stopping time?

For a large class of problems, the rate of improve-
ment of solution quality is the only source of uncer-
tainty about how long to continue deliberation. Ex-
amples include optimizing a database query (Shekhar &
Dutta 1989), reformulating a belief net before solving it
(Breese & Horvitz 1991), and planning the next move in

13th National Conference on Artificial Intelligence � Portland, Oregon � August 1996

a chess game (Russell & Wefald 1991). For other prob-
lems, the utility of a solution may also depend on the
state of a dynamic environment that can change unpre-
dictably after the start of the algorithm. Examples include
real-time planning and diagnosis (Boddy & Dean 1994;
Horvitz 1990). For such problems, meta-level control can
be further improved by monitoring the state of the environ-
ment as well as the progress of problem-solving. We focus
in this paper on uncertainty about improvement in solution
quality. However, the framework can be extended in a rea-
sonably straightforward way to deal with uncertainty about
the state of a dynamic environment.

We begin by describing a framework for constructing
an optimal policy for monitoring the progress of any-
time problem-solving, assuming the quality of the currently
available solution can be measured accurately at run-time.
Because this assumption is often unrealistic, we then de-
scribe how to modify this framework when a run-time mon-
itor can only estimate solution quality. A simple example
is described to illustrate these results. The paper concludes
with a brief discussion of the significance of this work and
possible extensions.

Formal Framework

Meta-level control of an anytime algorithm – deciding how
long to run the algorithm and when to stop and act on the
currently available solution – requires a model of how the
quality of a solution produced by the algorithm increases
with computation time, as well as a model of the time-
dependent utility of a solution. The first model is given
by a performance profile of the algorithm. A conventional
performance profile predicts solution quality as a function
of the algorithm’s overall running time. This is suitable
for making a one-time decision about how long to run an
algorithm, before the algorithm starts. To take advantage of
information gathered by monitoring its progress, however, a
more informative performance profile is needed that makes
it possible to predict solution quality as a function of both
time allocation and the quality of the currently available
solution.

Definition 1 A dynamic performance profile of an anytime
algorithm,

����������	 ��

�����
�
, denotes the probability of getting

a solution of quality
���

by resuming the algorithm for time
interval

���
when the currently available solution has quality��

.

We call this conditional probability distribution a dynamic
performance profile to distinguish it from a performance
profile that predicts solution quality as a function of running
time only. The conditional probabilities are determined by
statistical analysis of the behavior of the algorithm. For sim-
plicity, we rely on discrete probability distributions. Time
is discretized into a finite number of time steps,

�
�����������
,

where
���

represents the starting time of the algorithm and

���
its maximum running time. Similarly, solution quality is

discretized into a finite number of levels,
�������������

, where���
is the lowest quality level and

� �
is the highest quality

level. Let
��!�"�#�$
"

denote the starting state of the algorithm
before any result has been computed. By discretizing time
and quality, the dynamic performance profile can be stored
as a three-dimensional table; the degree of discretization
controls a tradeoff between the precision of the performance
profile and the size of the table needed to store it. A dynamic
performance profile can also be represented by a compact
parameterized function.

Meta-level control requires a model of the time-
dependent utility of a solution as well as a performance
profile. We assume that this information is provided to the
monitor in the form of a time-dependent utility function.

Definition 2 A time-dependent utility function, % ���
 ���'&(�
,

represents the utility of a solution of quality
�

at time
�'&

.

In this paper, we assume that utility is a function of time and
not of an external state of the environment. This assumption
makes it possible to set to one side the problem of model-
ing uncertainty about the environment in order to focus on
the specific problem of uncertainty about improvement in
solution quality.

Finally, we assume that monitoring the quality of the cur-
rently available solution and deciding whether to continue
or stop incurs a cost,) . Because it may not be cost-effective
to monitor problem-solving continuously, an optimal policy
must specify when to monitor as well as when to stop and
act on the currently available solution. For each time step�'&

and quality level
�

, the following two decisions must be
specified:

1. how much additional time to run the algorithm; and

2. whether to monitor at the end of this time allocation and
re-assess whether to continue, or to stop without moni-
toring.

Definition 3 A monitoring policy, * ���
 ���'&(� , is a mapping
from time step

�
&
and quality level

�

into a monitoring

decision
�+�����
,-�

such that
���

represents the additional
amount of time to allocate to the anytime algorithm, and

,
is a binary variable that represents whether to monitor at
the end of this time allocation or to stop without monitoring.

An initial decision, * ��� !�"�#�$�"������.� , specifies how much time
to allocate to the algorithm before monitoring for the first
time or else stopping without monitoring. Note that the
variable

���
makes it possible to control the time interval

between one monitoring action and the next; its value can
range from 0 to

�'�0/1�

, where

���
is the maximum running

time of the algorithm and
�

is how long it has already
run. The binary variable

,
makes it possible to allocate

time to the algorithm without necessarily monitoring at the
end of the time interval; its value is either stop or monitor.

2

An optimal monitoring policy is a monitoring policy that
maximizes the expected utility of an anytime algorithm.

Given this formalization, it is possible to use dynamic
programming to compute a combined policy for monitoring
and stopping. Dynamic programming is often used to solve
optimal stopping problems; the novel aspect of this solution
is that dynamic programming is also used to determine when
to monitor. A monitoring policy is found by optimizing the
following value function:

���������
	��
�������������� �
��
�
�! #"%$ ���'&)(� � �+*,	'�+-.���'&
�
	 �0/ *1	
�
if 2 = stop,�! "%$ ���'&)(� � �+*,	'�
�3���'&4��	 �)/ *1	'��5,6
if 2 = monitor

Theorem 1 A monitoring policy that maximizes the above
value function is optimal when quality improvement satisfies
the Markov property.

This is an immediate outcome of the application of dy-
namic programming under the Markov assumption (Bert-
sekas 1987). The assumption requires that the probability
distribution of future quality depends only on the current
“state” of the anytime algorithm, which is taken to be the
quality of the currently available solution. The validity of
this assumption depends on both the algorithm and how
solution quality is defined, and so must be evaluated on a
case-by-case basis. But we believe it is at least a useful
approximation in many cases.

Uncertain measurement of quality

We have described a framework for computing a policy for
monitoring an anytime algorithm, given a cost for moni-
toring. Besides the assumption that quality improvement
satisfies the Markov property, the optimality of the policy
depends on the assumption that the quality of the currently
available solution can be measured accurately by a run-time
monitor. How reasonable is this second assumption likely
to be in practice?

We suggest that for certain types of problems, calculating
the precise quality of a solution at run-time is not feasi-
ble. One class of problems for which anytime algorithms
are widely used are optimization problems in which a so-
lution is iteratively improved over time by minimizing or
maximizing the value of an objective function. For such
problems, the quality of an approximate solution is usually
measured by how close the approximation comes to an op-
timal solution. For cost-minimization problems, this can be
defined as

)8749 ��� Approximate Solution
�

)8749 ��� Optimal Solution
�

The lower this approximation ratio, the higher the quality
of the solution, and when it is equal to one the solution is
optimal.

The problem with using this measure of solution qual-
ity for run-time monitoring is that it requires knowing the
optimal solution at run-time. This is no obstacle to using
it to construct a performance profile for an anytime algo-
rithm, because the performance profile can be constructed
off-line and the quality of approximate solutions measured
in terms of the quality of the eventual optimal solution. But
a run-time monitor needs to make a decision based on the
approximate solution currently available, without knowing
what the optimal solution will eventually be. As a result,
it cannot know with certainty the actual quality of the ap-
proximate solution. In some cases, it will be possible to
bound the degree of approximation, but a run-time monitor
can only estimate where the optimal solution falls within
this bound.

A similar observation can be made about other classes
of problems besides optimization problems. For problems
that involve estimating a point value, the difference be-
tween the estimated point value and the true point value
can’t be known until the algorithm has converged to an
exact value (Horvitz, Suermondt, & Cooper 1989). For
anytime problem-solvers that rely on abstraction to create
approximate solutions, solution quality may be difficult to
assess for other reasons. For example, it may be difficult for
a run-time monitor to predict the extent of planning needed
to fill in the details of an abstract plan (Zilberstein 1996).
We conclude that for many problems, the best a run-time
monitor can do is estimate the quality of an anytime solution
with some degree of probability.

Monitoring based on estimated quality

When the quality of approximate solutions cannot be accu-
rately measured at run-time, the success of run-time moni-
toring requires solving two new problems. First, some reli-
able method must be found for estimating solution quality
at run-time. It is impossible to specify a universal method
for this – how solution quality is estimated will vary from
algorithm to algorithm. We sketch a general approach and,
in the section that follows, describe an illustrative example.
The second problem is that a monitoring policy must be
conditioned on the estimate of solution quality rather than
solution quality itself.

To solve these problems, we condition a run-time esti-
mate of solution quality on some feature : $ of the currently
available solution that is correlated with solution quality.
When a feature is imperfectly correlated with solution qual-
ity, we have also found it useful to condition the estimate
on the running time of the algorithm,

� &
. Conditioning an

estimate of solution quality on the algorithm’s running time
as well as some feature observed by a run-time monitor pro-
vides an important guarantee; it ensures that the estimate
will be at least as good as if it were based on running time
alone.

As a general notation, let
����� �
 	 : $ ���'&(� denote the prob-

3

ability that the currently available solution has quality
�

when the run-time monitor observes feature : $ after running
time

�'&
. In addition, let

����� : $ 	 �
 ���'& � denote the probability
that the run-time monitor will observe feature : $ if the cur-
rently available solution has quality

�

after running time

�
&
.

Again, these probabilities can be determined from statisti-
cal analysis of the behavior of the algorithm. These “partial
observability” functions, together with the dynamic perfor-
mance profile defined earlier, can be used to calculate the
following probabilities for use in predicting the improve-
ment of solution quality after additional time allocation

���
when the quality of the currently available solution can only
be estimated."%$ ���'&4(��� �'	 � � *,	'��� � � "%$ ��� � (���
�
	 � � "%$ ���'&4(� � �+*,	'�"%$ ����� (��� �
	 � �+*1	'���� � "%$ ��� � (��� �
	 � � � & "%$ ���
&0(� � �+*1	'� "%$ ����� (�'& �'	 �)/ *1	'��5,6

These probabilities can also be determined directly from
statistical analysis of the behavior of the algorithm, without
the intermediate calculations. In either case, these prob-
abilities make it possible to find a monitoring policy by
optimizing the following value function using dynamic pro-
gramming.

������� �
	 � ��� ��� ���� � �
��
�
� & "%$ ��� & (� � �
	��4�+*,	'�+-.��� & �
	
� / *1	
�
if 2 = stop

�� � "%$ ����� (��� ��	 � �'*1	'�
�8�������
	 �0/ *1	
��5,6
if 2 = monitor

The resulting policy may not be optimal in the sense
that it may not take advantage of all possible run-time ev-
idence about solution quality, for example, the trajectory
of observed improvement. Finding an optimal policy may
require formalizing the problem as a partially observable
Markov decision process and using computationally inten-
sive algorithms developed for such problems (Cassandra,
Littman, & Kaelbling 1994). The approach we have de-
scribed is simple and efficient, however, and it provides an
important guarantee: it only recommends monitoring if it
results in a higher expected value than allocating a fixed
running time without monitoring. This makes it possible
to distinguish cases in which monitoring is cost-effective
from cases in which it is not. Whether monitoring is cost-
effective will depend on the variance of the performance
profile, the time-dependent utility of the solution, how well
the quality of the currently available solution can be esti-
mated by the run-time monitor, and the cost of monitoring
– all factors weighed in computing the monitoring policy.

Example

As an example of how this technique can be used to deter-
mine a combined policy for monitoring and stopping, we
apply it to a tour improvement algorithm for the traveling
salesman problem developed by Lin and Kernighan (1973).

quality Length � Current tour �
Length � Optimal tour �

5 � � 	�

� � � 	�	
4 � � � 	�� � � 	�

3 � ����	�� � � � 	
2 � � ��

� � � ��	
1 � ��
�	�� � � ��

0 � � � ��
�	

Table 1: Discretization of solution quality.

feature Length � Current tour �
Length � Lower bound �

6 � � ��� � � 	
5 � � ��� � � �
4 � �
�� � � �
3 � � ��� � �

2 � ���
� � � �
1

� � 	�� � ���
0 � ��� � 	

Table 2: Discretization of feature
correlated with solution quality.

This local optimization algorithm begins with an initial tour,
then repeatedly tries to improve the tour by swapping ran-
dom paths between cities. The example is representative of
anytime algorithms that have variance in solution quality as
a function of time.

We defined solution quality as the approximation ratio of
a tour, ��� �"! �$# �

Current tour
�

��� �"! �$# �
Optimal tour

�
and discretized this metric using Table 1. The maximum
running time of the algorithm was discretized into twelve
time-steps, with one time-step corresponding to approxi-
mately

	 � 	�	�

CPU seconds. A dynamic performance pro-

file was compiled by generating and solving a thousand
random twelve-city traveling salesman problems. The time-
dependent utility of a solution of quality

�

at time

�
&
was

arbitrarily defined by the function

% ����
���� & �&% � 	�	(��
 /'��	(� & �

Note that the first term of the utility function can be regarded
as the intrinsic value of a solution and the second term as
the time cost, as defined by Russell and Wefald (1991).

Without monitoring, the optimal running time of the al-
gorithm is eight time-steps, with an expected value of

����(���
.

Assuming solution quality can be measured accurately by
the run-time monitor (an unrealistic assumption in this case)
and assuming a monitoring cost of 1, the dynamic program-
ming algorithm described earlier computes the monitoring
policy shown in Table 3. The number in each cell of Ta-
ble 3 represents how much additional time to allocate to the

4

time-step
quality start 1 2 3 4 5 6 7 8 9 10 11

5 0 0 0 0 0 0 0 0 0 0 0
4 1M 1M 1M 1M 1M 1M 1M 1M 1M 1 0
3 1M 1M 1M 1M 1M 1M 1M 1M 1M 1 0
2 3M 3M 3M 3M 3M 3M 3M 3M 2 1 0
1 4M 4M 4M 4M 4M 5 4 3 2 1 0
0 5M 5M 5M 5M 5M 6 5 4 3 2 1 0

Table 3: Optimal policy based on actual solution quality.

time-step
feature start 1 2 3 4 5 6 7 8 9 10 11

6 0 0 0 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0
4 2M 2M 1M 1M 1M 1M 1 0 0 0
3 4M 3M 2M 1M 1M 1M 1M 1M 1 0 0
2 4M 3M 2M 2M 2M 2M 1M 3 2 1 0
1 4M 3M 3M 3M 3M 3M 2M 2M 1M 1
0 5M 4M 3M 3M 3M 3M 3M

Table 4: Policy when solution quality is estimated.

algorithm based on the observed quality of the solution and
the current time. The letter M next to a number indicates a
decision to monitor at the end of this time allocation, and
possibly allocate additional running time; if no M is present,
the decision is to stop at the end of this time allocation with-
out monitoring. The policy has an expected value of

��	�� � �
,

better than the expected value of allocating a fixed running
time despite the added cost of monitoring. Its improved
performance is due to the fact that the run-time monitor can
stop the algorithm after anywhere from 5 to 11 time steps,
depending on how quickly the algorithm finds a good result.
(If there is no cost for monitoring, a policy that monitors
every time step has an expected value of 309.4.)

The policy shown in Table 3 was constructed by assuming
the actual quality of an approximate solution could be mea-
sured by the run-time monitor, an unrealistic assumption
because measuring the quality of the current tour requires
knowing the length of an optimal tour. The average length
of an optimal tour can provide a very rough estimate of the
optimal tour length in a particular case, and this can be used
to estimate the quality of the current tour. For a travel-
ing salesman problem that satisfies the triangle inequality,
however, much better estimates can be made by using one
of a number of algorithms for computing a lower bound
on the optimal tour length (Reinelt 1994). Computing a
lower bound involves solving a relaxation of the problem; it
is analogous to an admissable heuristic function in search.
For a traveling salesman problem that satisfies the triangle
inequality, there exist polynomial-time algorithms that can
compute a lower bound that is on average within two or
three percent of the optimal tour length. For our test, how-
ever, we used Prim’s minimal spanning tree algorithm that

very quickly computes a bound that is less tight, but still
correlated with the optimal tour length. The feature��� �"! �$# �

Current tour
�

��� �"! �$# �
Lower bound

�
was discretized using Table 2. The cost overhead of moni-
toring consists of computing the lower bound at the begin-
ning of the algorithm and monitoring the current tour length
at intervals thereafter.

Table 4 shows the monitoring policy given a monitoring
cost of � , when an estimate of solution quality is conditioned
on both this feature and the running time of the algorithm.
The expected value of the policy is

������� �
, higher than for al-

locating a fixed running time without monitoring but lower
than if the run-time monitor could determine the actual qual-
ity of an approximate solution. As this demonstrates, the
less accurately a run-time monitor can measure the quality
of an approximate solution, the less valuable it is to monitor.

When an estimate of solution quality is based only on
this feature, and not also on running time, the expected
value of monitoring is

������� 	
. This is still an improvement

over not monitoring, but the performance is not as good as
when an estimate is conditioned on running time as well.
Because conditioning a dynamic performance profile on
running time significantly increases its size, however, this
tradeoff may be acceptable in cases when the feature used to
estimate quality is very reliable. For all of these results, the
improved performance predicted by dynamic programming
was confirmed by simulation experiments.

For the tour improvement algorithm, variance in solution
quality over time is minor and the improved performance
with run-time monitoring correspondingly small. We plan

5

to apply this technique to other problems for which variance
in solution quality is larger and the payoff for run-time
monitoring promises to be more significant. However, the
fact that this technique improves performance even when
variance is small, solution quality is difficult to estimate at
run-time, and monitoring incurs a cost, supports its validity
and potential value.

Conclusion

The framework developed in this paper extends previ-
ous work on meta-level control of anytime algorithms.
One contribution is the use of dynamic programming to
compute a non-myopic stopping rule. Previous schemes
for run-time monitoring have relied on myopic compu-
tation of the expected value of continued deliberation
to determine a stopping time (Breese & Horvitz 1991;
Horvitz 1990), although Horvitz has also recommended
various degrees of lookahead search to overcome the limi-
tations of a myopic approach. Because dynamic program-
ming is particularly well-suited for off-line computation of
a stopping rule, it is also an example of what Horvitz calls
compilation of metareasoning.

Another contribution of this framework is that it makes
it possible to find an intermediate strategy between contin-
uous monitoring and not monitoring at all. It can recognize
whether or not monitoring is cost-effective, and when it is,
it can adjust the frequency of monitoring to optimize utility.
An interesting property of the monitoring policies found is
that they recommend monitoring more frequently near the
expected stopping time of an algorithm,an intuitive strategy.

Perhaps the most significant aspect of this framework
is that it makes it possible to evaluate tradeoffs between
various factors that influence the utility of monitoring. For
example, the dynamic programming technique is sensitive
to both the cost of monitoring and to how well the quality of
the currently available solution can be estimated by the run-
time monitor. This makes it possible to evaluate a tradeoff
between these two factors. Most likely, there will be more
than one method for estimating a solution’s quality and the
estimate that takes longer to compute will be more accurate.
Is the greater accuracy worth the added time cost? The
framework developed in this paper can be used to answer
this question by computing a monitoring policy for each
method and comparing their expected values to select the
best one.

Acknowledgments

Support for this work was provided in part by the National
Science Foundation under grant IRI-9409827 and in part by
Rome Laboratory, USAF, under grant F30602-95-1-0012.

References
Bertsekas, D.P. 1987. Dynamic Programming: Deter-
ministic and Stochastic Models. Englewood Cliffs, N.J.:
Prentice-Hall.

Boddy, M., and Dean., T. 1994. Deliberation schedul-
ing for problem solving in time-constrained environments.
Artificial Intelligence 67:245-285.

Breese, J.S., and Horvitz, E.J. 1991. Ideal reformulation
of belief networks. Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, 129-143.

Cassandra, A.R.; Littman, M.L.; and Kaelbling, L.P. 1994.
Acting optimally in partially observable stochastic do-
mains. Proceedings of the Twelth National Conference
on Artificial Intelligence, 1023-1028.

Horvitz, E.J.; Suermondt, H.J.; and Cooper, G.F. 1989.
Bounded conditioning: Flexible inference for decisions
under scarce resources. Proceedings of the Fifth Workshop
on Uncertainty in Artificial Intelligence.

Horvitz, E.J. 1990. Computation and Action under
Bounded Resources. PhD Thesis, Stanford University.

Lin, S., and Kernighan, B.W. 1973. An effective heuristic
algorithm for the Traveling Salesman problem. Operations
Research 21:498-516.

Paul, C.J.; Acharya, A.; Black, B.; and Strosnider, J.K.
1991. Reducing problem-solving variance to improve pre-
dictability. CACM 34(8):80-93.

Reinelt, G. 1994. The Traveling Salesman: Computational
Solutions for TSP Applications. Springer-Verlag.

Russell, S., and Wefald, E. 1991. Do the Right Thing:
Studies in Limited Rationality. The MIT Press.

Shekhar, S., and Dutta, S. 1989. Minimizing response
times in real time planning and search. Proceedings of the
Eleventh IJCAI, 238-242.

Smith, K.P., and Liu, J.W.S. 1989. Monotonically im-
proving approximate answers to relational algebra queries.
COMPSAC-89, Orlando, Florida.

Wellman, M.P., and Liu, C.-L. 1994. State-space abstrac-
tion for anytime evaluation of probabilistic networks. Pro-
ceedings of the Tenth Conference on Uncertainty in Arti-
ficial Intelligence, 567-574.

Zilberstein, S. 1993. Operational Rationality through
Compilation of Anytime Algorithms. Ph.D. dissertation,
Computer Science Division, University of California at
Berkeley.

Zilberstein, S. 1996. Resource-bounded sensing and plan-
ning in autonomous systems. To appear in Autonomous
Robots.

Zilberstein S., and Russell S. 1995. Approximate reason-
ing using anytime algorithms. In S. Natarajan (Ed.), Im-
precise and Approximate Computation, Kluwer Academic
Publishers.

6

