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Abstract

Anytime algorithms offer a tradeoff between solution quality and computation time that has proved
useful in solving time-critical problems such as planning and scheduling, belief network evaluation,
and information gathering. To exploit this tradeoff, a system must be able to decide when to stop
deliberation and act on the currently available solution. This paper analyzes the characteristics of
existing techniques for meta-level control of anytime algorithms and develops a new framework for
monitoring and control. The new framework handles effectively the uncertainty associated with the
algorithm’s performance profile, the uncertainty associated with the domain of operation, and the
cost of monitoring progress. The result is an efficient non-myopic solution to the meta-level control
problem for anytime algorithms.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

From its early days, the field of artificial intelligence (AI) has searched for useful
techniques for coping with the computational complexity of decision making. An early
advocate of the view that decision makers (both human and artificial) should forgo perfect
rationality in favor of limited, economical reasoning was Herbert Simon. In 1958, he
claimed that “the global optimization problem is to find the least-cost or best-return
decision, net of computational costs” [32]. The statistician I.J. Good advocated a similar
approach to decision making that takes deliberation costs into account [9].
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By the mid 1980s, AI researchers began to formalize these ideas and produce effective
models for trading off computational resources for quality of results (e.g., [19]). At
the forefront of these efforts were two, essentially identical, models called “anytime
algorithms” (developed by Dean and Boddy [2,4]) and “flexible computation” (developed
by Horvitz [13,15,17]). We adopt the phrase “anytime algorithm” in this paper, although
our work is equally influenced by both models.

The defining property of an anytime algorithm is that it can be stopped at any time
to provide a solution, and the quality of the solution increases with computation time.
This property allows a tradeoff between computation time and solution quality, making
it possible to compute approximate solutions to complex problems under time constraints.
Anytime algorithms are being used increasingly in a range of practical domains that include
planning and scheduling [2,38], belief network and influence diagram evaluation [12,16,
36], database query processing [31,33], and information gathering [10]. By itself, however,
an anytime algorithm does not provide a complete solution to Simon’s challenge to make
the best-return decision, net of computational costs. To achieve this, a meta-level control
procedure in needed that determines how long to run the anytime algorithm, and when to
stop and act on the currently available solution.

Horvitz developed an approach to meta-level control of computation based on the
expected value of computation (EVC) [17]. The expected value of computation is defined as
the expected improvement in decision quality that results from performing a computation,
taking into account computational costs. (The concept of the expected value of computation
is related to the concept of the expected value of information, although the two are not
identical [22].) The meta-level control problem for anytime algorithms is the problem of
determining the stopping time for an anytime algorithm that optimizes the expected value
of computation.

Meta-level control of an anytime algorithm can be approached in two different ways.
One approach is to allocate the algorithm’s running time before it starts [2,13]. If there
is little or no uncertainty about the rate of improvement of solution quality, or about
how the urgency for a solution might change after the start of the algorithm, then this
approach works well. Very often, however, there is uncertainty about one or both. For AI
problem-solving in particular, variance in the rate at which solution quality improves is
common [24]. Because the best stopping time will vary with fluctuations in the algorithm’s
performance (and/or the state of the environment), a second approach to meta-level control
is to monitor the progress of the algorithm (and/or the state of the environment) and
determine at run-time when to stop deliberation and act on the currently available solution
[3,17,37].

The optimal time allocation for an anytime algorithm depends on several factors: the
quality of the available solution, the prospect for further improvement in solution quality,
the current time, the cost of delay in action, the current state of the environment, and the
prospect for further change in the environment. In this paper, we develop a framework for
run-time monitoring and control of anytime algorithms that takes into account these various
factors. The solution differs from previously developed approaches to this problem that rely
on a myopic estimate of the value of computation. We formalize the meta-level control
problem as a sequential decision problem that can be solved by dynamic programming,
in order to construct a non-myopic solution. Dynamic programming has been used
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before for meta-level control of computation. Einav and Fehling [7] and Russell and
Subramanian [27] use dynamic programming to schedule a sequence of solution methods
for a real-time decision-making problem; and Zilberstein, Charpillet and Chassaing [40]
use dynamic programming to schedule a sequence of of contract algorithms to create the
best interruptible system given a stochastic deadline. The framework developed in this
paper uses dynamic programming to determine the stopping time of anytime algorithm, by
monitoring its progress.

The paper is organized as follows. Section 2 briefly reviews a framework for meta-
level control of anytime algorithms that does not use monitoring. The rest of the paper
extends this framework to include run-time monitoring. Section 3 begins with a review of
a myopic approach to run-time monitoring and meta-level control that is based on the work
of Horvitz [17] and Russell and Wefald [30]. Then it introduces a non-myopic framework
that determines not only when to stop an anytime algorithm, but at what intervals to monitor
its progress and re-assess whether to continue or stop. Section 4 extends this framework
to include situations in which the state of the environment must be monitored. The paper
concludes with a discussion of some extensions of the framework and future work.

2. Meta-level control without monitoring

We begin by briefly reviewing a framework for meta-level control of anytime algorithms
that does not use run-time monitoring. This framework provides a foundation for the
extensions introduced in the rest of the paper.

A framework for meta-level control of anytime algorithms requires a model of how the
quality of a solution produced by the algorithm increases with computation time, as well
as a model of the time-dependent utility of a solution. The phrase performance profile was
introduced by Dean and Boddy [4] to refer to a model of the performance of an anytime
algorithm that specifies expected quality as a function of computation time. Horvitz [13,17]
introduced a model that characterizes uncertainty about an algorithm’s performance using
probabilities, and we follow Zilberstein and Russell [39] in calling this a probabilistic
performance profile.

Definition 1. A probabilistic performance profile of an anytime algorithm, Pr(qj |t),
denotes the probability of getting a solution of quality qj by running the algorithm for
t time units.

Although it is sometimes possible to represent a performance profile by a parameterized
continuous function [4,15], a convenient and widely-used representation is a table of
discrete values and this is the representation we assume in this paper. 1 Computation time is
discretized into a finite number of time steps, t0 . . . tn, where t0 represents the starting time
of the algorithm and tn its maximum running time. Similarly, solution quality is discretized

1 A potential advantage of generalizing our results to a functional (rather than tabular) representation of a
performance profile is that a functional representation may be more compact, and may be constructed more
simply.
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into a finite number of levels, q0 . . . qm, where q0 is the lowest quality level and qm is
the highest quality level. The fineness of the discretization fixes a tradeoff between the
accuracy of the performance profile and the space needed to store it. The values defining
the performance profile are collected by statistical analysis of the performance of the
algorithm.

In addition to a performance profile that models the behavior of an algorithm, meta-
level control requires a model of the time-dependent utility of a solution [2,18]. For now,
we assume that utility depends only on the quality of a solution and computation time. (In
Section 4, we consider a more general model in which utility also depends on the state of
a dynamic environment.)

Definition 2. A time-dependent utility function, U(q, t), represents the utility of a solution
of quality q at time t .

It is often possible to simplify this function by treating it as the sum of two functions
that Horvitz [14] calls object-level utility and inference-related utility. Object-level utility
represents the utility of a solution without regard to the costs associated with its
computation, and inference-related utility represents these computational costs. We adopt
the following terminology of Russell and Wefald [29] to refer to this distinction.

Definition 3. A time-dependent utility function is called time-separable if the utility of a
solution of quality q at time t , U(q, t), can be expressed as the difference between two
functions,

U(q, t) = UI (q) − UC(t),

where UI (q) is called the intrinsic value function and UC(t) is called the cost of time.

Given an anytime algorithm, its performance profile, and a time-dependent utility
function, the meta-level control problem is the problem of deciding when to stop the
algorithm and act on the currently available solution. One approach to this problem is to
determine the algorithm’s running time before it starts [2,13]. Because the time allocation
is not revised after the start of the algorithm, we call this a fixed allocation approach.

Definition 4. Given a time-dependent utility function and a probabilistic performance
profile, an optimal fixed allocation, t∗, is defined by:

t∗ = arg max
t

∑
i

Pr(qi |t)U(qi, t).

Fig. 1 illustrates the selection of an optimal, fixed time allocation for the meta-level
control problem. The figure does not illustrate uncertainty about the rate of improvement of
solution quality or about the cost of time, however. This framework for meta-level control
is best suited for problems for which there is little or no uncertainty about either. The rest of
the paper discusses how to extend this framework to compensate for uncertainty by using
run-time monitoring.
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Fig. 1. A typical view of anytime algorithms [5,17,30].

3. Monitoring the progress of computation

In this section, we describe how to generalize the framework introduced in the previous
section to incorporate run-time monitoring of the progress of computation. If there
is uncertainty about the progress of an anytime algorithm, monitoring the algorithm’s
progress and revising the initial time allocation when progress is faster or slower than
expected can improve the utility of the system. This generalization requires a more complex
performance profile that allows prediction of the progress of an algorithm to be revised
based on intermediate results. It also presents a more complex optimization problem;
instead of a single once-and-for-all decision about how long to run an algorithm, a sequence
of decisions about whether the continue or stop the algorithm is required.

3.1. Dynamic performance profiles

A performance profile that predicts solution quality as a function of an algorithm’s
overall running time is suitable for making a one-time decision about how long to run
an algorithm, before the algorithm starts. To take advantage of information gathered by
monitoring the progress of an anytime algorithm, a more informative performance profile
is needed that conditions predicted improvement of solution quality on features of the
currently available solution that can be monitored at run time. These features can be defined
broadly enough to include the entire state of the computation. However, it is useful (and,
we claim, usually sufficient) to condition a run-time prediction of further improvement on
the quality of the currently available solution. We define a dynamic performance profile
accordingly.

Definition 5. A dynamic performance profile of an anytime algorithm, Pr(qj |qi,�t),
denotes the probability of getting a solution of quality qj by continuing the algorithm
for time interval �t when the currently available solution has quality qi .

The assumption that further improvement of solution quality depends only on the
quality of the currently available solution is equivalent to assuming that solution quality
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satisfies the Markov property for this prediction problem. For many anytime algorithms,
conditioning a prediction of future improvement on the quality of the currently available
solution works well—particularly if solution quality is easily determined at run-time. But
in some cases, the quality of the currently available solution may not be the best (or only)
predictor of likely improvement. In other cases, it may not be possible to determine the
quality of the currently available solution at run-time.

Whether it is easy to determine solution quality at run-time, or predict improvement in
quality based on the quality of the currently available solution, depends on how solution
quality is defined. For example, if solution quality is defined as the value of an objective
function that is iteratively improved by an optimization algorithm, solution quality can be
easily determined at run-time. In the case of the traveling salesman problem, for example,
solution quality defined in this way is simply the length of the currently available tour.
However, this may not be the best predictor of subsequent improvement in solution quality.
The optimal value of an objective function usually differs from one problem instance to
the next. For example, the minimum tour length for one instance of the traveling salesman
problem may be 100, while for another instance of the traveling salesman problem it may
be 250. Solution quality defined as tour length will not distinguish these cases, and thus
will not be a good predictor of subsequent improvement. A better approach would take into
account how far the current tour length is from the optimal tour length.

For this reason, solution quality is often defined as the difference between the current
value of an objective function and its optimal value. For cost-minimization problems,
solution quality is customarily defined as the “approximation ratio”:

Cost(Approximate solution)/Cost(Optimal solution)

The inverse ratio is used for value-maximization problems. This definition of solution
quality makes possible general claims about the performance of an algorithm on a class
of problem instances. However, defining solution quality in this way poses a problem for
run-time monitoring: assessing solution quality requires knowing the optimal solution. But
a run-time monitor needs to make a decision based on the approximate solution currently
available, without knowing what the optimal solution will eventually be. As a result, it
cannot know, with certainty, the actual quality of the approximate solution.

This observation holds for other classes of problems besides combinatorial optimization
problems. For problems that involve estimating a point value, the difference between the
estimated point value and the true point value can’t be known until the algorithm has
converged to an exact value [17]. For anytime problem-solvers that rely on abstraction to
create approximate solutions, solution quality may be difficult to assess for other reasons.
For example, it may be difficult for a run-time monitor to predict the extent of reactive
planning needed to fill in the details of an abstract plan [38].

For many problems, it is possible to bound the degree of approximation to an optimal
solution. Because a run-time monitor can only estimate where the optimal solution falls
within this bound, it is sometimes useful to treat the error bound itself as a measure
of solution quality. For example, Horvitz [17] uses an error bound to measure solution
quality in meta-level control of an approximation algorithm for belief network evaluation.
Similarly, de Givry and Verfaillie [6] use an error bound to measure solution quality in
meta-level control of an anytime algorithm for solving constraint optimization problems.
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For now, we assume that solution quality is defined in such a way that it can be
observed at run time and used to improve prediction of the subsequent progress of the
algorithm. When a run-time monitor cannot easily determine the quality of the currently
available solution, or when solution quality itself is not the best predictor of subsequent
improvement, the success of run-time monitoring depends on being able to design a reliable
scheme for estimating/predicting solution quality at run-time. We discuss this issue at
greater length in Section 3.5.

3.2. A myopic stopping criterion

Instead of making a single decision about how long to run an anytime algorithm before
it starts, a run-time monitor must make a sequence of decisions. Each time it monitors an
algorithm’s progress, it must decide whether to continue deliberation or stop. It is easy to
state an optimal stopping rule: computation should stop as soon as the expected value of
computation is no longer positive [17]. However, exact determination of the EVC requires
considering all possible decisions about whether to continue or stop that could be made at
subsequent time steps. Therefore, a myopic estimate of the EVC is often used. A myopic
estimate of the EVC is the expected utility of acting on the result that will be available after
continuing the algorithm for exactly one more time step minus the expected value of acting
immediately on the result currently available. Using our representation of performance
profiles, a myopic estimate of the expected value of computation is defined as follows.

Definition 6. Suppose that an anytime algorithm produces a solution of quality qi at time
t . Then a myopic estimate of the expected value of computation (MEVC) is:

MEVC(�t) =
∑
j

Pr(qj |qi,�t)U(qj , t + �t) − U(qi, t),

where �t denotes an additional time step.

A myopic estimate of the value of computation is used by a run-time monitor that
periodically checks the progress of the algorithm and decides whether to continue
computation or stop.

Definition 7. The myopic monitoring approach is to continue the computation as long as
MEVC(�t) > 0.

Although a stopping rule that relies on myopic computation of EVC is not optimal under
all circumstances, it can be shown to perform optimally under some assumptions. The
following theorem gives sufficient conditions for its optimality.

Theorem 1. Given a time-dependent utility function, the myopic monitoring approach is
optimal when:

(1) evaluating the MEVC takes a negligible amount of time; and
(2) for every time t and quality level q for which MEVC is non-positive, MEVC is also

non-positive for every time t + �t and quality level q + �q .
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Proof. If MEVC is positive when the currently available solution has quality level q at
time t , continuing the algorithm for another time step has positive expected value and is
the optimal decision. If MEVC is non-positive when the currently available solution has
quality level q at time t , then any policy for continuing cannot improve expected value
unless there is some time t + �t and quality level q + �q for which MEVC is positive.
The second condition guarantees that this cannot happen. Therefore, stopping the algorithm
is the optimal decision. ✷

The second condition of Theorem 1 takes a simpler and more intuitive form for time-
separable utility functions.

Corollary 1. The second condition in Theorem 1 is met when the expected marginal
increase in the intrinsic value of a solution is a non-increasing function of quality and
the marginal cost of time is a non-decreasing function of time.

Proof. Under the separability assumption, a myopic estimate of the expected value of
computation can be expressed as:

MEVC(qi,�t) =
[∑

j

Pr(qj |qi,�t)UI (qj ) − UI(qi)

]
− [

UC(t + �t) − UC(t)
]
.

The first term in the expression on the right-hand side of this equation represents the
expected marginal increase in the intrinsic value of a solution. The assumption that this
is a non-increasing function of quality, combined with monotonic improvement of quality
with computation time, means this quantity cannot increase from one time step to the next.
The second term in the expression on the right-hand side of this equation represents the
marginal cost of time. By assumption, it is a non-decreasing function of time. Therefore,
the future marginal cost can only become larger. As a consequence, the EVC can only
become smaller as time and quality progress. In other words, if it is negative at one point
it cannot be positive in any future situation. ✷

Because the assumptions on which they rest are reasonably intuitive, Theorem 1 and its
corollary suggest that there is a large class of applications for which the myopic approach
to meta-level control is optimal. Nevertheless, there are cases in which reliance on MEVC
can lead to a sub-optimal stopping decision. Horvitz and Breese [3,17] describe a bounded
conditioning algorithm for probabilistic inference in belief networks for which MEVC
can mislead because expected improvement is “flat” in the near term but substantial after
some number of time steps. Because this can lead to a premature stopping decision,
Horvitz suggests various degrees of lookahead to compute EVC more reliably. Horsch
and Poole [12] address a similar problem in considering meta-level control of an anytime
algorithm for influence diagram evaluation. To counter it, they describe a non-myopic
approach to estimating the EVC based on a linear model constructed from empirical data.
The approach to meta-level control described in the following section addresses this same
problem by extending the framework for meta-level control introduced earlier.
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3.3. A non-myopic stopping criterion

Using run-time monitoring to determine when to stop an anytime algorithm presents a
sequence of decisions; at each step, the decision is whether to continue the algorithm or
stop and act on the currently available solution. In this section, we formalize and solve
this sequential decision problem. The solution to the problem is a non-myopic monitoring
policy that takes into account the effect of future monitoring decisions.

Definition 8. A monitoring policy, π(qi, tk), is a mapping from time step tk and quality
level qi to a decision whether to continue the algorithm or stop and act on the currently
available solution.

To construct a non-myopic monitoring policy, we follow the well-established literature
on using dynamic programming for solving optimal stopping problems. If utility only
depends on solution quality and computation time, a stopping rule can be found by
optimizing the following value function,

V (qi, t) = max
d

{
U(qi, t) if d = stop,∑

j Pr(qj |qi,�t)V (qj , t + �t) if d = continue

to determine the following policy,

π(qi, t) = arg max
d

{
U(qi, t) if d = stop,∑

j Pr(qj |qi,�t)V (qj , t + �t) if d = continue,

where �t represents a single time step and d is a binary variable that represents the decision
to either stop or continue the algorithm. The optimal policy can be computed off-line using
a dynamic programming algorithm with complexity O(|m|2|n|), where m is the number of
quality levels and n is the number of time steps. Because computation is off-line, this is an
example of what Horvitz calls compilation of metareasoning.

Once an optimal monitoring policy is computed, meta-level control is straightforward.
Every time step, the current solution quality and the current time are used to determine
the best action (stop or continue), by indexing the policy. This leads to a globally optimal
(non-myopic) stopping criterion.

Theorem 2. A monitoring policy that maximizes the above value function is optimal when
quality improvement satisfies the Markov property and monitoring has no cost.

Proof. This is an immediate outcome of the application of dynamic programming
under the Markov assumption [1]. The Markov assumption requires that the probability
distribution of future quality depends only on the current “state” of the anytime algorithm,
which is taken to be the quality of the currently available solution. ✷

We note that the same monitoring policy may also be computed using the state-space
search algorithm AO∗ [21], if an appropriate heuristic is available. AO∗ finds an optimal
solution for an initial state, which for this problem is (qstart,0), and may find the same
monitoring policy more efficiently than dynamic programming if many states are not
reachable from the initial state under an optimal policy.
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3.4. Cost-sensitive monitoring

Many existing approaches to monitoring assume continuous or periodic monitoring that
incurs negligible cost [30,34,38]. In many situations, however, run-time monitoring may
have a significant overhead because of the need to determine the current solution quality
(and sometimes also the current state of the environment). If that information is available at
no cost, monitoring every time step may be reasonable. But suppose that monitoring incurs
a constant cost, C. In this case, we need to construct a more complex type of monitoring
policy.

Definition 9. A cost-sensitive monitoring policy, πc(qi, tk), is a mapping from time step
tk and quality level qi into a monitoring decision (�t,m) such that �t represents the
additional amount of time to allocate to the anytime algorithm, and m is a binary variable
that represents whether to monitor at the end of this time allocation or to stop without
monitoring.

In other words, a cost-sensitive monitoring policy specifies, for each time step tk and
quality level qi , the following two decisions:

(1) how much additional time to run the algorithm; and
(2) whether to monitor at the end of this time allocation and re-assess whether to

continue, or to stop without monitoring.
An initial decision, πc(qstart, t0), specifies how much time to allocate to the algorithm

before monitoring for the first time or stopping without monitoring. Note that the variable
�t makes it possible to control the time interval between one monitoring action and the
next; its value can range from 0 to tn − ti , where tn is the maximum running time of the
algorithm and ti is how long it has already run. The binary variable m makes it possible
to allocate time to the algorithm without necessarily monitoring at the end of the time
interval; its value is either stop or monitor.

Given this formalization, it is possible to use dynamic programming to compute a
combined policy for monitoring and stopping. Although dynamic programming is often
used to solve optimal stopping problems, the novel aspect of this solution is that dynamic
programming is used to determine when to monitor, as well as when to stop and act on the
currently available solution. A cost-sensitive monitoring policy is found by optimizing the
following value function:

Vc(qi, tk) = max
�t,m

{∑
j Pr(qj |qi,�t)U(qj , tk + �t) if m = stop,∑
j Pr(qj |qi,�t)Vc(qj , tk + �t) − C if m = monitor.

Theorem 3. A cost-sensitive monitoring policy that maximizes the above value function is
optimal when quality improvement satisfies the Markov property.

The proof is identical to that of Theorem 2 except that the cost of monitoring is taken
into account.

An advantage of this framework is that it makes it possible to find an intermediate
strategy between continuous monitoring and not monitoring at all. It can recognize whether
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or not monitoring is cost-effective, and when it is, it can adjust the frequency of monitoring
to optimize utility. The resulting policy often recommends monitoring more frequently near
the expected stopping time of an algorithm, which is an intuitive strategy.

3.5. Estimating solution quality

We have described a framework for computing a cost-sensitive monitoring policy for an
anytime algorithm. Besides the assumption that quality improvement satisfies the Markov
property, the optimality of the policy depends on the assumption that the quality of the
currently available solution can be determined accurately by a run-time monitor. As argued
in Section 3.1, there are classes of problems for which determining the precise quality of a
solution at run-time is not feasible.

When the quality of approximate solutions cannot be accurately determined at run-time,
a run-time monitor must rely on some method for estimating solution quality. A monitoring
policy must be conditioned on this estimate of solution quality rather than on solution
quality itself. It is impossible to specify a general solution to this problem. How solution
quality is estimated will vary from algorithm to algorithm, and how a monitoring policy
is conditioned on such an estimate may also vary. However, we can adopt the following
general notation. Let f denote some “feature” of the currently available solution that is
either highly correlated with solution quality, or else a good predictor of improvement. If
improvement in solution quality does not depend exclusively on this feature (i.e., we cannot
assume the Markov property), run-time prediction can be further improved by conditioning
the prediction on the cumulative running time of the algorithm, t . Accordingly, we let
Pr(q|f, t,�t) denote the probability that continuing an algorithm for time �t when the
currently available solution exhibits feature f after running time t results in a solution
of quality q . We note that an algorithm’s running time provides probabilistic evidence
about the quality of the currently available solution that supplements the evidence provided
by the observed feature. It also makes possible an important guarantee: conditioning a
performance profile on both running time and some feature of the currently available
solution ensures a prediction that is at least as good as a prediction based on running time
alone.

In Section 3.6, we describe a simple example in which this run-time prediction scheme
is used. In this example, the “feature” that is monitored is the cumulative improvement
in solution quality from the start of the algorithm. Conditioning an estimate/prediction of
quality on both cumulative improvement and running time means that both the amount
and the average rate of improvement are considered, but not the actual trajectory of
improvement. A more accurate estimator/predictor might be achieved by conditioning
on the trajectory also, or on other run-time information. For example, Raman and Wah
[25] predict future improvement in solution quality based on the observed trajectory
of improvement from the start of the algorithm, using nonlinear regression to make
the prediction. However, they note that use of nonlinear regression incurs a substantial
run-time overhead and this suggests a tradeoff between the accuracy of a run-time
estimator/predictor and the overhead it incurs.

We can construct a dynamic performance profile that is conditioned on an estimate
of solution quality, as follows. Let Pr(qi |fr , tk) denote the probability that the currently
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available solution has quality qi when the run-time monitor observes feature fr after
running time tk . In addition, let Pr(fr |qi, tk) denote the probability that the run-time
monitor will observe feature fr if the currently available solution has quality qi after
running time tk . These probabilities can be determined from statistical analysis of the
behavior of the algorithm. Together with the dynamic performance profile defined earlier,
they can be used to calculate the following probabilities for use in predicting the
improvement of solution quality after additional time allocation �t when the quality of
the currently available solution can only be estimated.

Pr(qj |fr , tk,�t) =
∑

i

Pr(qi |fr , tk)Pr(qj |qi,�t),

Pr(fs |fr , tk,�t) =
∑

i

Pr(qi |fr , tk)
∑
j

Pr(qj |qi,�t)Pr(fs |qj , tk + �t).

These probabilities can also be determined directly from statistical analysis of the behavior
of the algorithm, without the intermediate calculations. In either case, these probabilities
make it possible to find a monitoring policy that is conditioned on an estimate of solution
quality. The policy is found by using dynamic programming to optimize the following
value function.

Vc(fr , tk) = max
�t,m

{∑
j Pr(qj |fr , tk,�t)U(qj , tk + �t) if m = stop,∑
s Pr(fs |fr , tk,�t)Vc(fs, tk + �t) − C if m = monitor.

The resulting policy may not be optimal in the sense that it may not take advantage
of all possible run-time evidence about solution quality; for example, it may ignore the
trajectory of observed improvement. However, the approach we have described is simple
and it provides an important guarantee: it only recommends monitoring if it results in a
higher expected value than allocating a fixed running time without monitoring. This makes
it possible to distinguish cases in which monitoring is cost-effective from cases in which it
is not. Whether monitoring is cost-effective will depend on the variance of the performance
profile, the time-dependent utility of the solution, how well the quality of the currently
available solution can be estimated by the run-time monitor, and the cost of monitoring.
All of these factors are weighed in computing this monitoring policy.

3.6. Example

As an example of how this framework can be used to determine a combined policy
for monitoring and stopping, we apply it to a tour improvement algorithm for the traveling
salesman problem developed by Lin and Kernighan [20]. This local optimization algorithm
begins with an initial tour, then repeatedly tries to improve the tour by swapping random
paths between cities. This algorithm is representative of anytime algorithms that have
variance in solution quality as a function of computation time.

In our experiment, solution quality is defined as the approximation ratio of a
tour, Length(Current tour)/Length(Optimal tour), and discretized using Table 1(a). The
maximum running time of the algorithm is discretized into twelve time-steps, with one
time-step corresponding to approximately 0.005 CPU seconds. A dynamic performance
profile is compiled by generating and solving a thousand random twelve-city traveling
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Table 1
Discretization of: (a) solution quality, and (b) feature correlated with quality

Quality
Length(Current tour)

Length(Optimal tour)

5 1.05 → 1.00

4 1.10 → 1.05

3 1.20 → 1.10

2 1.35 → 1.20

1 1.50 → 1.35

0 ∞ → 1.50

(a)

Feature
Length(Current tour)

Length(Lower bound)

6 1.3 → 1.0

5 1.4 → 1.3

4 1.5 → 1.4

3 1.6 → 1.5

2 1.7 → 1.6

1 2.0 → 1.7

0 ∞ → 2.0

(b)

Table 2
Optimal cost-sensitive monitoring policy based on actual solution quality

Time-step

Quality Start 1 2 3 4 5 6 7 8 9 10 11

5 – 0 0 0 0 0 0 0 0 0 0 0

4 – 1M 1M 1M 1M 1M 1M 1M 1M 1M 1 0

3 – 1M 1M 1M 1M 1M 1M 1M 1M 1M 1 0

2 – 3M 3M 3M 3M 3M 3M 3M 3M 2 1 0

1 – 4M 4M 4M 4M 4M 5 4 3 2 1 0

0 5M 5M 5M 5M 5M 6 5 4 3 2 1 0

salesman problems. The time-dependent utility of a solution of quality qi at time tk is
arbitrarily defined by the function

U(qi, tk) = 100qi − 20tk.

Note that the first term of the utility function can be regarded as the intrinsic value of a
solution and the second term as the time cost, as defined in Section 2.

Without monitoring, the optimal running time of the algorithm is eight time-steps, with
an expected value of 269.2. Assuming solution quality can be measured accurately by the
run-time monitor (an unrealistic assumption in this case) and assuming a monitoring cost of
1, the dynamic programming algorithm described earlier computes the monitoring policy
shown in Table 2. The number in each cell of Table 2 represents how much additional time
to allocate to the algorithm based on the observed quality of the solution and the current
time. The letter M next to a number indicates a decision to monitor at the end of this time
allocation, and possibly allocate additional running time; if no M is present, the decision
is to stop at the end of this time allocation without monitoring. The policy has an expected
value of 303.3. This is better than the expected value of allocating a fixed running time,
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despite the added cost of monitoring. The improved performance is due to the fact that the
run-time monitor can stop the algorithm after anywhere from 5 to 11 time steps, depending
on how quickly the algorithm finds a good result. (If there is no cost for monitoring, a
policy that monitors every time step has an expected value of 309.4.)

The policy shown in Table 2 was constructed by assuming the actual quality of an
approximate solution could be determined by the run-time monitor. This is an unrealistic
assumption because the quality of the current tour is defined with reference to the length
of an optimal tour. To estimate the quality of the current tour, we need to estimate the
length of an optimal tour. One approach to estimating the optimal tour length is to compute
a lower bound on the optimal length by solving a relaxation of the problem [26]. For a
traveling salesman problem that satisfies the triangle inequality, there exist polynomial-
time algorithms that can compute a lower bound that is on average within two or three
percent of the optimal tour length. For our test, we simply used Prim’s minimal spanning
tree algorithm that very quickly computes a bound that is less tight, but still correlated with
the optimal tour length. The feature, Length(Current tour)/Length(Lower bound), used to
estimate solution quality was discretized using Table 1(b). The cost overhead of monitoring
consists of computing the lower bound at the beginning of the algorithm and monitoring
the current tour length at intervals thereafter.

Table 3 shows the monitoring policy given a monitoring cost of 1, when an estimate of
solution quality is conditioned on both this feature and the running time of the algorithm.
The expected value of the policy is 282.3. This is better than the expected value of
allocating a fixed running time without monitoring. But it is worse than the expected value
that could be achieved if the run-time monitor could determine the actual quality of an
approximate solution. This demonstrates that the less accurately a run-time monitor can
measure the quality of an approximate solution, the less valuable it is to monitor.

When an estimate of solution quality is based only on this feature, and not also on
running time, the expected value of monitoring is 277.0. This is still an improvement over
not monitoring, but the performance is not as good as when an estimate is conditioned on
running time as well. Because conditioning a dynamic performance profile on running
time significantly increases its size, however, this tradeoff may be acceptable in cases

Table 3
Cost-sensitive monitoring policy when solution quality is estimated

Time-step

Feature Start 1 2 3 4 5 6 7 8 9 10 11

6 – – – 0 0 0 0 0 0 0 0 0

5 – – 1 1 1 1 0 0 0 0 0 0

4 – – 2M 2M 1M 1M 1M 1M 1 0 0 0

3 – 4M 3M 2M 1M 1M 1M 1M 1M 1 0 0

2 – 4M 3M 2M 2M 2M 2M 1M 3 2 1 0

1 – 4M 3M 3M 3M 3M 3M 2M 2M 1M 1 –

0 5M 4M 3M 3M 3M 3M 3M – – – – –
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when the feature used to estimate quality is very reliable. For all of these results, the
improved performance predicted by dynamic programming was confirmed by simulation
experiments.

For this simple example, variance in improvement of solution quality is small and the
improved performance with run-time monitoring is correspondingly small. For problems
for which variance in improvement of solution quality is larger, the payoff for run-time
monitoring will be greater. It is significant that this technique improves performance even
when variance is small, solution quality is difficult to estimate at run-time, and monitoring
incurs a cost.

4. Monitoring the environment

We have described a framework for meta-level control of anytime algorithms that uses
run-time monitoring to compensate for uncertainty about the progress of computation. For
a large class of problems, the rate of improvement of solution quality is the only source
of uncertainty about how long to continue deliberation. Examples include optimizing a
database query [31], reformulating a belief net before solving it [3], and planning the next
move in a chess game [30]. For other problems, the utility of a solution may also depend
on the state of a dynamic environment that can change unpredictably after the start of
the algorithm. Examples include real-time planning [2], mobile robot control [8], medical
diagnosis [17], and image tracking [35]. For such problems, meta-level control can be
further improved by monitoring the state of the environment as well as the progress of
problem-solving.

In this section, we discuss how to extend our framework for meta-level control to allow
monitoring the environment as well as monitoring the progress of computation. In this
extension, the utility of a solution is a function of the state of the environment as well as of
time. We modify our definition of the utility function accordingly.

Definition 10. A state-dependent utility function, U(q, s, t), represents the utility of a
solution of quality q at time t given that the state of the environment is s.

When utility depends on the state of a dynamic environment, a meta-level controller
needs a predictive model of how the state of the environment changes over time. Issues that
arise in predicting change in the state of the environment are well-studied in the literature
on modeling dynamical systems and we do not review them here. For the purpose of meta-
level control, most details of the environment may be abstracted away and only those that
reflect the degree of time pressure must be modeled. For example, time pressure from the
environment may sometimes simply be modeled as a stochastic deadline. As a general
notation, we let Pr(sy |sx,�t) denote the probability that the problem state will be sy after
time �t if the current problem state is sx .

Given a probabilistic performance profile, a state-dependent utility function and an
initial environment state s0, we can determine an optimal fixed time allocation as follows:

t∗ = arg max
t

∑
i

∑
x

Pr(qi |t)Pr(sx |s0, t)U(qi, sx, t).
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When there is uncertainty about the state of the environment, performance can be improved
by replacing this fixed allocation approach with a more flexible approach to meta-level
control that monitors the state of the environment. In principle, this meta-level control
problem can be formulated by generalizing the approach we have used so far. However,
there are more options to consider. At any given time, it is possible to monitor the
computation only, the environment only, both the computation and the environment, or
neither. It is also possible to stop the computation and return the result. To select the best
option, the monitor must keep track of the following information,

[(q, tq), (s, ts ), t],
where q represents the most recently observed quality (or state of computation), tq
represents the time of this observation, s represents the most recently observed state of
the environment, ts represents the time of this observation, and t is the current time. Given
this information, a dynamic performance profile, a model of the environment, and a cost
model for monitoring, an optimal monitoring policy can be determined. However, it will
be larger and more complex than a policy for monitoring the progress of computation only.
Some simplifying assumptions can reduce its complexity.

Synchronous monitoring
One simplification is to synchronize the process of monitoring the environment with

the process of monitoring the computation. In other words, the only options considered
are monitoring both the state of the environment and the state of the computation, or
monitoring neither. Let C represent the combined cost of monitoring. Then a cost-sensitive
monitoring policy can be found by optimizing the following value function:

Vc(qi, sx, tk) = max
�t,m




∑
j,y Pr(qj |qi,�t)Pr(sy |sx,�t)U(qj , sy, tk + �t)

if m = stop,∑
j,y Pr(qj |qi,�t)Pr(sy |sx,�t)Vc(qj , sy, tk + �t) − C

if m = monitor.

Note that synchronous monitoring simplifies both the state representation and the
number of control actions to be considered. Synchronous monitoring is particularly
suitable when both of the monitored processes (computation and environment) have
roughly the same cost, the same degree of uncertainty, and the same level of influence
on the comprehensive value. In such cases, the desired frequencies of monitoring for the
two processes are roughly the same, so synchronizing them is a reasonable simplification.

Asynchronous monitoring
In developing asynchronous monitoring policies for the computation and the environ-

ment, some simplifying assumptions can reduce the size of the policy and the time it takes
to compute it. One way to decouple the decision to monitor the computation from the de-
cision to monitor the environment is to assume that one has a significant cost while the
other incurs little or none. In practice, monitoring the environment requires collecting and
interpreting sensory data to determine the state of the domain. If the cost of monitoring
the environment dominates the cost of monitoring computation, a monitoring policy only
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needs to determine when to monitor the environment (assuming that the computation is
monitored every time step).

If there are substantial costs for monitoring both the environment and the computation,
one can simplify the value function by treating the problems of when to monitor the
environment and when to monitor the computation as independent. A policy for monitoring
the environment may be determined by assuming the algorithm behaves in accordance with
its average performance profile. Similarly, a policy for monitoring the computation may be
determined by assuming the state of the environment unfolds as expected. Simplifying a
control problem by ignoring uncertainty, that is, by assuming a process exhibits its average-
case behavior, is called certainty equivalence control. For many problems, it serves as a
useful approximation [1].

5. Conclusion

We have presented a framework for monitoring and control of anytime algorithms
that formalizes the meta-level control problem as an optimal stopping problem and uses
dynamic programming to find a non-myopic stopping rule that is sensitive to the variance
of the algorithm’s performance, the time-dependent utility of a solution, the ability of the
run-time monitor to estimate the quality of the currently available solution, and the cost of
monitoring. By taking into account all of these factors, this framework makes it possible
to evaluate tradeoffs that influence the utility of monitoring. For example, the dynamic
programming technique is sensitive to both the cost of monitoring and to how well the
quality of the currently available solution can be estimated by the run-time monitor. This
makes it possible to evaluate a tradeoff between these two factors. It is likely that there will
be more than one method for estimating a solution’s quality and the estimate that takes
longer to compute will be more accurate. Is the greater accuracy worth the added time
cost? This question can be answered by computing a monitoring policy for each method
and comparing their expected values to select the best one.

Although we have focused on the meta-level control problem for anytime algorithms,
a similar framework may be used to develop non-myopic strategies for other resource-
bounded reasoning techniques. For example, Russell and Wefald [28,30] describe an
approach to meta-level control of real-time search algorithms that uses an estimate of the
value of computation to select which node of the search tree to expand next, as well as when
to terminate the search and act on the currently available solution. To simplify this meta-
level control problem, they make a meta-greedy assumption that is equivalent to estimating
the value of computation myopically. Recognizing that a non-myopic approach can lead
to better performance, Harada and Russell [11] consider treating this meta-level control
problem as a Markov decision problem and propose using reinforcement learning with
value function approximation techniques to solve it.

Mouaddib and Zilberstein [23,41] have developed a similar framework for controlling
progressive processing task structures. In this model, a system satisfies a set of information
requests under time pressure by limiting the amount of processing allocated to each
task based on a predefined hierarchical task structure. Using dynamic programming,
Mouaddib and Zilberstein show how to construct an optimal monitoring policy that
results in significant improvement over heuristic scheduling techniques in handling the
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duration uncertainty associated with the basic computational components. The progressive
processing model has recently been extended to allow monitoring of other resources
besides computation time [42].

The problem of monitoring a system composed of multiple anytime algorithms has been
studied by Zilberstein [37]. He shows how to compile a performance profile for a complete
system from the performance profiles of its components. Run-time monitoring can improve
the performance of the system when the actual quality of a solution generated by an
anytime component differs from its expected quality, or when the environment changes
unpredictably. Without describing this work in detail, we note the analogy to the problem
of monitoring individual anytime algorithms discussed in this paper. In both cases, run-time
monitoring is an option when the problem of allocating computation time can be treated as
a sequence of predictions and decisions instead of a single, once-and-for-all decision.
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