A Heuristic Search Algorithm for Markov Decision Problems

Eric A. Hansen
Computer Science Department
Mississippi State University
Mississippi State, MS 39762
hansen@cs.msstate.edu

Abstract

LAO* is a heuristic search algorithm for
Markov decision problems that is derived
from the classic heuristic search algorithm
AO* (Hansen & Zilberstein 1998). It shares
the advantage heuristic search has over dy-
namic programming for simpler classes of
problems: it can find optimal solutions with-
out evaluating all problem states. In this pa-
per, we show that the derivation of LAO*
from AO* makes it possible to generalize re-
finements of simpler heuristic search algo-
rithms for use in solving Markov decision
problems more efficiently. We also generalize
some theoretical analyses of simpler search
problems to Markov decision problems.

1 Introduction

The Markov decision process (MDP), a model of se-
quential decision-making developed in operations re-
search, allows reasoning about actions with uncertain
outcomes in order to determine a course of action that
maximizes expected utility. It has been adopted as
a framework for artificial intelligence (AI) research in
decision-theoretic planning (Dean et al. 1995) and re-
inforcement learning (Barto et al. 1995). In adopt-
ing this model, AT researchers have adopted dynamic-
programming algorithms developed in operations re-
search for solving MDPs. A drawback of dynamic
programming is that it finds a solution for all problem
states. In this paper, a heuristic search approach to
solving MDPs is described that represents the prob-
lem space of an MDP as a search graph and uses a
heuristic evaluation function to focus computation on
the “relevant” problem states, that is, on states that
are reachable from a given start state.

The advantage of heuristic search over dynamic pro-
gramming is well-known for simpler classes of sequen-

Shlomo Zilberstein
Computer Science Department
University of Massachusetts
Ambherst, MA 01002
shlomo@cs.umass.edu

tial decision problems. For problems for which a so-
lution takes the form of a path from a start state to
a goal state, the heuristic search algorithm A* can
find an optimal path by exploring a fraction of the
state space. Similarly, for problems for which a so-
lution takes the form of a tree or an acyclic graph,
the heuristic search algorithm AO* can find solutions
more efficiently than dynamic programming by focus-
ing computation on reachable states.

Neither of these heuristic search algorithms can solve
the class of sequential decision problems considered in
this paper. Problems of decision-theoretic planning
and reinforcement learning are typically modeled as
MDPs with an indefinite (or infinite) horizon. For this
class of problems, the number of actions that must be
taken to achieve an objective cannot be bounded, and
a solution (that has a finite representation) must con-
tain loops. Classic heuristic search algorithms, such
as A* and AO*, cannot find solutions with loops.
However, Hansen and Zilberstein (1998) have recently
described a novel generalization of heuristic search,
called LAO*, that can. They show that LAO* can
solve MDPs without evaluating all problem states.

Although real-time search has been applied to MDPs
before (Barto et al. 1995, Dean et al. 1995, Tash and
Russell 1994, Dearden and Boutilier 1994), LAO* is
the first off-line heuristic search algorithm for MDPs.
This paper reviews the LAO* algorithm and describes
some extensions of it that are based on its derivation
from AO*. These include techniques for improving the
efficiency of the algorithm, an f = g+ h decomposition
of the evaluation function, use of a weighted heuristic,
a theorem establishing a relationship between search
efficiency and heuristic accuracy, a pathmax operation
and a test for convergence to e-optimality. These new
results illustrate the relevance of the rich body of Al
research on heuristic search to the problem of solving
MDPs more efficiently.

2 MDPs and dynamic programming

We consider an MDP with a state set, S, and a fi-
nite action set, A. Let A(i) denote the set of actions
available in state i. Let p;;(a) denote the probability
that taking action a in state i results in a transition to
state j. Let c¢;(a) denote the expected immediate cost
of taking action a in state <.

We are particularly interested in MDPs that include a
start state, s € S, and a set of terminal states, T C S.
For every terminal state ¢ € T, we assume that no
action can cause a transition out of it (i.e., it is an
absorbing state). We also assume that the immediate
cost of any action taken in a terminal state is zero. In
other words, the control problem ends once a terminal
state is reached. Because we are particularly interested
in problems for which a terminal state is used to model
a goal state, from now on we refer to terminal states
as goal states.

For all non-terminal states, we assume that immediate
costs are positive for every action, that is, ¢;(a) > 0 for
all states ¢ ¢ T and actions a € A(i). The objective is
to find a solution that minimizes the expected cumu-
lative cost of reaching a goal state from the start state.
Because the probabilistic outcomes of actions can cre-
ate a non-zero probability of revisiting the same state,
the worst-case number of steps needed to reach a goal
state cannot be bounded. Hence, the MDP is said to
have an indefinite horizon. (The results of this paper
extend to MDPs without goal states, for which the ob-
jective is to optimize performance over an infinite hori-
zon. However, we focus on MDPs with goal states be-
cause they generalize traditional Al state-space search
problems.)

When an indefinite (or infinite) horizon MDP is solved
using dynamic programming, a solution is represented
as a mapping from states to actions, § : S — A, called
a policy. A policy is executed by observing the current
state and taking the action prescribed for it. This
representation of a solution implicitly contains both
branches and loops. Branching is present because the
state that stochastically results from an action deter-
mines the next action. Looping is present because the
same state can be revisited under a policy.

A policy is said to be proper if it ensures that a goal
state is reached from any state with probability 1.0.
For a proper policy, the expected cumulative cost for
each state 7 is finite and can be computed by solving
the following system of |S| equations in |S| unknowns:

Fo30) = [es(8(0) + Y pig (6(0)) £2(5)

JES

For some problems, it is reasonable to assume that all

1. Start with an arbitrary policy 6.

2. Repeat until the policy does not change:

(a) Compute the evaluation function f° for
policy § by solving the following set of |S]|
equations in |S| unknowns.

Fo(0) = es(6() + B pis(8(2)) f° ()
JES

(b) For each state ¢ € S,

ci(a) + 8 pij(a)f°(j)

JjES

8(7) := arg arenjr(li)

Resolve ties arbitrarily, but give preference
to the currently selected action.

Figure 1: Policy iteration.

possible policies are proper. When this assumption is
not reasonable, future costs can be discounted by a
factor B, with 0 < 8 < 1, to ensure that states have
finite expected costs that can be computed by solving
the following system of |S| equations in |S| unknowns:

F2G) = |e(6(i) + B pij (6(0) £ (5)

jES

For problems for which neither discounting is reason-
able nor all possible policies are proper, other optimal-
ity criteria — such as average cost per transition — can
be adopted (Bertsekas 1995). The rest of this paper
assumes discounting.

A policy 6 is said to dominate a policy & if f0(i) <
f% (i) for every state i. An optimal policy, 6*, dom-
inates every other policy and its evaluation function,
f*, satisfies the following system of recursive equations
called the Bellman optimality equation:

Y 0 if 4 is a goal state
1) = . *(
£ else MingeA(s) [c,-(a) + B2 jespij(a) f* ()

Figure 1 summarizes policy iteration, a well-known
dynamic-programming algorithm for solving MDPs.
Figure 2 summarizes value iteration, another dynamic-
programming algorithm for solving MDPs. Both pol-
icy iteration and value iteration repeat an improve-
ment step that updates the evaluation function for all
states. Neither uses knowledge of the start state to
focus computation on reachable states. As a result,
both algorithms solve an MDP for all possible starting
states.

1. Start with an arbitrary evaluation function f.

2. Repeat until the error bound of the evaluation
function is less than e:

For each state i € S,

ci(a) + 8 _pij(a) f(j)

JES

10 = i,

3. Extract an e-optimal policy from the evaluation
function as follows. For each state i € S,

0(2) == i
W= ame 2%

ci(a) + B pij(a)f(j)

JES

Figure 2: Value iteration.

RTDP Because policy iteration and value iteration
evaluate all states to find an optimal policy, they
are computationally prohibitive for MDPs with large
state sets. Barto, Bradtke, and Singh (1995) describe
an algorithm called real-time dynamic programming
(RTDP) that avoids exhaustive updates of the state
set. RTDP is related to an algorithm called asyn-
chronous value iteration that updates a subset of the
states of an MDP each iteration. RTDP interleaves a
control step with an iteration of asynchronous value
iteration. In the control step, a real or simulated ac-
tion is taken that causes a transition from the current
state to a new state. The subset of states for which
the evaluation function is updated includes the state
in which the action is taken.

Figure 3 summarizes trial-based RTDP, which solves
an MDP by organizing computation as a sequence of
trials. At the beginning of each trial, the current state
is set to the start set. Each control step, an action is se-
lected based on a lookahead of depth one or more. The
evaluation function is updated for a subset of states
that includes the current state. A trial ends when the
goal state is reached, or after a specified number of
control steps.

Because trial-based RTDP only updates states that
are reachable from a start state when actions are se-
lected greedily based on the current evaluation func-
tion, states that are not reachable may not be up-
dated. Barto, Bradtke and Singh (1995) prove that
RTDP converges to an optimal solution without nec-
essarily evaluating all problem states. They point out
that this result generalizes the convergence theorem of
Korf’s (1990) learning real-time heuristic search algo-
rithm (LRTA*). This suggests the following question.
Given that RTDP generalizes real-time search from

1. Start with an admissible evaluation function f.

2. Perform some number of trials, where each trial
sets the current state to the start state and re-
peats the following steps until a goal state is
reached or the finite trial ends.

(a) Find the best action for the current state
based on lookahead search of depth one (or
more).

(b) Update the evaluation function for the cur-
rent state (and possibly others) based on
the same lookahead search used to select
the best action.

(c) Take the action selected in (2a) and set the
current state to the state that results from
the stochastic transition caused by the ac-
tion.

3. Extract a policy from the evaluation function
f as follows. For each state ¢ € S,

8(i) := arg min) ci(a) + ﬁsz'j(a)f(j)

e
a€A(L jes

Figure 3: Trial-based RTDP.

problems with deterministic state transitions to MDPs
with stochastic state transitions, is there a correspond-
ing off-line search algorithm that can solve MDPs?

3 LAO*

Hansen and Zilberstein (1998) describe a heuristic
search algorithm, called LAO*, that solves the same
class of problems as RTDP. LAO* generalizes the
classic heuristic search algorithm AO* by allowing a
solution to contain loops. Unlike RTDP and other
dynamic-programming algorithms, LAO* does not
represent a solution (or policy) as a simple mapping
from states to actions. Instead, it represents a so-
lution as a cyclic graph with a designated start state.
This representation generalizes the graphical represen-
tations of a solution used by search algorithms like
A* (a simple path) and AO* (an acyclic graph). The
advantage of representing a solution in the form of a
graph is that it exhibits reachability among states ex-
plicitly and thus makes it easier to prune unreachable
parts of the state space.

When an MDP is formalized as a graph-search prob-
lem, each state of the graph corresponds to a problem
state and each arc corresponds to an action causing
a transition from one state to another. When state
transitions are stochastic, an arc is a hyperarc or k-

connector that connects a state to a set of k successor
states, with a probability attached to each successor.
A graph that contains hyperarcs is called a hypergraph
and corresponds to an AND/OR graph (Martelli &
Montanari 1978, Nilsson 1980). A solution to an MDP
formalized as an AND/OR graph is a subgraph of the
AND/OR graph called a solution graph, defined as fol-
lows:

¢ the start state belongs to a solution graph

e for every non-goal state in a solution graph, ex-
actly one action (outgoing k-connector) is part of
the solution graph and each of its successor states
belongs to the solution graph

¢ every directed path in a solution graph terminates
at a goal state

Because a heuristic search algorithm can find an opti-
mal solution graph without evaluating all states, the
entire AND/OR graph is not supplied explicitly to the
search algorithm. We refer to G as the implicit graph;
it is specified implicitly by a start state s and a suc-
cessor function. The search algorithm works on an
explicit graph, G', that initially consists only of the
start state. A tip state of the explicit graph is a state
that does not have any successors in the explicit graph.
A tip state that does not correspond to a goal state
is called a non-terminal tip state. A non-terminal tip
state can be expanded by adding to the explicit graph
its outgoing connectors and any successor states not
already in the explicit graph.

AO¥*, the heuristic search algorithm that LAO* gener-
alizes, is described by Martelli and Montanari (1973,
1978) and Nilsson (1980). It is limited to solv-
ing problems that can be represented by acyclic
AND/OR graphs and the solutions it finds are acyclic.
LAO* generalizes AO* to find solutions with loops in
AND/OR graphs containing cycles.

Both AO* and LAO* repeatedly expand the best par-
tial solution until a complete solution is found. The
definition of a partial solution graph is similar to the
definition of a solution graph, except that a directed
path may end at a non-terminal tip state. For every
non-terminal tip state ¢ of a partial solution graph, we
assume there is an admissible heuristic estimate h(7)
of the minimal-cost solution graph for it. A heuris-
tic evaluation function h is said to be admissible if
h(i) < f*(i) for every state i. We can recursively
calculate an admissible heuristic estimate f(i) of the
optimal cost of any state 7 in the explicit graph as

follows:

0 if 7 is a goal state
h(%) if 7 is a non-terminal tip state

7(0) =
else Minge () [ci(a) + B3 jcs Pij (a)f(j)] .

For a partial solution graph that does not contain
loops, these heuristic estimates can be calculated by
dynamic programming in the form of a simple back-
wards induction algorithm, and this is what AO* does.
For a partial solution graph that contains loops, dy-
namic programming cannot be performed in the same
way. However, it can be performed by using policy
iteration or value iteration. This simple generaliza-
tion of AQ* creates the algorithm LAO*. The shared
structure of AO* and LAO* is summarized in Figure 4.

In the simplest version of both AO* and LAO*, dy-
namic programming is performed on the set of states
that includes the expanded state and all of its ances-
tors in the explicit graph (Martelli & Montanari 1973).
Martelli and Montanari (1978) and Nilsson (1980) note
that only ancestor states that can reach the expanded
state along marked actions (i.e., by choosing the best
action for each state) can have their costs changed in
the dynamic-programming step of AO*. This also ap-
plies to LAO* and limits the set of states on which
the dynamic-programming step of LAO* is performed.
Note that when dynamic programming is performed
on a subset of the states in the explicit graph, the
costs of states that are not in the subset are treated as
constants by the algorithm because they cannot be af-
fected by any change in the cost of the expanded state
or its ancestors.

The dynamic-programming step of LAO* can be per-
formed using either policy iteration or value iteration.
An advantage of using policy iteration is that it com-
putes an exact cost for each state of the explicit graph
after a finite number of iterations, based on the heuris-
tic estimates at the tip states. When value iteration is
used in the dynamic-programming step, convergence
to exact state costs is asymptotic. However, this dis-
advantage may be offset by the improved efficiency of
value iteration for larger problems.

Descriptions of the AO* algorithm usually include a
solve-labeling procedure. Briefly, a state is labeled
solved if it is a goal state or if all of its successor states
are labeled solved. We have omitted the solve-labeling
procedure from our description of AO* and LAO* to
make the essential algorithm clearer.

In both AO* and LAO*, the fringe of the best partial
solution graph may contain many unexpanded states
and the choice of which to expand next is nondeter-
ministic. That is, both AO* and LAO* work correctly
no matter what heuristic is used to select which non-

1. The explicit graph G’ initially consists of the
start state s.

2. While the best solution graph has some non-
terminal tip states:

(a) Expand best partial solution: Expand some
non-terminal tip state n of the best partial
solution graph and add any new successor
states to G'. For each new state ¢ added
to G' by expanding n, if i is a goal state
then f(7) := 0; else f(i) := h(3).

(b) Update state costs and mark best actions:

i. Create a set Z that contains the ex-
panded state and all of its ancestors in
the explicit graph along marked action
arcs. (Le., only include ancestor states
from which the expanded state can be
reached by following the current best
solution.)

ii. Perform dynamic programming on the
states in set Z to update state costs
and determine the best action for each
state. (AO* performs dynamic pro-
gramming using backwards induction.
LAO* uses policy iteration or value it-
eration.)

3. If this is AO* or LAO* using policy iteration,
return the solution graph.

Else if this is LAO* using value iteration, per-
form value iteration on the states in the best
partial solution until one of the following two
conditions is met. (i) If the error bound falls
below e, exit with an e-optimal solution. (ii) If
the best partial solution changes so that it has
an unexpanded tip state, go to step 2.

Figure 4: AO* and LAO*.

terminal tip state of the best partial solution graph to
expand next. A well-chosen state selection heuristic
can improve performance, however. Possibilities in-
clude expanding the state with the highest probability
of being reached from the start state or expanding the
state with the least cost.

LAO* bears a close similarity to an “envelope” ap-
proach to policy and value iteration described by Dean
et al. (1995) and Tash and Russell (1994). However,
the envelope approach is not derived from AO* and no
proof is given that it converges to an optimal solution
without evaluating all problem states.

Convergence test Both AO* and LAO* converge
when the best solution graph does not have any

non-terminal tip states. When policy iteration is
used to compute exact state costs in the dynamic-
programming step, the solution to which LAO* con-
verges is optimal. When state costs are updated
approximately using value iteration in the dynamic-
programming step, the solution to which LAO* con-
verges may not be optimal. In this case, an additional
convergence test can be used to determine whether the
solution is e-optimal, for any e. The convergence test
is summarized in step 3 of Figure 4.

The test is simple and consists of performing value it-
eration on the set of states visited by the current best
solution graph. This set of states may change from
one iteration of value iteration to the next because the
best action for a state can be changed by value itera-
tion. If at any point the best solution graph changes
so that it includes a non-terminal tip state, control is
passed from this convergence test back to the main al-
gorithm so that the current solution can be expanded
and re-evaluated. Otherwise, the Bellman residual is
computed each iteration and used to determine the er-
ror bound of the solution. Because the estimated cost
of every state in the explicit graph is admissible, the
Bellman residual only needs to be computed for the
states visited by the best solution to determine the er-
ror bound of the solution — as long as the best solution
is a complete solution. Value iteration is repeated un-
til the error bound of the solution falls below e. When
it does, LAO* terminates with an e-optimal solution.

Admissibility It is possible to show that LAO*
shares the properties of AO* and other heuristic search
algorithms. Given an admissible heuristic evaluation
function, all state costs in the explicit graph are admis-
sible after each step and LAO* converges to an optimal
or e-optimal solution without (necessarily) evaluating
all problem states. The following proofs are adapted
from (Hansen & Zilberstein 1998).

Theorem 1 If the heuristic evaluation function h is
admissible and policy iteration is used to perform the
dynamic programming step of LAO*, then:

1. f(@) < f*(i) for every state i, after each step of
LAO*

2. f(i) = f*(i) for every state i of the best solution
graph, when LAO* terminates

3. LAO¥* terminates after a finite number of itera-
tions

Proof: (1) The proof is by induction. Every state
i € @G is assigned an initial heuristic cost estimate
and h(i) < f*(i) by the admissibility of the heuristic
evaluation function. The forward search step expands

the best partial solution graph and does not change
the cost of any states and so it is sufficient to con-
sider the dynamic programming step. We make the in-
ductive assumption that at the beginning of this step,
f(@) < f*(3) for every state i € G. If all the tip states
of G’ have optimal costs, then all the nontip states
in G’ must converge to their optimal costs when pol-
icy iteration is performed on them by the convergence
proof for policy iteration. But by the induction hy-
pothesis, all the tip states of G’ have admissible costs.
It follows that the nontip states in G' must converge
to costs that are as good or better than optimal when
policy iteration is performed on them only.

(2) The search algorithm terminates when the best
solution graph for s is complete, that is, has no unex-
panded states. For every state ¢ in this solution graph,
it is contradictory to suppose f(i) < f*(4) since that
implies a complete solution that is better than opti-
mal. By (1) we know that f(i) < f*(i) for every state
in G'. Therefore f(i) = f*(3).

(3) It is obvious that LAO* terminates after a finite
number of iterations if the implicit graph G is finite,
or equivalently, the number of states in the MDP is
finite. (When the state set is not finite, it may still
converge in some cases.) O

Theorem 2 If the heuristic evaluation function h is
admissible and value iteration is used to perform the
dynamic programming step of LAO*, then:

1. f(@) < f*(4) for every state i at every point in the
algorithm

2. f(i) converges to within € of f*(i) for every state
i of the best solution graph, after a finite number
of iterations

Proof: (1) The proof is by induction. Every state
i € G is assigned an initial heuristic cost estimate and
fG@) = h(i) < f*(3) by the admissibility of the heuristic
evaluation function. We make the inductive hypothe-
sis that at some point in the algorithm, f(i) < f*(3)
for every state i € G. If a value iteration update is
performed for any state i,

ci(a) + 8 pij(a) f(5)

jeS

O = 8%

ei(a) + 8 @17 () | = 17(0),

JjES

< min
a€A(d)

where the last equality restates the Bellman optimality
equation.

(2) Because the graph is finite, LAO* must eventually
find a complete solution graph. Because an iteration of

value iteration reduces the error bound by an amount
proportional to 8, the error bound of the solution can
be made arbitrarily small after a finite number of iter-
ations. O

4 Extensions

LAO* can solve the same class of MDPs as RTDP
and both algorithms converge to an optimal solution
without evaluating all problem states. The derivation
of LAO* from the heuristic search algorithm AO* has
an important advantage, however; it makes it easier
to generalize refinements of simpler heuristic search
algorithms for use in solving MDPs more efficiently. To
illustrate this, we describe some extensions of LAO*
that are suggested by its derivation from AO* (and
ultimately, from A*).

41 f=g+h

The A* search algorithm relies on a familiar f =g+ h
decomposition of the evaluation function. Chakrabarti
et al. (1988) have shown that a similar decomposition
of the evaluation function is possible for AO* and that
it supports a weighted heuristic version of AO*. We
first show that this f = g+h decomposition of the eval-
uation function can be extended to LAO*. Then we
describe a similar weighted heuristic version of LAO*.

Each time a state ¢ is generated by A*, a new esti-
mate f(i) of the optimal cost from the start state to
a goal state is computed by adding g(i), the cost-to-
arrive from the start state to 7, to h(i), the estimated
cost-to-go from 7 to a goal state. Each time a state i is
generated by AO* or LAO*, the optimal cost from the
start state to a goal state is also re-estimated. In this
case, it is re-estimated by updating the estimated cost
of every ancestor state of ¢, including the start state.
For the start state (and similarly for any other an-
cestor state), the estimated cost-to-go, denoted f(s),
is decomposed into g(s), the cost-to-arrive from the
start state to a state on the fringe of the best partial
solution, and h(s), the estimated cost-to-go from the
fringe of the best partial solution to a goal state. In
other words, g(s) represents the part of the solution
cost that has been explicitly computed so far and h(s)
represents the part of the solution cost that is still only
estimated.

Note that after a state 7 is generated by AO* or LAO*,
and before it is expanded, g(i) equals zero and f(7)
equals h(i). After state i is expanded, f(4) is updated
in the same manner as before:

ci(a) + B8 pij(a)f(5)|

JjeS

where the discount factor 8 is used with discounted
MDPs only. Having determined the action a that op-
timizes f(¢), the algorithm proceeds to update g(i) and
h(i) as follows:

9(i) = cila)+ B8 pii(a)g(i),
JjES
h@i) = B pij(a)h(j)-
JjES

Note that once LAO* converges to a complete solu-
tion, h(i) = 0 and f(i) = g(¢) for every state 7 in the
solution.

The possibility of decomposing the evaluation function
of an MDP in this way elegantly reflects the interpre-
tation of an MDP as a heuristic search problem. It also
makes it possible to create a weighted heuristic that
can improve the efficiency of LAO* in exchange for a
bounded decrease in the optimality of the solution it
finds.

4.2 'Weighted heuristic

Pohl (1973) first described how to create a weighted
heuristic and showed that it can improve the efficiency
of A* in exchange for a bounded decrease in solution
quality. Given the familiar decomposition of the eval-
uation function, f(i) = g(i) + h(i), a weight w, with
0.5 < w <1, is used to create a weighted heuristic,
f(@) = (1 —w)g(i) + wh(i). Use of this heuristic guar-
antees that solutions found by A* are no more than a
factor of w/(1 — w) worse than optimal (Davis et al.,
1989). Given a similar f = g + h decomposition of the
evaluation function computed by LAO*, it is straight-
forward to create a weighted version of LAO* that can
find an e-optimal solution by evaluating a fraction of
the states that LAO* might have to evaluate to find
an optimal solution.

We also note that a f = g + h decomposition of
the evaluation function and a weighted heuristic can
be used with RTDP. In fact, the idea of weighting a
heuristic in order to find a bounded-optimal solution
quickly is also explored by Ishida and Shimbo (1996)
for Korf’s LRTA* algorithm, which can be viewed as a
special case of RTDP for solving deterministic search
problems. They create a weighted heuristic by sim-
ply multiplying the initial heuristic estimate of each
state’s value by a weight. (This approach is less flexi-
ble than one that relies on the f = g+ h decomposition
because it does not allow the weight to be adjusted.)
They find that a weighted heuristic can significantly
reduce the number of states explored (expanded) by
LRTA* without significantly decreasing the quality of
the solution it finds.

4.3 Heuristic accuracy and search efficiency

In all heuristic search algorithms, three sets of states
can be distinguished. The implicit graph contains
all problem states. The explicit graph contains those
states that are evaluated in the course of the search.
The solution graph contains those states that are
reachable from the start state when the best solution is
followed. The objective of a best-first heuristic search
algorithm is to find an optimal solution (for a given
start state) while generating as small an explicit graph
as possible.

Like all heuristic search algorithms, the efficiency of
LAO* depends crucially on the heuristic evaluation
function that guides the search. The more accurate the
heuristic, the fewer states need to be evaluated to find
an optimal solution, that is, the smaller the explicit
graph generated by the search algorithm. For A*, the
relationship between heuristic accuracy and search ef-
ficiency has been made precise. Given two heuristic
functions, hy and he, such that hy (i) < ha(i) < f*(4)
for all states i, the set of states expanded by A* when
guided by hs is a subset of the set of states expanded
by A* when guided by h; (Nilsson 1980).

A result this strong does not hold for AO*, or by ex-
tension, for LAO*. The reason it does not is that
the selection of the next state to expand on the fringe
of the best partial solution is nondeterministic. Al-
though AO* and LAO* work correctly no matter what
state on the fringe of the best partial solution is ex-
panded next, a particular choice may result in some
states being expanded that would not be if the choice
were different. Nevertheless, Chakrabarti et al. (1988)
show that a weaker result does hold for AO* and it is
straightforward to extend this result to LAO*.

Chakrabarti et al. (1998) consider the worst-case set of
states expanded by a search algorithm. Let V' denote
the worst-case set of states expanded by LAO*, defined
as follows:

e the start state sisin V

e a state ¢ is in V if there exists a partial solution
graph p such that:

— fP(s) < f*(s)
— every non-tip state of pisin V
— 4 is a non-terminal tip state of p

e no other states are in V'

Given this definition, we have the following theorem.

Theorem 3 Given two heuristic functions, h; and
ha, such that h1(i) < ha(i) < f*(i) for all states i,

the worst-case set of states erpanded by LAO* when
guided by ho is a subset of the worst-case set of states
expanded by LAO* when guided by h;.

Proof: For any partial solution graph for start state s,
we have

fi(s) = g(s) + hi(s),
f2(s) = g(s)+ ha(s).

Since hi(s) < ha(s), we have fi(s) < fa(s). Thus, if
f2(s) < f*(s), we also have fi(s) < f*(s). It follows
that the worst-case set of states expanded by LAO*
when guided by he must be a subset of the worst-case
set of states expanded by LAO* when guided by h;.
O

In other words, although a more accurate heuristic
does not necessarily make LAO* more efficient, it
makes it more efficient in the worst case. This result
only holds for a “pure” version of LAO* that updates
state costs exactly in the dynamic-programming step.
If LAO* updates state costs approximately, for exam-
ple, by using value iteration with a relaxed criterion for
convergence, the effect on the set of states expanded
in the worst case is not clear.

4.4 Pathmax

In A* search, a heuristic evaluation function h is said
to be consistent if it is both admissible and h(i) <
c¢i(a) + h(j) for every state i and action a, where j is
the successor state. Consistency is a desirable property
because it ensures that state costs increase monoton-
ically as the algorithm converges. If a heuristic eval-
uation function is admissible but not consistent, state
costs need not increase monotonically. However, they
can be made to do so by adding a pathmaz operation
to the update step of the algorithm. This common im-
provement of A* and AO* can also be made to LAO*.

For LAO*, a heuristic evaluation function h is said
to be consistent if it is both admissible and h(i) <
ci(a) + B2; pij(a)h(j) for every state i and action
a € A(i). A pathmax operation is added to LAQ*
by changing the formula used to update state costs as
follows:

f(i) = max | f(i), min) ci(a) + 8 pij(a)f(j)

Al
aEA(: jes

As with the classic heuristic search algorithms A* and
AO¥*, use of the pathmax operation in LAO* can re-
duce the number of states that are expanded to find an
optimal solution, when the heuristic is not consistent.

5 Performance

We have implemented LAO* and tested it on a suite
of problems that includes the gridworld and racetrack
problems used to test the performance of RTDP and
similar envelope algorithms (Barto et al. 1995, Dean
et al. 1995, Tash & Russell 1994). The largest of
these test problems is a racetrack problem with a lit-
tle over 22,000 states, used as a test problem by Barto
et al. (1995). Problems of this size are too small for
a comprehensive evaluation of LAO*, but they do al-
low us to observe some of the properties of the algo-
rithm. For example, a simple admissible heuristic for
the racetrack problem sets the initial heuristic cost of
each state to zero. In this case, LAO* finds an opti-
mal solution that visits 2,107 states after building an
explicit graph that contains 15,824 states. A better
admissible heuristic for this problem is computed by
beginning from the goal state and determining, using
Dijkstra’s algorithm, the shortest number of actions it
can take to reach the goal for each state. Using this
heuristic, LAO* finds the same optimal solution after
expanding only 11,127 states. Weighting this heuristic
with a weight of 0.7, LAO* found a solution within
one decimal point of the optimal expected cost after
expanding only 9,832 states. These results illustrate
the importance of heuristic accuracy in limiting search
complexity.

In our experiments, we found that a naive implemen-
tation of LAO* is not necessarily as efficient as RTDP,
or even value iteration. Expanding just one state at
a time, for example, can slow LAO* by causing exces-
sive iterations of the dynamic-programming step. The
performance of LAO* can usually be improved — often
dramatically — by expanding multiple states on the
fringe of the best partial solution before updating the
costs of ancestor states using dynamic progamming.

Updating all ancestor states of an expanded state in
the dynamic-programming step can also slow the algo-
rithm unnecessarily. For some problems, surprisingly,
an expanded state can have many more ancestors than
there are states in the best partial solution. (This is
true for the racetrack problem, for example, because
hitting a wall causes a transition back to the start
state. This makes almost every state of the problem an
ancestor of the start state, and thus an ancestor of any
expanded state — even though a fraction of these states
may be reachable from the start state by following
the best solution.) In such cases, performing dynamic
programming only on ancestor states of an expanded
state that are also part of the current best solution can
significantly reduce the number of states on which dy-
namic programming is performed, and does so without
affecting the convergence of the algorithm. Techniques

like prioritized sweeping (Moore & Atkinson 1993) may
also be used to accelerate the value-iteration step of
LAO* by focusing updates where they will have the
most impact. We do not discuss these possibilities fur-
ther in this paper. For most of the simple problems we
tested, the performance of a careful implementation of
LAO* - in particular, one that expands multiple states
at a time on the fringe of the best partial solution — is
competitive with RTDP.

We have also used LAO* to solve some partially ob-
servable MDPs (POMDPs). A POMDP is a general-
ization of an MDP in which the state of the process
is not directly observed; instead, an observation is re-
cieved that is probabilistically related to the underly-
ing state (Kaelbling, Littman & Cassandra 1998). A
POMDP can be formalized as a completely observable
MDP for which the state set is the set of all possible
probability distributions — called belief states — over
the underlying states. Although the set of all possible
belief states is uncountably infinite, there is a sub-
set of POMDPs for which an optimal policy visits a
finite number of belief states, starting from a partic-
ular belief state. Simple examples include the tiger-
behind-the-door problem of Kaelbling et al. (1998)
and the maze problem of McCallum (1993). Inspec-
tion/replacement problems, a widely-studied class of
problems in operations research, also have this prop-
erty (Thomas et al. 1991). Taking either a replace or
an inspect action (assuming perfect inspections) cre-
ates a loop to some previously visited belief state and
a policy that visits a finite number of belief states.
A similar class of problems that can be solved using
LAO* are MDPs with delayed information (Brooks &
Leondes 1973). We have used LAO* to find optimal
solutions to small examples of all of these types of
problems.

The assumption that an optimal solution visits a fi-
nite number of belief states severely limits the range of
POMDPs for which LAO* is an effective approach, and
we do not propose LAO* as an approach to POMDPs
in general. Nevertheless, the fact that LAO* can find
an optimal solution for some POMDPs by evaluating
a search graph containing a small number of belief
states is notewothy. It vividly illustrates the ability
of heuristic search to converge to an optimal solution
without evaluating all possible states — in this case, an
uncountably infinite number of possible belief states.

6 Discussion

This paper describes an enhanced version of the LAO*
algorithm first described by Hansen and Zilberstein
(1998). The enhancements introduced include a rule
for limiting the set of ancestor states on which the

dynamic-programming step is performed, a test for
convergence to e-optimality when value iteration is
used in the dynamic-programming step, an f =g+ h
decomposition of the evaluation function, use of a
weighted heuristic, a theorem establishing a relation-
ship between search efficiency and heuristic accuracy
and a pathmax operation. We have also reported some
observations of the algorithm’s performance.

Real-time search has been used before to solve MDPs
(Barto et al. 1995, Dean et al. 1995, Tash & Rus-
sell, 1994, Dearden & Boutilier 1994). LAO* is unique
in that it is an off-line heuristic search algorithm for
MDPs. (Its representation of a solution as a cyclic
graph also distinguishes it from earlier work on using
search to solve MDPs.) We have stressed the deriva-
tion of LAO* from the classic heuristic search algo-
rithm AO* because we believe this derivation provides
a foundation for a heuristic search approach to MDPs.
It also makes it easier to generalize enhancements of
classic search algorithms for use in solving MDPs more
efficiently, as this paper illustrates. Most of the en-
hancements described in this paper generalize similar
enhancements of AO*. The enhancements of LAO*
we have described can also be used to improve the
efficiency of RTDP. Finally, this work provides a the-
oretical foundation for the closely-related envelope al-
gorithms of Dean et al. (1995) and Tash and Russell
(1994).

Like RTDP, LAO* is especially useful for problems for
which an optimal solution, given a start state, visits
a fraction of the state space. It is easy to give exam-
ples of MDPs like this. But there are also MDPs with
optimal solutions that visit the entire state space. An
interesting question is how to recognize problems for
which an optimal solution visits a fraction of the state
space and distinguish them from problems for which an
optimal solution visits most, or all, of the state space.
Even for problems for which an optimal solution visits
the entire state space, LAO* may find useful partial
solutions by focusing computation on states that are
most likely to be visited from a start state — a possi-
bility that motivates the envelope algorithms of Dean
et al. (1995) and Tash and Russell (1994).

Acknowledgments

Support for this work was provided in part by the Na-
tional Science Foundation under grants IRI-9624992
and TRI-9634938.

References

Barto, A.G.; Bradtke, S.J.; and Singh, S.P. (1995)
Learning to act using real-time dynamic programming.
Artificial Intelligence 72:81-138.

Bertsekas, D. (1995) Dynamic Programming and Op-
timal Control. Athena Scientific, Belmont, MA.

Brooks, D.M. and Leondes, C.T. (1993) Markov deci-
sion processes with state-information lag. Operations
Research pp. 904-907.

Chakrabarti, P.P.; Ghose, S.; & DeSarkar, S.C. (1988)
Admissibility of AO* when heuristics overestimate.
Artificial Intelligence 34:97-113.

Davis, H.W.; Bramanti-Gregor, A.; and Wang, J.
(1989) The advantages of using depth and breadth
components in heuristic search. In Z.W. Ras and
L. Saitta, eds., Methodologies for Intelligent Systems,
Vol. 3, North-Holland, Amsterdam, The Netherlands,
pp. 19-28.

Dean, T.; Kaelbling, L.P.; Kirman, J.; and Nicholson,
A. (1995) Planning under time constraints in stochas-
tic domains. Artificial Intelligence 76:35-74.

Dearden, R and Boutilier, C. (1994) Integrating plan-
ning and execution in stochastic domains. In Proceed-
ings of the Tenth Conference on Uncertainty in Artifi-
cial Intelligence, pp. 162-169. Washington, D.C.

Hansen, E.A. and Zilberstein, S. (1998) Heuristic
search in cyclic AND/OR graphs. Proceedings of
the Fifteenth National Conference on Artificial Intel-
ligence, 412-418. Madison, WI.

Ishida, T. and Shimbo, M. (1996) Improving the learn-
ing efficiencies of realtime search. In Proceedings of
the Thirteenth National Conference on Artificial In-
telligence, 305-310. Portland, OR.

Kaelbling, L.P; Littman, M.L; and Cassandra, A.R.
(1998) Planning and Acting in partially observable
stochastic domains. em Artificial Intelligence 101:99—
134.

Korf, R. (1990) Real-time heuristic search. Artificial
Intelligence 42:189-211.

Martelli, A. and Montanari, U. (1973) Additive
AND/OR graphs. In Proceedings of the Third In-
ternational Joint Conference on Artificial Intelligence,
1-11. Stanford, CA.

Martelli, A. and Montanari, U. (1978) Optimizing de-
cision trees through heuristically guided search. Com-
munications of the ACM 21(12):1025-1039.

McCallum, R.A. (1993) Overcoming incomplete per-
ception with utile distinction memory. In Proceedings
of the Tenth International Machine Learning Confer-
ence, pp. 190-196. Amherst, MA.

Moore, A.W. and Atkeson, C.G. 1993. Prioritized
sweeping — reinforcement learning with less data and
less time. Machine Learning 13:103-130.

Nilsson, N.J. (1980) Principles of Artificial Intelli-
gence. Palo Alto, CA: Tioga Publishing Company.

Pohl, I. (1973) First results on the effect of error in
heuristic search. Machine Intelligence 5:219-236.

Tash, J. and Russell, S. (1994) Control strategies for
a stochastic planner. In Proceedings of the Twelth
National Conference on Artificial Intelligence, 1079—
1085. Seattle, WA.

Thomas, L.C.; Gaver, D.P.; and Jacobs, P.A. (1991)
Inspection models and their application. IMA Jour-
nal of Mathematics Applied in Business and Industry
3:383-303.

