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Abstract
Decentralized POMDP is an expressive model for multi-
agent planning. Finite-state controllers (FSCs)—often used
to represent policies for infinite-horizon problems—offer a
compact, simple-to-execute policy representation. We exploit
novel connections between optimizing decentralized FSCs
and the dual linear program for MDPs. Consequently, we de-
scribe a dual mixed integer linear program (MIP) for optimiz-
ing deterministic FSCs. We exploit the Dec-POMDP struc-
ture to devise a compact MIP and formulate constraints that
result in policies executable in partially-observable decentral-
ized settings. We show analytically that the dual formulation
can also be exploited within the expectation maximization
(EM) framework to optimize stochastic FSCs. The resulting
EM algorithm can be implemented by solving a sequence of
linear programs, without requiring expensive message pass-
ing over the Dec-POMDP DBN. We also present an effi-
cient technique for policy improvement based on a weighted
entropy measure. Compared with state-of-the-art FSC meth-
ods, our approach offers over an order-of-magnitude speedup,
while producing similar or better solutions.

Introduction
Decentralized partially-observable MDPs (Dec-POMDPs)
have emerged as a prominent framework for collaborative
sequential decision making (Bernstein et al. 2002). Dec-
POMDPs capture planning problems where agents act based
on different partial information about the environment and
about each other to maximize a global reward function. Ap-
plications of Dec-POMDPs include coordinating planetary
rovers (Becker et al. 2004), target tracking by a team of sen-
sors (Nair et al. 2005), and improving throughput in wireless
networks (Pajarinen, Hottinen, and Peltonen 2014).

For finite-horizon Dec-POMDPs, numerous point-based
algorithms have been developed (Seuken and Zilberstein
2007; Kumar and Zilberstein 2010b). An alternate policy
representation that relies on the distribution over world
states and joint histories of agents, also called occupancy
states, offers sufficient statistic for decentralized plan-
ning (Dibangoye et al. 2013; Oliehoek 2013). However, un-
like their point-based POMDP counterparts (Pineau, Gor-
don, and Thrun 2006), Dec-POMDP solvers suffer due to
the lack of a compact belief state representation.
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Finite-state controllers (FSCs) alleviate that problem and
more easily generalize from POMDPs (Hansen 1998) to
Dec-POMDPs (Amato, Bernstein, and Zilberstein 2010).
Executing a FSC-based policy requires a simple lookup
table, with no belief updates. This resource-efficient ex-
ecution is desirable in many settings, such as battery-
constrained mobile devices (Grzes et al. 2015) and wire-
less devices (Pajarinen, Hottinen, and Peltonen 2014). Grzes
et al. provide real world energy efficiency comparisons be-
tween controller-based POMDP policies and point-based
approaches for assistive healthcare applications on a mobile
device, showing that FSCs are the most effective representa-
tion in terms of preserving battery life and being highly re-
sponsive w.r.t. the frequency of policy queries (point-based
approaches require belief update, which may be time con-
suming, delaying response). In addition, controllers can pro-
vide significantly more semantic information about the pol-
icy than occupancy states (Dibangoye et al. 2013), which
is crucial for human understanding of the policy, for exam-
ple in assistive healthcare applications (Hoey et al. 2012).
Similarly, controller-based policies have been recently used
for multi-robot coordination under uncertainty where inter-
pretable compact policies are desired (Amato et al. 2015).

Optimizing controllers for POMDPs and Dec-POMDPs
is challenging. Several approaches have been developed
to optimize deterministic (Amato and Zilberstein 2008) or
stochastic (Bernstein et al. 2009; Amato, Bernstein, and
Zilberstein 2010; Kumar and Zilberstein 2010a; Pajarinen
and Peltonen 2011b) controllers. We present a mixed inte-
ger linear programming (MIP) formulation for optimizing
deterministic controllers for Dec-POMDPs. Our approach
provides a direct connection between planning for Dec-
POMDPs and the dual LP formulation for MDPs (Puter-
man 1994). This dual view of multiagent planning allows
for adaptations of techniques developed for large MDPs, in-
cluding factored state and action spaces. The MIP formu-
lation is advantageous over nonlinear programming (NLP)
formulations (Amato, Bernstein, and Zilberstein 2010) and
inference-based techniques (Kumar and Zilberstein 2010a)
because most off-the-shelf MIP solvers provide an upper
bound on solution quality that can be used to calculate the
optimality gap. Given enough time, MIP solvers provide
optimal fixed-size controllers, which cannot be guaranteed
with non-convex programming solvers.



Beyond deterministic controllers, we show analytically
that the dual formulation can benefit the expectation maxi-
mization (EM) framework to optimize stochastic FSCs (Ku-
mar, Zilberstein, and Toussaint 2015). The resulting EM al-
gorithm can be implemented by solving a sequence of linear
programs, without expensive message passing over the Dec-
POMDP DBN. Thus, the dual perspective on decentralized
planning can further benefit existing approaches.

The benefits of using MIP and dual LP based formula-
tions have been recognized by the planning community. For
example, a MIP-based approach to obtain optimal policy
for finite-horizon Dec-POMDP was developed by Aras and
Dutech (2010). This approach works by incorporating the
world state and all possible observation histories for every
time step into an extended state space over which a MIP
is defined. The main disadvantage of such approaches is
that the size of the observation history increases exponen-
tially with the horizon, severely impacting scalability. A dual
LP-based approach was presented by Witwicki and Dur-
fee (2007) for a subclass of Dec-MDPs, while Mostafa and
Lesser (2011) presented a MIP-based approach for another
Dec-MDP subclass. For POMDPs, a MIP-based FSC opti-
mization was proposed by Kumar and Zilberstein (2015).
In contrast to previous approaches, our approach is based
on optimizing a FSC-based stationary policy for infinite-
horizon Dec-POMDPs. We formulate constraints that yield
policies that are executable in partially-observable decen-
tralized settings. Furthermore, the size of our MIP is polyno-
mial in the FSC size and is therefore far more scalable than
previous MIP approaches (Aras and Dutech 2010).

In previous work on optimizing decentralized con-
trollers (Amato, Bernstein, and Zilberstein 2010; Kumar and
Zilberstein 2010a), it is often hard to determine the “right”
size of the controller in terms of the number of nodes. Larger
controllers better approximate the optimal policy but are
more challenging to optimize. We use the recently devel-
oped notion of history-based controllers (Kumar and Zilber-
stein 2015), and extend it for the decentralized setting. We
develop techniques that can find good controllers via an iter-
ative process for adding controller nodes using a principled
heuristic. Using MIP-based optimization and the node ad-
dition heuristics, we show that our approach can find high
quality compact controllers for most standard problems,
while providing more than an order-of-magnitude speedup
over previous controller optimization approaches.

The Dec-POMDP Model
We define the two-agent Dec-POMDP as follows. Agents 1
and 2 select actions from the setsA andB, respectively, with
a∈A and b∈B denoting their individual actions. The state
transition probability P (s′|s, a, b) depends upon the actions
of both agents. Upon taking the joint-action 〈a, b〉 in state
s ∈ S, the agents receive the joint-reward R(s, a, b). Y is
a finite set of observations for agent 1 and Z for agent 2.
O(yz|s, a, b) denotes the probability of agent 1 observing
y ∈ Y and agent 2 observing z ∈ Z when the joint-action
〈a, b〉 results in state s. Future rewards are discounted by a
factor γ < 1. The initial belief over world states is b0(s).

An agent’s individual policy maps its local action-
observation history to the next action. However, an ex-
plicit representation of this mapping is ill-suited for infinite-
horizon problems. Hence, we represent an agent’s policy us-
ing a finite-state controller (FSC). The FSC for an agent (say
agent 1 w.l.o.g.) is specified by parameters θ = 〈P, π, λ〉,
where P is a set of memory nodes or controller nodes for the
agent. The action mapping for each node is denoted using
π :P→∆A, where ∆A is the set of all probability distribu-
tions over A. The node mapping λ :P × Y →∆P encodes
the transition function, specifying the new node given cur-
rent node p and observation received y. We optimize deter-
ministic controllers. Therefore, each π(a|p) is a 0-1 variable
such that

∑
a∈A π(a|p) = 1 ∀p ∈ P . The deterministic node

transition function λ(p′|p, y) is defined analogously.
We denote nodes of agent 1’s controller by p and agent

2’s nodes by q. The value for starting the joint-controller in
nodes 〈p, q〉 at state s is given by:

V (p, q, s)=
∑
a,b

π(a | p)π(b | q)
[
R(s, a, b)+γ

∑
s′

P (s′ | s, a, b)

∑
y,z

O(yz | s′, a, b)
∑
p′q′

λ(p′ | p, y)λ(q′ | q, z)V (p′, q′, s′)
]

(1)

Assuming that execution starts at nodes 〈p0, q0〉 at time
zero, the value of a joint-controller for the initial belief b0
is V (b0;θ) =

∑
s b0(s)V (p0, q0, s;θ), where θ denotes the

FSC parameters for both agents. Our goal is to find an opti-
mal joint-policy θ? such that V (b0;θ?) is maximized. Op-
timizing fixed-size deterministic controllers is NP-Hard. In
fact, even optimizing a reactive controller with one node per
observation is NP-Hard (Littman 1994).

The Dual MIP for Dec-POMDPs
Our dual MIP formulation for optimizing controllers is
based on the dual LP formulation for optimizing MDP poli-
cies. Therefore, we first describe relevant aspects of dual LP
for MDPs. The linear program for finding an optimal MDP
policy is often represented as follows (Puterman 1994):

max
{x(·,·)}

∑
s

∑
a

R(s, a)x(s, a) (2)∑
a

x(j, a) =
∑
s

∑
a

γ P (j|s, a)x(s, a) + b0(j) ∀j ∈ S (3)

where the variable x(s, a), also known as occupancy mea-
sure, intuitively denotes the total discounted amount of time
the environment state is s and action a is taken. Therefore,
the total reward corresponding to being in state s and taking
action a is R(s, a)x(s, a). The constraints enforce the flow
conservation principle.
Definition 1. The variable x(s, a) is defined as follows (Put-
erman 1994):

x(s, a)=
∑
j∈S

b0(j)

∞∑
t=1

γt−1P (st=s, at=a | s1=j) (4)
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Figure 1: CP-MDP DBN

Cross-Product MDP for Dec-POMDP
We develop a mathematical programming formulation anal-
ogous to the dual LP formulation of MDPs to optimize de-
centralized FSCs. First, we show that a Dec-POMDP can
be viewed as an MDP over cross-product states of the form
(p, q, s), where s is a world state and 〈p, q〉 is a joint-
controller state. While cross-product MDP (CP-MDP) has
been previously used (Seuken and Zilberstein 2007), we de-
velop the dual formulation for CP-MDPs, thereby making
the following contributions:

• A naive adaptation of dual formulation to CP-MDP leads
to exponential number of variables in the number of
observations. We exploit the CP-MDP’s DBN structure
(Fig. 1) to reduce the program size to polynomial in the
Dec-POMDP model parameters.

• We formulate a new set of constraints that enable the dual
formulation for CP-MDP to find a valid policy executable
in partially-observable decentralized settings.

Dual Formulation for CP-MDP
Our first contribution is the compact dual formulation for
CP-MDP shown in Table 1. x(a|p), x(b|q), x(p′|p, y), and
x(q′|q, z) are binary policy variables (π, λ). All other vari-
ables are continuous occupancy measures under different
marginalizations. In what follows, we formally define these
variables and the necessary associated constraints.

We first describe the CP-MDP for a Dec-POMDP. The
state space is the cross-product of the joint-controller state
and the environment state (p, q, s) ∈ P × Q × S. The ac-
tion space has two components. The first consists of the ac-
tions a and b of both agents. The controller transition pa-
rameters λ(·) for both agents are also included in the ac-
tion space, since our goal in solving the CP-MDP is to
find the action mapping for each node as well as decide
which node to transition to for each possible observation.
This is achieved by creating a random variable p̃yi for each
observation yi of agent 1 and variable q̃zi for each ob-
servation zi of agent 2. The domain of p̃yi (resp. q̃zi ) is
the set of all controller nodes P (resp. Q) to which con-
trol can transfer upon receiving observation yi (resp. zi).
In our formulation, the observation yi is not a variable,
rather the variable is which node the control transitions
to given yi. These variables encode the transition func-
tion λ(p′|p, y). The joint-action for the underlying cross-
product MDP is therefore 〈a, b, p̃y1 , . . . , p̃yk , q̃z1 , . . . , q̃zk〉,
or in short 〈a, b, 〈p̃y〉, 〈q̃z〉〉. The transition function for the

Variables: x(p, q, s, a, b), x(p, q, s, a, b, p′y, q
′
z)

x(p, a), x(q, b), x(p), x(q), x(p, p′y), x(q, q
′
z)

x(a|p), x(b|q), x(p′|p, y), x(q′|q, z) ∀ p, q, s, a, b, y, z, p′, q′

Maximize:
∑
p,q,s

∑
a,b

R(s, a, b)x(p, q, s, a, b) (5)

Subject to:∑
a,b

x(p′, q′, s′, a, b) = η0(p
′, q′, s′) + γ

∑
p,q,s

∑
a,b,y,z

O(yz | s′, a, b)

P (s′ | s, a, b)x(p, q, s, a, b, p̃y = p′, q̃z = q′)∀(p′, q′, s′) (6)

x(p, q, s, a, b) =
∑
p′,q′

x(p, q, s, a, b, p′y, q
′
z)∀(p, q, s, a, b, y, z) (7)

x(p, a) =
∑
q,s,b

x(p, q, s, a, b)∀(p, a) (8)

x(q, b) =
∑
p,s,a

x(p, q, s, a, b)∀(q, b) (9)

x(p) =
∑
a

x(p, a)∀p (10)

x(q) =
∑
b

x(q, b)∀q (11)

x(p, p′y) =
∑

q,s,a,b,q′

x(p, q, s, a, b, p′y, q
′
z)∀(p, y, z, p′) (12)

x(q, q′z) =
∑

p,s,a,b,p′

x(p, q, s, a, b, p′y, q
′
z)∀(q, y, z, q′) (13)

x(p)− x(p, a) ≤ 1− x(a|p)
1− γ ∀(p, a) (14)

x(q)− x(q, b) ≤ 1− x(b|q)
1− γ ∀(q, b) (15)

x(p)− x(p, p′y) ≤
1− x(p′|p, y)

1− γ ∀(p, y, p′) (16)

x(q)− x(q, q′z) ≤
1− x(q′|q, z)

1− γ ∀(q, z, q′) (17)∑
a

x(a|p) = 1 ∀p;
∑
b

x(b|q) = 1 ∀q (18)∑
p′

x(p′|p, y) = 1 ∀(p, y) ;
∑
q′

x(q′|q, z) = 1 ∀(q, z) (19)

x(a|p) ∈ {0, 1}, x(b|q) ∈ {0, 1}, (20)
x(p′|p, y) ∈ {0, 1}, x(q′|q, z) ∈ {0, 1} (21)

Table 1: MIP for the CP-MDP of a 2-agent Dec-POMDP

CP-MDP is:

P (p′, q′, s′ |p, q, s, a, b, 〈p̃y〉, 〈q̃z〉)=
∑

yr∈Y,zl∈Z
P (p′ |p, 〈p̃y〉, yr)

P (q′ |q, 〈q̃z〉, zl)O(yrzl |s′, a, b)P (s′ |s, a, b) (22)

where the distribution P (p′|p, 〈p̃y〉, yr) is defined as:

P (p′ |p, 〈p̃y〉, yr) =

{
1 if p̃yr = p′

0 otherwise
(23)

P (q′|q, 〈q̃z〉, zl) is defined analogously. Intuitively, these
distributions encode the fact that a complete assignment to
variables 〈p̃y〉 and 〈q̃z〉 defines a deterministic controller
transition function. We now extend the MDP dual formu-
lation to CP-MDP. Analogous to the x(s, a) variables in the
MDP case, we define variables x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) us-
ing the state and joint-action of the CP-MDP.



Definition 2. The variable x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) is de-
fined as: ∑

j∈S,k∈P,l∈Q
η0(j, k, l)

∞∑
t=1

γt−1

Pt(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉 | s1=j, p1=k, q1= l) (24)

where η0(·) is the (given) initial distribution over world
states and the joint-controller nodes. Next, we adapt the
MDP flow constraint (3) to CP-MDPs. Note that the vari-
ables x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) can be considered a distribu-
tion. To reduce the exponential number of these variables,
we exploit the structure of the DBN in Fig. 1.
The LHS of Eq. 3 can be written for a CP-MDP as:∑
a,b

x(p′, q′, s′, a, b) =
∑

a,b,〈p̃y〉,〈q̃z〉
x(p′, q′, s′, a, b, 〈p̃y〉, 〈q̃z〉) (25)

The RHS for the flow constraint is:

η0(p
′, q′, s′) + γ

∑
p,q,s,a,b,〈p̃y〉,〈q̃z〉

P (p′, q′, s′|p, q, s, a, b, 〈p̃y〉, 〈q̃z〉)

x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) (26)

We simplify the inner summation term in the above equation
by further marginalizing over joint-observations 〈y, z〉:

∑
p,q,s,a,b,yr,zl,〈p̃y〉,〈q̃z〉

P (p′|p, yr, 〈p̃y〉)P (q′|q, zl, 〈q̃z〉)

P (s′, yr, zl|p, q, s, a, b, 〈p̃y〉, 〈q̃z〉)x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) (27)

We note that variables (s′, yr, zl) in the DBN of Fig. 1 are
independent of (p, q, 〈p̃y〉, 〈q̃z〉) given (s, a, b). Also, distri-
butions P (p′|p, yr, 〈p̃y〉) and P (q′|q, zl, 〈q̃z〉) are determin-
istic and are 1 only when p̃yr = p′ and q̃zl = q′. Therefore,
we can simplify the quantity in (27) to:∑
p,q,s,a,b,yr,zl

P (s′, yr, zl|s, a, b)

∑
〈p̃y〉\p′yr ,〈q̃z〉\q

′
zl

x(p, q, s, a, b, p′yr , q
′
zl , 〈p̃y〉\p

′
yr , 〈q̃z〉\q

′
zl) (28)

Analogous to the marginalization of probability distribu-
tions, we can simplify the above expression to:∑

p,q,s,a,b,yr,zl

P (s′, yr, zl|s, a, b)x(p, q, s, a, b, p′yr , q
′
zl) (29)

To summarize, Eq. (25) forms the basis for the LHS of flow
constraint (6) in Table 1. Eqs. (26) and (29) form the basis
for the RHS of this flow constraint. Notice that using proper
marginalization, the number of x(·) variables used in con-
straint (6) is polynomial in problem parameters; we do not
use exponentially many x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) variables.

Producing a Valid Dec-POMDP Policy
Note that the flow constraint (6) in Table 1 alone will not
result in a valid policy as different FSC parameters may
depend on the unobservable world state. In a valid Dec-
POMDP policy, each agent’s controller parameters depend
only on its local observables, which in our case are the

last local observation received and the agent’s local con-
troller state. Hence, if a deterministic policy transitions to
node p? given current controller state p and observation y
(λ(p?|p, y) = 1), then enforcing the occupancy measure con-
dition x(p) = x(p, p?y) results in a valid policy. Intuitively,
this condition says that whenever the control is in state p
(=x(p)), then given observation y, the action is to transition
to p? (=x(p, p?y)). This condition prevents dependence on
other agent’s parameters or the unobservable world-state.
Theorem 1. The MIP constraint (16) along with the inte-
grality constraints of (21) guarantee a valid node mapping
in a partially observable setting. That is,
x(p, p?y) = x(p) iff x(p?|p, y)=1, ∀y ∈ Y,∀p ∈ P (30)

x(p, p′y) = 0 ∀p′ ∈ P\p?, ∀y ∈ Y, ∀p ∈ P (31)
Proof. We know from constraint (12):

x(p, p′y) =
∑
qsabq′

x(p, q, s, a, b, p′y, q
′
z) (32)

∑
p′

x(p, p′y) =
∑
p′

∑
qsabq′

x(p, q, s, a, b, p′y, q
′
z) (33)

Using constraint (7), we can simplify the RHS as follows:∑
p′

x(p, p′y) =
∑
qsab

x(p, q, s, a, b) (34)

Using constraint (8), we further simplify the RHS:∑
p′

x(p, p′y) =
∑
a

x(p, a) (35)

Using constraint (10), we get:∑
p′

x(p, p′y) = x(p) (36)

Using the above relation, we deduce that:
x(p) ≥ x(p, p′y) ∀y, p′, p (37)

Let us now focus on constraint (16). Using the normaliza-
tion constraint (19) and integrality constraints (21), we know
that for each (p, y) pair, there will be exactly one p? such that
x(p?|p, y)=1. Constraint (16) for this p? is:

x(p)− x(p, p?y) ≤ 0 (38)

x(p) ≤ x(p, p?y) (39)
Using relations (37) and (39), we get that:

x(p) = x(p, p?y) (40)

Using Eq. (36), we also deduce that x(p, p′y) = 0 ∀p′∈P\p?.
This proves the theorem statement. Finally, constraint (16)
also holds for all p′∈P\p?, resulting in the valid inequality
x(p) ≤ 1

1−γ .

We can similarly show that x(p) =x(p, a?) resulting in a
valid action selection policy that depends only on controller
state. Assuming m nodes for each agent’s controller, the
MIP has O(m4|S||A|2|Y |2) variables, 2× (m|A|+m2|Y |)
of which are binary, andO(m2|S||A|2||Y |2) constraints. Bi-
nary variables, whose number greatly influences the com-
plexity of solving MIPs, correspond only to the policy pa-
rameters π and λ. Our MIP for Dec-POMDPs is therefore
an efficient encoding, containing a minimal number of bi-
nary variables.
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Figure 2: (a) two time-slice DBN for a fixed policy, and (b) the
T -step DBN for the reward obtained at time step T

Optimizing Stochastic Controllers
We have shown how the dual perspective results in a mixed-
integer program to optimize deterministic controllers. In this
section, we show that a similar dual perspective can also
be used to optimize stochastic controllers within the ex-
pectation maximization (EM) framework (Dempster, Laird,
and Rubin 1977). The well known EM algorithm has been
extended to optimize stochastic Dec-POMDP controllers.
Several variants of EM have been developed for different
variations of the Dec-POMDP model from two-agent gen-
eral Dec-POMDPs (Kumar and Zilberstein 2010a; Pajarinen
and Peltonen 2013) to larger factored Dec-POMDPs (Pajari-
nen and Peltonen 2011a; Kumar, Zilberstein, and Toussaint
2015). The core computational challenge in the E-step of
the EM algorithm is to perform forward-backward message
passing on the DBN with the structure shown in Fig. 2(b),
similar to message passing in hidden Markov models.

The message passing used in existing EM implementa-
tions is computationally challenging and inaccurate as the
number of time steps for message propagation is not known
a priori. Based on the discount factor γ, a suitable cutoff
time is computed on-the-fly when γT is small enough. Such
a cutoff time may be large depending on the value of γ,
and may cause numerical inaccuracies. Another drawback
is that for every different variation of Dec-POMDPs (such
as transition/observation independence or factored models),
the forward-backward message passing needs to be analyti-
cally derived to reflect the changes in the DBN structure.

To avoid these issues, we show that the quantities com-
puted by the message-passing approaches can be extracted
directly by solving a simple linear program (LP) based on
the dual framework. Consequently, the entire EM algorithm
can be easily implemented by solving a series of LPs, one for
each iteration. Using this LP also removes the dependence of
EM’s runtime and numerical accuracy on the discount fac-
tor γ. Furthermore, modifying the DBN structure changes
some constraints in the LP, eliminating the need to re-derive
the message-passing update equations.

In each EM iteration, for a fixed policy for each agent
(computed from previous iteration), message passing takes
place on the DBN shown in Fig. 2(a). This DBN is analo-

gous to the CP-MDP DBN in Fig. 1, expect for the fact that
given a fixed decentralized policy, we can remove the in-
coming influence from the underlying state s and the other
agent’s controller q to agent 1’s policy (and vice versa). We
focus on updating the action parameter π?(a|p) for agent 1
(node transition update is similar). EM’s update is therefore:

π?ap=
πap
Cp

∑
qs

α̂(p, q, s)

[∑
b

R̂sabπbq +
γ

1− γ
∑

p′q′s′y′z′

β̂(p′, q′, s′)

λp′py′λq′qz′
∑
b

Oy′z′s′abπbqPs′sab

]
(41)

where α̂(p, q, s) and β̂(p, q, s) are computed using message
passing; π?(·) denotes the new estimate of the action pa-
rameter. For brevity, different parameters (e.g., π(a|p)) are
denoted using shorthand (as in πap). For a fixed joint-policy
θ, using the occupancy measure in Definition 2, let

x(p, q, s) =
∑

a,b,〈p̃y〉,〈q̃z〉
x(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) (42)

For the sake of readability we removed the dependence of
x(·) on the joint-policy θ. We show the following relation.

Theorem 2. For a fixed joint-policy θ, the following holds:

α̂(p, q, s) = x(p, q, s).

Proof. The quantity α̂(p, q, s) computed using message
passing over the Dec-POMDP DBN is defined as (Kumar,
Zilberstein, and Toussaint 2015):

α̂(p, q, s)=

∞∑
t=1

γt−1Pt(p, q, s) (43)

where Pt(p, q, s) denotes the probability that at time step
t, the joint controller and world state is 〈p, q, s〉 as per the
given policy θ. Using Eq. (42) and Definition 2, we have:

x(p, q, s)=

∞∑
t=1

γt−1
∑

a,b,〈p̃y〉,〈q̃z〉

∑
j∈S,k∈P,l∈Q

η0(j, k, l)

Pt(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉 | s1=j, p1=k, q1= l) (44)

=

∞∑
t=1

γt−1
∑

a,b,〈p̃y〉,〈q̃z〉
Pt(p, q, s, a, b, 〈p̃y〉, 〈q̃z〉) (45)

where we marginalize over the initial joint-controller and
the world state 〈k, l, j〉 in Eq. (44) to get (45). We can further
marginalize the probability in Eq. (45) to get:

x(p, q, s)=

∞∑
t=1

γt−1Pt(p, q, s) (46)

The theorem follows from Eqs. (43) and (46).

The above result shows that the quantity α̂ is the same
as the occupancy measures x(·) that are computed using the
dual framework. Before we describe the connections of the
second quantity β̂(p, q, s) with the dual framework, we show
in Table 2 the LP that computes the x(p, q, s) measures for
a given joint-policy θ.



Variables: x(p, q, s) ∀ p, q, s
Maximize:

∑
p,q,s

∑
a,b

R(s, a, b)x(p, q, s)π(a|p)π(b|q) (47)

Subject to:

x(p′, q′, s′) = η0(p
′, q′, s′) + γ

∑
p,q,s

∑
a,b,y,z

O(yz | s′, a, b)P (s′|s, a, b)

π(a|p)π(b|q)λ(p′|p, y)λ(q′|q, z)x(p, q, s) ∀p′, q′, s′
(48)

x(p, q, s) ≥ 0 ∀ p, q, s (49)

Table 2: LP to compute the x(p, q, s) variables. Controller param-
eters θ=〈π, λ, ν〉 for each agent are fixed.

Variables: V (p, q, s) ∀ p, q, s
Minimize:

∑
p,q,s

η0(p, q, s)V (p, q, s) (50)

Subject to:

V (p, q, s)≥
∑
a,b

π(a | p)π(b | q)
[
R(s, a, b)+γ

∑
s′

P (s′ | s, a, b)∑
y,z

O(yz | s′, a, b)
∑
p′q′

λ(p′ | p, y)λ(q′ | q, z)V (p′, q′, s′)
]
∀p, q, s

Table 3: The dual of the LP in table 2.

It is also instructive to analyze the dual of the LP in Ta-
ble 2, shown in Table 3. Notice that the LP in Table 3 sim-
ply evaluates the given joint-policy θ. A key observation
is that when the LP of Table 2 is solved, then most stan-
dard LP solvers would also return the optimal dual variables
V (p, q, s). Therefore, in practice we do not need to solve
the LP in Table 3 to get the joint-policy values V (p, q, s).
We next show the connections of V (p, q, s) and the quantity
β̂(p, q, s) required by the EM algorithm.
Theorem 3. For a fixed joint-policy θ, let V (p, q, s) denote
the value of starting the joint-controller in nodes 〈p, q〉 at
state s, then we have: β̂(p, q, s) ∝ V (p, q, s).

Proof. The value V (p, q, s) is defined as:

V (p, q, s)=

∞∑
T=1

γT−1E
[
R(sT , aT , bT )|〈p1, q1, s1〉=〈p, q, s〉

]
where R(·) is the reward obtained at time step T given the

initial controller and the world state is 〈p, q, s〉.
The quantity β̂(p, q, s) required by EM updates is defined

recursively using backward messages on the DBN with the
structure as in Fig. 2(b). Consider a T -step DBN shown in
Fig. 2(b). This T -step DBN shows the evolution of joint-
controller state and the world state for T time steps. At the
end of T -time steps, a binary reward variable r is introduced
whose conditional probability simulates normalized rewards
of the Dec-POMDP model. That is, we have:

P (r=1|sT =s, aT =a, bT =b)=
R(s, a, b)−Rmin
Rmax −Rmin

(51)

Algorithm 1: EM For Stochastic FSC Optimization
1 Initialize: θ ←RandomInit
2 it← 0
3 while it ≤ Max-Iter do
4 solveDualLP(θ)
5 Set V (p, q, s)← dual variables from LP solution ∀p, q, s

6 α̂(p, q, s)← x(p, q, s) ∀p, q, s

7 β̂(p, q, s) =
V (p,q,s)− 1

1−γRmin
Rmax−Rmin ∀p, q, s

8 Update π?(a|p) using (41) ∀a, p
9 θ ← θ?

10 it← it + 1

For a T -step DBN (as in figure 2(b)), Kumar, Zilberstein,
and Toussaint (2015) show that:

P (r=1;T )=
E
[
R(sT , aT , bT )

]
−Rmin

Rmax −Rmin
(52)

The quantity β̂(p, q, s) required by EM updates is (Kumar,
Zilberstein, and Toussaint 2015):

β̂(p, q, s)=

∞∑
τ=1

γτ−1βτ (p, q, s) (53)

βτ (p, q, s)=P (r = 1|pT−τ+1=p, qT−τ+1=q, sT−τ+1=s, T )
(54)

Semantically, βτ (p, q, s) denotes the probability of reward
variable r= 1 when the current joint-controller and world
state is 〈p, q, s〉 and there are exactly τ time steps to go. Ku-
mar et al. (2015) showed that the value of βτ is the same for
each DBN of length T ≥ τ as all such DBNs share the same
tail. If we substitute T = τ in Eq. (54), we get:

βτ (p, q, s)=P (r = 1|p1=p, q1=q, s1=s, τ) (55)

Using the relation in (52), we get:

βτ (p, q, s)=
E
[
R(sτ , aτ , bτ )|〈p1, q1, s1〉=〈p, q, s〉

]
−Rmin

Rmax −Rmin
That is, βτ (p, q, s) denotes the normalized expected reward
obtained after time step τ . Substituting this result back into
the definition of β̂ in (53), we get:

β̂(p, q, s)=
V (p, q, s)− 1

1−γRmin

Rmax −Rmin
(56)

which concludes the proof.

To summarize, using the dual LP shown in Table 2, the
EM algorithm can be implemented via a sequence of LPs,
as outlined in Algorithm 1. The LP in Table 2 is solved for
previous iteration’s joint-policy θ. Using the output of this
LP, α̂ and β̂ can be extracted. This LP forms the E-step of
the EM algorithm. New estimates of policy parameters (such
as π?(·)) can be found by the standard EM updates.

Iteratively Increasing Controller Size
A key practical issue with optimizing controllers is that it
is often hard to determine the “right” size of each con-
troller. Larger controllers can potentially represent better



policies, but they are hard to optimize within the MIP frame-
work. Recently, a number of techniques have been proposed
for POMDPs that start with optimizing a small controller
and iteratively increase its size (Grzes and Poupart 2015;
Kumar and Zilberstein 2015). We use the notion of history-
based controllers (HBCs) introduced by Kumar and Zilber-
stein (2015) to iteratively add nodes. In a generic controller,
the optimization problem determines both what aspect of the
observation history each node should memorize and what
action to take, which are hard to optimize simultaneously.
HBCs associate semantic interpretation (e.g., memorizing
the last action, observation or both) with each node, thereby
providing highly interpretable controllers and keeping the
size of the dual MIP small to aid the optimization engine.
We use the following definition of HBCs.

Definition 3 (Kumar and Zilberstein 2015). A HBC consists of
a set of nodes {ns}∪ N , where ns denotes a unique start
node. The set N is partitioned according to observations:
N = ∪y∈Y Ny, where Ny represents the set of nodes ny en-
coding the fact that the last observation received was y. The
deterministic action and node mappings are defined as:
π : {ns}∪N →A, and λy : ({ns}∪N )×{y} → Ny ∀y ∈ Y .

Intuitively, the node mapping λy for a HBC determines
the target set Ny based on the last received observation y.
Fig. 3(a) shows an example of a HBC with three observa-
tions. Incoming edges to each node in Nyi are labeled with
the corresponding observation yi. Optimizing a HBC-based
policy is NP-Hard since a reactive controller (which is NP-
Hard) is an instance of HBC with |Ny| = 1 ∀y. Nonethe-
less, using HBC aids the MIP solver by reducing the number
of binary variables; if the maximum controller size for any
agent is m, then the node mapping for a standard FSC for-
mulation requires O(m2|Y |) binary variables, whereas for
HBC it requires only O(m′m|Y |), where m′ is the largest
size of any set Ny . In all our experiments, m′�m, signifi-
cantly reducing the complexity of solving the dual MIP.

We now detail the procedure for iteratively optimizing de-
centralized FSCs, extending the approach of Kumar and Zil-
berstein (2015). We start with optimizing a default-size con-
troller (e.g., a reactive controller). Then, using the entropy-
based heuristic described below, we choose a node ny from
the set of nodes for agents 1 and 2 (ny ∈ P ∪ Q). Next we
split the node ny to create a single copy n′y . That is, if node
ny2 in Fig. 3(a) is chosen for splitting, we add the node n′y2
to the original controller C resulting in the larger controller
C′ as in Fig. 3(b). Instead of optimizing the larger controller
C′ using the dual MIP from scratch, we use a warm-start
strategy. Intuitively, only parameters that are affected by the
addition of the new node n′y2 are made variables to be re-
optimized using the dual MIP. Such parameters are:

• The action mapping π for nodes ny2 and n′y2
• All incoming transitions to the node ny2 in the original

controller C become variable in the new controller with
two choices ny2 and n′y2 . This is shown using dotted ar-
rows from the node ny1 to ny2 and n′y2 in Fig. 3(b)

• The node mapping λ for both nodes ny2 and n′y2 becomes
variable to be re-optimized, as shown using the outgoing

Ny1

Ny2

Ny3

(a) (b)

ns

ny1

n′
y2

ns

ny2

ny1

ny2

y3

y2
y1

y2

Figure 3: Part (a) shows an example of a HBC with three obser-
vations. Part (b) shows the warm-start strategy with dotted lines
corresponding to variables to be optimized.

dotted arrows from ny2 and n′y2 in Fig. 3(b).

Once the structure of C ′ is set using the above rules, then we
re-optimize C ′ using the MIP in Table 1. We perform such
iterative optimization for a maximum number of iterations
or until the new controller C′ encodes the same policy as the
previous controller C for every possible node split.
Entropy-based Heuristic The intuition behind choosing a
node to split is that better policies are encoded by controllers
whose states are strongly indicative of the underlying world
state. We therefore quantify the uncertainty about the world
state associated with every HBC node for each agent’s con-
troller. To measure uncertainty, we use the x(·) variables
computed by solving the dual MIP:

x(p, q, s) =
∑
a,b

x(p, q, s, a, b) , and x(s|p, q) = x(p, q, s)

x(p, q)

H(p) = −
∑
q∈Q

x(q)
∑
s

x(s|p, q) lnx(s|p, q)

H(·) is analogous to conditional entropy (Kumar and Zil-
berstein 2015). The higher a node’s entropy, the more “con-
fused” the agent is about the world state and the greater the
need to split it and re-optimize the more refined policy. A
node corresponding to a unique world state has 0 entropy.
Another refinement we found useful for a more focused node
addition is to give higher splitting priority to nodes where the
HBC spends more time. We incorporate this by defining the
notion of weighted entropy as Hw(p) = x(p)·H(p). There-
fore, in each iteration we compute Hw(p) for each node of
both agents, and choose the one with the highest weighted
entropyHw(p) to split. Empirically, we found that this strat-
egy provided excellent empirical performance. Furthermore,
the weighted entropies can be computed very efficiently as a
byproduct of the dual MIP with minimal extra computation.

Experiments
We compare our dual MIP with node addition approach
(‘dualMIP’) to the state-of-the-art controller optimiza-
tion algorithms, including the periodic FSC optimization
(‘Peri’) (Pajarinen and Peltonen 2011b), EM applied to
periodic FSC structure (Pajarinen and Peltonen 2011b;



dualMIP Peri Peri-EM NLP
Problem Qual. Time Qual. Time Qual. Time Qual. Time

BroadcastChannel 9.1 0.05 − − − − 9.1 1
|S|:4, |A|i:2, |Y |i:2
FB-HSVI = 9.2
Dec-Tiger 13.4 4.2 13.4 202 13.4 6540 -1.49 1
|S|:2, |A|i:3, |Y |i:2
FB-HSVI = 13.4
RecyclingRobots 31.9 1.1 31.8 77 31.8 272 31.9 1
|S|:4, |A|i:3, |Y |i:2
FB-HSVI = 31.9
Grid3×3 5.8 4.4 4.64 9714 − − 4.9 270
|S|:81, |A|i:5, |Y |i:9
FB-HSVI = 5.8
BoxPushing 181.2 6.2 148.6 5675 106.6 7164 143.1 1
|S|:100, |A|i:4, |Y |i:5
FB-HSVI = 224
MarsRover 23.8 20.2 24.1 6088 18.1 7132 19.6 396
|S|:256, |A|i:6, |Y |i:8
FB-HSVI = 26.9
Wireless -184.1 18.2 -181.2 6492 -218 3557 -296 270
|S|:64, |A|i:2, |Y |i:6
FB-HSVI = -144

Table 4: Quality and runtime (sec) of dualMIP against different
controller optimization approaches. ‘−’ indicates result unavail-
able in the literature. Time comparisons are approximate as dif-
ferent approaches may have used different platforms.

Kumar and Zilberstein 2010a) and the mealy NLP ap-
proach (Amato, Bonet, and Zilberstein 2010). We also com-
pare against an optimal branch-and-bound solver to optimize
FSCs (Amato and Zilberstein 2008) and a non-FSC-based
approach (Dibangoye, Buffet, and Charpillet 2014). We used
CPLEX 12.6 as the MIP solver on a 2.8GHz machine with
4GB RAM. All problem domains are publicly available1.

Our dualMIP algorithm first optimizes a default reactive
controller and then adds nodes according to our entropy-
based heuristics. Table 4 shows time and quality results, in-
cluding the solution quality provided by FB-HSVI (Diban-
goye, Buffet, and Charpillet 2014), which converts the
infinite-horizon problem to a finite-horizon problem and
uses finite-horizon planning to generate a non-stationary
policy. Thanks to reward discounting, this provides a good
approximation, given γ= 0.9 for most problems. As Table 4
shows, dualMIP provides similar or better quality than pre-
vious FSC approaches and is multiple orders-of-magnitude
faster than previous best FSC optimization approaches ‘Peri’
and ‘Peri-EM’. For all the instances, dualMIP terminates
within 30 sec, which is a significant improvement over pre-
vious controller optimization approaches. For example, for
‘BoxPushing’, dualMIP provides a higher quality (≈181)
than ‘Peri’ (≈148) with a significant speedup (6 sec for dual
MIP vs. 5675 sec for ‘Peri’). The NLP approach is faster
than ‘Peri’ for some instances, but sometimes provides dras-
tically lower quality (e.g., for ‘Dec-Tiger’ and ‘Wireless’).

1http://rbr.cs.umass.edu/camato/decpomdp/

Problem Reactive Final Problem Reactive Final
Broadcast (3, 3) R Grid3×3 (10, 10) R
Recycling (3, 3) R Wireless? (7, 7) (8,7)
Dec-tiger? (3, 3) (7, 7) BoxPushing? (6, 6) (7,8)

MarsRover (9, 9) R

Table 5: No. of controller nodes per agent. dualMIP starts with
(|Y |+1) nodes in the initial reactive controller before adding nodes;
‘R’ denotes that the final controller was also reactive.

Controller size One notable drawback of previous con-
troller optimization approaches is that an initial controller
size must be specified for each problem (required by ‘Peri’,
‘Peri-EM’ and ‘NLP’). Additionally, it is often hard to as-
sociate any semantic information with controller nodes. Our
dualMIP approach along with HBC-based policy addresses
both of these issues. Table 5 shows the size of the reactive
controller and the final controller size after node addition by
dualMIP for different problems. Starred (?) entries denote
problems where dualMIP added nodes; for others, dualMIP
terminates without adding nodes as node additions led to du-
plicates of the reactive controller. Our approach was able to
optimize reactive controllers provably optimally for all the
benchmarks. Table 5 shows that for 4 out of 7 benchmarks,
optimal reactive controller provided similar quality to pre-
vious approaches. For the three problems where dualMIP
added nodes, the final controller size was still very compact.
In contrast to the compact HBCs optimized by dualMIP,
‘Peri’ uses a minimum controller size of (180, 180) for ‘Re-
cyclingRobots’ and a maximum of (1500, 1500) for ‘Wire-
less’. These results show that the HBC-based policy opti-
mized using dualMIP is both highly interpretable and com-
pact as opposed to the controllers produced by other FSC
optimization approaches.

For two benchmarks (‘BoxPushing’ and ‘Wireless’), the
non-FSC based approach of Dibangoye, Buffet, and Charpil-
let (2014) provides better quality than dualMIP. These set-
tings motivate more insightful node addition strategies anal-
ogous to the ones developed for growing POMDP con-
trollers. Nonetheless, our approach has an advantage over
non-FSC based approaches as it provides highly compact
controllers ideal in resource constrained settings, in contrast
to occupancy measure (Dibangoye, Buffet, and Charpillet
2014) based policies that require maintaining distributions
over the world-state and joint-observation histories, which
may increase exponentially with the planning horizon.
Comparisons with other branch-and-bound solvers We
also compared the dualMIP approach to a branch-and-
bound search strategy to find optimal attribute-based con-
trollers (Amato and Zilberstein 2008). These attributes are
typically handcrafted. For 2 benchmarks (Dec tiger, Box-
Pushing), we used the same controller structure as in (Am-
ato and Zilberstein 2008) and compared the time dualMIP
takes to globally optimize these controllers against their ap-
proach. Our approach was more than an order-of-magnitude
faster. For Dec tiger, dualMIP required 4 sec versus 127 sec
required by Amato and Zilberstein’s approach, similarly 5
sec. for BoxPushing (dualMIP) versus 4974 sec.



Conclusion
Finite state controllers offer a compact, simple-to-execute
policy representation for infinite-horizon problems. Previ-
ous FSC optimization approaches for Dec-POMDPs suf-
fer from lack of scalability and solution quality guarantees,
large controller size, susceptibility to getting stuck in lo-
cal optima and the need to fix the controller size a priori.
By adopting the dual view previously used for MDPs, we
present a MIP formulation for optimizing a FSC-based sta-
tionary policy for infinite-horizon Dec-POMDPs. We devise
constraints that guarantee that the policy is executable in
partially-observable decentralized settings. In addition, we
show analytically that the dual perspective can further bene-
fit existing approaches for optimizing stochastic controllers,
such as the EM algorithm. We also propose an entropy-
based node addition heuristic to iteratively refine the policy,
thereby providing competitive solution qualities using com-
pact controllers with up to an order-of-magnitude speedup.
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